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Abstract

We consider the problem of proving the existence of an L2-cutoff for families of ergodic Markov pro-
cesses started from given initial distributions and associated with reversible (more, generally, normal)
Markov semigroups. This includes classical examples such as families of finite reversible Markov chains
and Brownian motion on compact Riemannian manifolds. We give conditions that are equivalent to the
existence of an L2-cutoff and describe the L2-cutoff time in terms of the spectral decomposition. This is
illustrated by several examples including the Ehrenfest process and the biased (p, q)-random walk on the
non-negative integers, both started from an arbitrary point.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a (time-homogeneous) Markov chain on a finite set Ω with one-step transition ker-
nel K . Let Kl(x, ·) denote the probability distribution of this chain at time l starting from the
state x. Assuming irreducibility and aperiodicity, it is known that

lim
l→∞Kl(x, ·) = π
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where π is the unique invariant probability of K on Ω . Set kl
x = Kl(x, ·)/π , the relative density

of Kl(x, ·) w.r.t. π . For 1 � p � ∞, set

Dp(x, l) = ∥∥kl
x − 1

∥∥
�p(π)

=
{

maxy{|kl
x(y) − 1|} if p = ∞,

(
∑

y |kl
x(y) − 1|pπ(y))1/p if 1 � p < ∞.

For p = 1, this is exactly twice the total variation distance between Kl(x, ·) and π and, for p = 2,
it is the so-called chi-square distance. For any ε > 0, set

Tp(x, ε) = min
{
l � 1: Dp(x, l) � ε

}
. (1.1)

The concept of cutoff was introduced by Aldous and Diaconis in [1–3] to capture the fact that
many ergodic Markov processes appear to converge abruptly to their stationary measure. We
refer the reader to [5,6,15,19] for detailed discussions and the description of various examples.
In its simplest form, the cutoff phenomenon in L2 for a family of finite ergodic Markov chains
(with given starting points) (Ωn, xn,Kn,πn) is defined as follows. There is an L2-cutoff with
cutoff sequence tn if

lim
n→∞Dn,2(xn, atn) =

{
0 if a ∈ (1,∞),

∞ if a ∈ (0,1).

Here Dn,2 denotes the chi-square distance on Ωn relative to πn.
In [5], the authors discussed a number of variants of this definition and produced, in the

reversible case, a necessary and sufficient condition for the existence of a max-L2-cutoff, that is,
a cutoff for maxx∈Ω D2(x, ·) (some of the results in [5] holds for Lp , 1 < p < ∞).

The aim of the present paper is twofold. Our first goal is to establish a criterion for the exis-
tence of an L2-cutoff for families of Markov processes starting from specific initial distributions
when the associated semigroup is normal (i.e., commutes with its adjoint on a proper Hilbert
space). Our second goal is to derive formulas for the L2-cutoff time sequence using spectral
information. To attain these two goals, we will take advantage of the very specific structure of
the chi-square distance and its direct relationship with spectral decomposition. This is in contrast
to the techniques and results of [5] which do not involve much spectral theory and treats Lp-
distances, 1 < p < ∞ as well as L2. The following theorem illustrates the goals outled above.

Theorem 1.1. Let Ω = {0,1,2, . . .} and K be the Markov kernel of the birth and death chain on
Ω with uniform birth rate p ∈ (0,1/2), uniform death rate 1 −p and K(0,0) = 1 −p. Let xn be
a sequence of states in Ω . Then, the discrete time family of birth and death chains with respective
starting states x1, x2, . . . presents an L2-cutoff if and only if xn tends to infinity. Moreover, if there
is a cutoff then

tn = log(1 − p) − logp

− log(4p(1 − p))
xn

is a cutoff time sequence as n → ∞.

We will also obtain variants of this result that involve finite state spaces Ωn = {0,1, . . . , n}
and birth and death rates (pn, qn) that are allowed to depend on n. Our second main example is
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the Ehrenfest chain, treated in Theorem 6.3. The treatment of these examples occupies the bulk
of the paper and illustrates very well the delicacies of the cutoff phenomenon in the context of
specified starting distributions.

This paper is organized as follows. In Section 2, we recall various notions of cutoffs and
quote useful results from [5]. In Section 3, we give criteria for the existence of a cutoff as well
as formulas for the cutoff times in the case of families of Laplace transforms. The main result of
Section 3 is Theorem 3.5 which is the technical cornerstone of this work. In Section 4, we observe
that the chi-square distance between the distribution of a normal Markov process and its invariant
probability measure can be expressed as a Laplace transform. This gives criteria and formula for
cutoffs of families of ergodic normal Markov processes (normal here means that the generator is
a normal operator, i.e., commutes with its adjoint). In Section 5, we spell out the results in the
case of families of finite Markov chains (in discrete and continuous time). See Theorems 5.1,
5.3 and Theorems 5.4, 5.5. In Section 6, we apply these results to study the cutoff phenomenon
for the Ehrenfest chain started at an arbitrary point. See Theorems 6.3, 6.5. In Section 7, we
prove Theorem 1.1 and a number of related results. In Section 8, we study a family of birth and
death chains on {−n, . . . , n} containing examples whose stationary measure has either a unique
maximum or a unique minimum at 0.

2. Cutoff terminology

In this section, we recall various notions of cutoffs and a series of related results from [5].
The notion of cutoff can be developed for any family of non-increasing functions taking values
in [0,∞]. The following definition treats functions defined on the natural integers. We refer the
reader to [5] for additional details and examples.

Definition 2.1. Let N be the set of non-negative integers. For n � 1, let fn : N → [0,∞] be
a non-increasing function vanishing at infinity. Assume that

M = lim sup
n→∞

fn(0) > 0.

Then the family F = {fn: n = 1,2, . . .} is said to present:

(i) A precutoff if there exist a sequence of positive numbers tn and constants b > a > 0 such
that

lim
n→∞fn(kn) = 0, lim inf

n→∞ fn(ln) > 0,

where kn = min{j � 0: j > btn} and ln = max{j � 0: j < atn}.
(ii) A cutoff if there exists a sequence of positive numbers tn such that, for all ε ∈ (0,1),

lim
n→∞fn

(
kn(ε)

)= 0, lim
n→∞fn

(
kn(−ε)

)= M,

where kn(ε) = min{j � 0: j > (1 + ε)tn} and kn(ε) = max{j � 0: j < (1 + ε)tn}.
(iii) A (tn, bn)-cutoff if tn > 0, bn � 0, bn = o(tn) and

lim F(c) = 0, lim F(c) = M,

c→∞ c→−∞
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where, for c ∈ R, k(n, c) = min{j ∈ N: j > tn + cbn}, k(n, c) = max{j ∈ N: j < tn + cbn}
and

F(c) = lim sup
n→∞

fn

(
k(n, c)

)
, F (c) = lim inf

n→∞ fn

(
k(n, c)

)
. (2.1)

This definition agrees with the one used in [5]. In (ii) and (iii), (tn)
∞
1 is referred to as a cutoff

sequence and bn as a window with respect to tn. Obviously, (iii) ⇒ (ii) ⇒ (i).

Remark 2.1. When the fn’s are functions on [0,∞), cutoffs are defined in a similar way. For
a precutoff, we set ln = atn and kn = btn. For a cutoff, kn and kn are replaced respectively by
(1+ε)tn and (1−ε)tn. These notions of precutoff, cutoff and their cutoff sequences coincide with
the notion in [5]. For a (tn, bn)-cutoff in continuous time, we require bn > 0 and use k(n, c) =
k(n, c) = tn + cbn. Assuming bn > 0, this agrees with the (tn, bn)-cutoff of [5].

In Definition 2.1(iii), the window of a cutoff captures explicitly how sharp the cutoff is. It is
quite sensitive to the choice of the cutoff sequence tn. Window optimality is addressed in the
following definition (when bn > 0 this definition is equivalent to the one in [5]).

Definition 2.2. Let F and M be as in Definition 2.1. Assume that F presents a (tn, bn)-cutoff.
Then, the cutoff is called:

(i) weakly optimal if, for any (tn, dn)-cutoff for F , one has bn = O(dn),
(ii) optimal if, for any (sn, dn)-cutoff for F , we have bn = O(dn). In this case, bn is called an

optimal window for the cutoff,
(iii) strongly optimal if

0 < F(c) � F(−c) < M ∀c > 0.

Remark 2.2. An optimal window is a minimal window (in the sense of order) over all cutoff
sequences and, hence, an optimal cutoff is also a weakly optimal cutoff, i.e. (ii) ⇒(i). If a (tn, bn)-
cutoff is strongly optimal, it is easy to see that bn > 0 for all n and that infn bn > 0 if the domain
of the functions in F is N (bn may tend to 0 when the domain is [0,∞)). Hence, a strongly
optimal (tn, bn)-cutoff implies that for any −∞ < c1 < c2 < ∞ we have

0 < fn(tn + c2bn) � fn(tn + c1bn) < M

for n large enough. This implies that if (sn, dn) is another cutoff sequence for F , then the window
dn has order at least bn, and thus (iii) ⇒ (ii).

Remark 2.3. Let F be a family of functions defined on N. If F has a (tn, bn)-cutoff with bn → 0,
instead of looking for the optimal window, it is better to determine the limsup and liminf of the
sequences fn([tn]), where [t] is any integer in [t − 1, t + 1].

Remark 2.4. For any family {fn : T → [0,∞], n = 1,2, . . .} with T = [0,∞), a necessary
condition for a strongly optimal (tn, bn)-cutoff is that

0 < lim inf
n→∞ fn(tn) � lim supfn(tn) < M.
n→∞
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When T = N, we need instead

0 < lim inffn

(�tn	)� lim supfn

(
tn�)< M.

The cutoff phenomenon and its optimality are closely related to the way the functions in F
converge to 0. This is captured by the following simple concept.

Definition 2.3. Let f be an extended real-valued non-negative function defined on T , which is
either N or [0,∞). For ε > 0, set

T (f, ε) = inf
{
t ∈ T : f (t) � ε

}
if the right-hand side above is non-empty and let T (f, ε) = ∞ otherwise.

In the context of ergodic Markov chains, T (f, ε) is interpreted as the ε-mixing time. The
simplest relationship with the notions of cutoff discussed above is as follows. Let F = {fn :
T → [0,∞]: n = 1,2, . . .} be a family of non-increasing functions vanishing at infinity. Assume
that M = lim supn→∞ fn(0) > 0. Then F has a cutoff if and only if

∀ε, η ∈ (0,M), lim
n→∞T (fn, ε)/T (fn, η) = 1.

See [5, Propositions 2.3–2.4] for further relationships and details.
We end this section with a technical result concerning cutoffs and optimality which is useful

in either proving or disproving a cutoff and its optimality when the cutoff or window sequences
contain both bounded and unbounded subsequences. The proof is straightforward and is omitted.

Proposition 2.1. Let T be [0,∞) or N. Consider F = {fn : T → [0,∞], n = 1,2, . . .} as a fam-
ily of non-increasing functions vanishing at infinity. For any subsequence ξ = (ξi) of positive in-
tegers, denote by Fξ the subfamily {fξi

, i = 1,2, . . .}. Assume that M = lim supn→∞ fn(0) > 0.
For T = [0,∞), the following are equivalent.

(i-1) F has a cutoff (resp. (tn, bn)-cutoff ).
(i-2) For any subsequence ξ = (ξi), the family Fξ has a cutoff (resp. (tξn , bξn)-cutoff ).
(i-3) For any subsequence ξ = (ξi), we may choose a further subsequence ξ ′ = (ξ ′

i ) such that
the family Fξ ′ has a cutoff (resp. (tξ ′

n
, bξ ′

n
)-cutoff ).

Moreover, assume that F has a (tn, bn)-cutoff. Then the following are equivalent.

(ii-1) F has an optimal (resp. weakly, strongly optimal ) (tn, bn)-cutoff.
(ii-2) For any subsequence ξ = (ξi), the family Fξ has an optimal (resp. weakly, strongly opti-

mal ) (tξn , bξn)-cutoff.
(ii-3) For any subsequence ξ = (ξi), we may choose a further subsequence ξ ′ = (ξ ′

i ) such that
the family Fξ ′ has an optimal (resp. weakly, strongly optimal ) (tξ ′

n
, bξ ′

n
)-cutoff.

For T = N, all equivalences remain true if tn → ∞, lim infn→∞ bn > 0 and, for some δ ∈ (0,M),
T (fn, δ) → ∞.
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3. Cutoffs for Laplace transforms

In this section, we deal with cutoffs for family of functions which are Lebesgue–Stieltjes
integral of exponential functions, that is, generalized Laplace transforms. Such functions appear
naturally in the context of chi-square distance for reversible Markov process. More precisely, if
the infinitesimal generator is self-adjoint and the initial distribution has an L2 Radon–Nikodym
derivative w.r.t. the invariant probability measure, then the square of the chi-square distance to
stationarity is such an integral. This will be discussed in details in Section 4.

3.1. Laplace transforms

For n � 1, let Vn : (0,∞) → (0,∞) be a non-decreasing and right-continuous function. Con-
sider fn as a Lebesgue–Stieltjes integral defined by

fn(t) =
∫

(0,∞)

e−tλ dVn(λ) ∀t � 0. (3.1)

It is easy to see that fn is non-increasing. Observe that sums of exponential functions are of this
special type. For example, let

fn(t) =
∑
i�1

an,ie
−tλn,i ∀t � 0,

where an,i � 0 and λn,i+1 � λn,i > 0 for n � 1, i � 1. Then fn is of the form in (3.1) with
an,0 = λn,0 = 0, λn = λn,1 and

Vn(t) =
j−1∑
i=0

an,i , for
j−1∑
i=0

λn,i < t �
j∑

i=0

λn,i and j � 1.

Lemma 3.1. Let V : (0,∞) → (0,∞) be a non-decreasing and right-continuous function and
let f be a function on [0,∞) defined by

f (t) =
∫

(0,∞)

e−tλ dV (λ).

Assume that V is bounded. Then f is analytic on (0,∞).

Proof. See [21, Theorem 5, p. 57]. �
The following is an application of the above lemma which is helpful when examining cutoffs

and their optimality.

Lemma 3.2. For n � 1, let fn be a function on [0,∞) defined by (3.1). Assume that
supn fn(0) < ∞. Then, for any sequence of positive numbers (tn)

∞, there exists a subsequence
1
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(tnk
)k�1 such that the sequence gk : a 
→ fnk

(atnk
) converges uniformly on any compact subset

of (0,∞) to an analytic function on (0,∞). Moreover, if cnk
is such that |cnk

| = o(tnk
), then

∀a > 0, lim
k→∞fnk

(atnk
+ cnk

) = lim
k→∞fnk

(atnk
).

Proof. See Appendix A. �
Remark 3.1. Let fn be the function as in Lemma 3.2 and let tn be any sequence of positive
numbers. If tn tends to infinity, we may choose a subsequence (nk)

∞
1 such that a 
→ fnk

([atnk
])

converges to a function analytic on (0,∞), where [t] is any integer in [t − 1, t + 1].

The following two corollaries are simple applications of Lemma 3.2.

Corollary 3.3. Let (fn)
∞
1 be as in Lemma 3.2 such that fn(0) is bounded. For any sequence of

positive numbers tn, set

F1(a) = lim sup
n→∞

fn(atn), F2(a) = lim inf
n→∞ fn(atn), ∀a > 0.

Then F1 and F2 are continuous on (0,∞). Furthermore, either F1 > 0 (resp. F2 > 0) or F1 ≡ 0
(resp. F2 ≡ 0).

Proof. See Appendix A. �
Remark 3.2. By Remark 3.1, if tn → ∞, Corollary 3.3 also holds with the following replace-
ments

F1(a) = lim sup
n→∞

fn

([atn]
)
, F2(a) = lim inf

n→∞ fn

([atn]
)
,

where [t] is any integer in [t − 1, t + 1].

Corollary 3.4. Let F = {fn : [0,∞) → [0,∞]: n = 1,2, . . .} be a family of functions defined
by (3.1). Assume that F has a (tn, bn)-cutoff with bn > 0 and let F,F be functions in (2.1).

(i) If F(0) < ∞, then, on the set (0,∞), either F > 0 (resp. F > 0) or F ≡ 0 (resp. F ≡ 0).
(ii) Assume that F(0) > 0. If F(c) = 0 (resp. F(c) = 0) for some c > 0, then F(c) = ∞ (resp.

F(c) = ∞) for all c < 0.
(iii) If tn = T (fn, δ), then the conclusions in (i) and (ii) hold true without the assumptions on

F(0) and F(0). That is, for (i), either F > 0 (resp. F > 0) or F ≡ 0 (resp. F ≡ 0). For (ii),
if F(c) = 0 (resp. F(c) = 0) for some c > 0, then F(c) = ∞ (resp. F(c) = ∞) for all c < 0.

Proof. See Appendix A. �
Remark 3.3. By Remarks 3.1–3.2, Corollary 3.4 also holds for families of functions defined on
N if one assumes that bn → ∞.
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3.2. Cutoffs for Laplace transforms

The following theorem is one of the main technical results of this paper. It provides a simple
criterion to inspect cutoffs. If V is a non-decreasing and right-continuous function on (0,∞), we
also denote by V the measure on (0,∞) such that V ((a, b]) = V (b) − V (a).

Theorem 3.5. For n � 1, let fn : [0,∞) → [0,∞] be a function defined by (3.1) and set M =
lim inf
n→∞ fn(0). Assume that fn(t) vanishes at infinity for n � 1.

(i) If M < ∞, then the family has no precutoff.
(ii) If M = ∞, let tn = T (fn, δ) and

λn = λn(C) = inf
{
λ: Vn

(
(0, λ])> C

}
. (3.2)

Then the family has a cutoff if and only if there exist constants δ, ε,C ∈ (0,∞) such that
(a) tnλn → ∞.
(b)

∫
(0,λn)

e−ελtndVn(λ) → 0.

Furthermore, if (a) and (b) hold, then the family has a (tn, λ
−1
n )-cutoff.

Proof. See Appendix A. �
Remark 3.4. If there is a cutoff for (fn)

∞
1 , then (a) and (b) hold for any positive triple (δ, ε,C).

Remark 3.5. It follows from the proof of this result that if fn is an extended real-valued function
defined on N, then Theorem 3.5(i) can fail.

The next theorem is a discrete time version of Theorem 3.5.

Theorem 3.6. For n � 1, let fn : N → [0,∞] be a function defined by (3.1) and set M =
lim inf
n→∞ fn(0) and tn = T (fn, δ). Assume that fn(t) vanishes at infinity for all n � 1 and tn → ∞

for some δ > 0.

(i) If M < ∞, then the family has no precutoff.
(ii) If M = ∞, then the family has a cutoff if and only if there exists C > 0 and ε > 0 such that

Theorem 3.5 (a)–(b) hold true.

Furthermore, if Theorem 3.5 (a)–(b) are satisfied, then the family has a (tn, γ
−1
n )-cutoff, where

γn = min{λn,1}.

Proof. See Appendix A. �
Remark 3.6. As in Remark 3.4, if, in Theorem 3.6, there is a cutoff for the family (fn)

∞
1 with

cutoff time tending to infinity, then (a) and (b) are true for any positive constants C,δ, ε.

Remark 3.7. It has been implicitly proved in the appendix that, for the family of functions fn

defined on [0,∞), Theorem 3.6 applied to the family of restricted functions {fn|N: n = 1,2, . . .}
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still holds true if tn = T (fn|N, δ) is replaced by T (fn, δ) defined in Theorem 3.5. Furthermore,
Remark 3.6 is also true under this replacement.

The next proposition is concerned with the optimality of cutoffs for Laplace transforms.

Proposition 3.7. Let F = {fn : T → [0,∞] | n = 1,2, . . .} be a family of functions of the
form (3.1). Assume that F has a (tn, bn)-cutoff where tn = T (fn, δ) for all n � 1 with δ ∈ (0,∞)

and bn > 0. Let F and F be functions in (2.1). For T = [0,∞), the (tn, bn)-cutoff is

(i) weakly optimal iff it is optimal iff F(c) > 0 for some c > 0,
(ii) strongly optimal iff F(c) < ∞ for all c < 0.

For T = N, the above remains true if bn → ∞.

Proof. See Appendix A. �
3.3. The cutoff time of Laplace transforms

Theorems 3.5 and 3.6 can be used to examine the existence of a cutoff by checking whether
the product of T (fn, δ) and λn tends to infinity or not. By Remarks 3.4 and 3.6, the constant
C appearing in the definition of λn can be taken to be any positive number and, hence, the only
unknown term that needs to be studied is the δ-mixing time T (fn, δ). Understanding this quantity
with any precision is a difficult task. In this section, we describe potential cutoff time sequences
in different terms.

Theorem 3.8. Let F = {fn : [0,∞) → [0,∞]: n = 1,2, . . .} be a family of functions defined by
(3.1) which vanish at infinity. For n � 1 and C > 0, let λn = λn(C) be the constant defined in
(3.2) and set

τn = τn(C) = sup
λ�λn

{
log(1 + Vn((0, λ]))

λ

}
. (3.3)

Then F has a cutoff if and only if, for some C > 0 and ε > 0,

(a) τnλn → ∞,
(b)

∫
(0,λn)

e−ελτn dVn(λ) → 0.

Moreover, if (a) and (b) hold true, then F has a (tn, bn)-cutoff with

tn = τn, bn = λ−1
n w(τnλn),

where w : (0,∞) → (0,∞) is any function satisfying

lim
t→∞

w(t)

t
= 0, lim inf

t→∞ ew(t)
(
1 − e−w2(t)/t

)
> 0. (3.4)

In particular, w(t) = log t is a function qualified for (3.4) and bn = λ−1 log(τnλn).
n
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Proof. See Appendix A. �
Remark 3.8. It is shown in the proof of Theorem 3.8 that τn(C) � T (fn,

C
C+1 ), C > 0.

Remark 3.9. In contrast with Theorem 3.5, Theorem 3.8 does not require explicitly that
fn(0) → ∞ (i.e., M = ∞) for a cutoff. However, this is in fact contained implicitly in Theo-
rem 3.8(a).

Remark 3.10. What is proved in the appendix is that, if a family has a cutoff then the conditions
(a)–(b) hold for any C > 0, ε > 0. This means that either (a)–(b) hold for all positive constants
C,ε or one of (a) or (b) must fail for all C,ε. Hence, when using Theorem 3.8 to inspect the
existence of a cutoff, one needs to check (a) and (b) only for one arbitrary pair (C, ε). In practice,
this is a very important remark.

Remark 3.11. The second condition in (3.4) implies limt→∞ w(t) = ∞. It follows that the win-
dow given by Theorem 3.8 has order strictly larger than that the one in Theorem 3.5 and, hence,
cannot be optimal.

The following is a discrete time version of Theorem 3.8.

Theorem 3.9. For n � 1, let fn : N → [0,∞] be the function defined by (3.1). For C > 0, let
λn = λn(C) and τn = τn(C) be the quantities defined by (3.2) and (3.3). Assume that either, for
some C > 0, τn → ∞ or, for some δ > 0, T (fn, δ) → ∞. Then F has a cutoff if and only if
Theorem 3.8 (a) and (b) hold for some C > 0 and ε > 0. Moreover, if (a) and (b) hold, then F
has a (tn, bn)-cutoff with

tn = τn, bn = max
{
λ−1

n w(τnλn),1
}
,

where w is a function satisfying (3.4).

Proof. See Appendix A. �
Remark 3.12. Remark 3.8 holds true in discrete time cases.

Remark 3.13. Concerning functions defined on [0,∞) and their restriction to the natural inte-
gers, the proof of Theorem 3.9 shows that under the assumption of τn → ∞, the existence of
cutoff in Theorems 3.8 and 3.9 are equivalent and both families share the same cutoff type if
the window is at least 1. Thus, by Remark 3.10, if the family in Theorem 3.9 has a cutoff, then
Theorem 3.8(a), (b) (in both discrete time and continuous time setting) hold true for all C > 0
and ε > 0.

4. The main results

Spectral theory is a standard tool to study the L2-convergence of Markov processes to their
stationarity. In particular, in the general context of reversible Markov processes, the square of the
chi-square distance can be expressed in terms of the spectral decomposition of the infinitesimal
generator and written in the form of (3.1). In the following, we start by recalling the definition of
ergodic Markov processes discussed in [5].
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4.1. Markov processes and transition functions

In what follows, let the time to be either N = {0,1,2, . . .} or [0,∞). A Markov transition
function on a space Ω equipped with a σ -algebra B, is a family of probability measures p(t, x, ·)
indexed by t ∈ T (T = [0,∞) or N) and x ∈ Ω such that p(0, x,Ω \{x}) = 0 and, for each t ∈ T

and A ∈ B, p(t, x,A) is B-measurable and satisfies

p(t + s, x,A) =
∫
Ω

p(s, y,A)p(t, x, dy).

We say that a Markov process X = (Xt , t ∈ T ) with filtration Ft = σ(Xs : s � t) ⊂ B admits
p(t, x, ·), t ∈ T , x ∈ Ω , as transition function if

E(f ◦ Xs | Ft ) =
∫
Ω

f (y)p(s − t,Xt , dy)

for all 0 < t < s < ∞ and all bounded measurable f . The measure μ0(A) = P(X0 ∈ A) is called
the initial distribution of the process X. All finite dimensional marginals of X can be expressed
in terms of μ0 and the transition function. In particular,

μt(A) = P(Xt ∈ A) =
∫

p(t, x,A)μ0(dx).

Given a Markov transition function p(t, x, ·), t ∈ T , x ∈ Ω , for any bounded measurable
function f , set

Ptf (x) =
∫

f (y)p(t, x, dy). (4.1)

For any measure ν on (Ω, B) with finite total mass, set

νPt (A) =
∫

p(t, x,A)ν(dx).

We say that a probability measure π is invariant if πPt = π for all t ∈ T . In the general setting,
invariant measures are not necessarily unique.

4.2. L2-distances, mixing time and cutoffs

The Markov processes of interest in this paper are ergodic in the sense that, for some initial
measure μ of interest, the sequence μt converges (in some sense) to a probability measure as
t tends to infinity. A simple argument shows that this limit must be an invariant probability
measure.

We now introduce the chi-square distance measuring the convergence to stationarity. Let pt

be a Markov transition function on Ω with invariant probability measure π . Let μ be another
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probability measure on (Ω, B). For t � 0, if μPt is absolutely continuous with respect to π with
density h(t,μ, ·), we set

D2(μ, t) =
( ∫

Ω

∣∣h(t,μ, x) − 1
∣∣2 π(dx)

)1/2

. (4.2)

In the case that such a density does not exist, D2(μ, t) is set to be infinity. It is an exercise to
show that the absolute continuity of μPt w.r.t π implies that of μPt+s for all s > 0. Moreover,
the map t 
→ D2(μ, t) is non-increasing (see., e.g., [5]).

Definition 4.1 (Mixing time). For any ε > 0, set

T2(μ, ε) = T
(
D2(μ, t), ε

)= inf
{
t ∈ T : D2(μ, t) � ε

}
.

If the infimum is taken over an empty set, T2(μ, ε) = ∞.

This quantity, the so-called L2-mixing time of a Markov transition function with initial distri-
bution μ, plays an important role in the quantitative analysis of ergodic Markov processes.

For any Markov transition function p(t, x, ·), t ∈ T and x ∈ Ω , let Pt be the operator defined
in (4.1). Extend Pt as a bounded operator on the Hilbert space L2(Ω,π).

Definition 4.2. The spectral gap λ of p(t, x, ·), t ∈ T , is the supremum of all constants c such
that

∀f ∈ L2(Ω,π), ∀t ∈ T ,
∥∥(Pt − π)f

∥∥
2 � e−ct‖f ‖2.

Remark 4.1. If T = [0,∞) and Pt is a strongly continuous semigroup of contractions on
L2(Ω,π), then λ can be characterized using the infinitesimal generator A of Pt = etA. That
is,

λ = inf
{〈−Af,f 〉: f ∈ Dom(A), real-valued, π(f ) = 0, π

(
f 2)= 1

}
.

In general, λ is not in the spectrum of A but, assuming that Dom(A) = Dom(A∗) = D then λ is
in the spectrum of any self-adjoint extension of the symmetric operator ( 1

2 (A + A∗),D).

Remark 4.2. If T = N, then e−λ is the second largest singular value of the operator P1 on
L2(Ω,π), namely,

λ = − log
(‖P1 − π‖L2(Ω,π)→L2(Ω,π)

)
.

Consider a family of measurable spaces (Ωn, Bn) indexed by n = 1,2, . . . . For each, n, let
pn(t, x, ·) with t ∈ T , x ∈ Ωn, be a Markov transition function with invariant measure πn and
spectral gap λn. Fix a sequence of probability measures μn on Ωn and let fn(t) = Dn,2(μn, t)

be the L2-distance defined in (4.2). Then, the family {pn(t,μn, ·): n � 1} is said to have an
L2-cutoff (resp. L2-precutoff and (tn, bn)–L2-cutoff) if {fn: n � 1} has a cutoff (resp. precutoff
and (tn, bn)-cutoff) in the sense of Definition 2.1. The following proposition gives a sufficient
condition for the L2-cutoff.
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Proposition 4.1. (See [5, Theorem 3.3].) Referring to the setting and notation introduced
above, assume that D2(μn, t) vanishes as t tends to infinity and set tn = Tn,2(μn, ε) =
inf{t ∈ T : Dn,2(μn, t) � ε}.
(i) Assume that T = [0,∞) and tnλn → ∞. Then the family {pn(t,μn, ·): n � 1} has a

(tn, λ
−1
n )-L2-cutoff.

(ii) Assume that T = N and tnγn → ∞ where γn = max{λn,1}. Then the family {pn(t,μn, ·):
n � 1} has a (tn, γ

−1
n )-L2-cutoff.

We refer the reader to [4,5] for further results in this direction. The goal of the present work
is to provide a necessary and sufficient condition for an L2-cutoff and to describe the cutoff time
using spectral theory.

4.3. The L2-distance for normal Markov kernels

Let T = [0,∞) or N. A Markov transition function p(t, ·,·), t ∈ T , with invariant probability
measure π is called normal if, for t ∈ T ∩[0,1], the operator Pt : L2(Ω,π) → L2(Ω,π) defined
by (4.1) is normal, that is, PtP

∗
t = P ∗

t Pt on L2(Ω,π). In the case that Pt is a strongly continuous
semigroup with infinitesimal generator A, the normality of p(t, ·,·) is equivalent to that of A.
When Pt is normal,

‖Pt − π‖L2(Ω,π)→L2(Ω,π) = e−λt , ∀t > 0.

Our next goal is to obtain a spectral formula for the chi-square distance. See Theorems 4.4–4.5
below.

Lemma 4.2. Let {Pt : t > 0} be a strongly continuous semigroup of contractions associated to a
transition function p(t, x, ·), x ∈ Ω , t � 0, by (4.1). Let A be its infinitesimal generator. Assume
that A is normal and let {EB : B ∈ B(C)} be a resolution of the identity corresponding to −A,
where B(C) is the Borel algebra over C. Set

C0 = {bi: b ∈ R}, C1 = {a + bi: a > 0, b ∈ R}.
Then, for g ∈ L2(Ω,π),

lim
t→∞‖Ptg‖2 = ‖EC0g‖2.

In particular, if ‖Ptg − π(g)‖2 → 0 as t tends to infinity, then EC0g = π(g) and∥∥Ptg − π(g)
∥∥2

2 =
∫
C1

e−2Re(γ )t d〈Eγ g,g〉π .

Proof. Let C = C0 ∪ C1. Since (Pt )t>0 are contractions, the spectrum of −A is contained in C.
By the spectral theorem, for all g ∈ L2(Ω,π),

‖Ptg‖2
2 =

∫
C

e−2 Re(γ )t d〈Eγ g,g〉π = ‖EC0g‖2
2 +

∫
C1

e−2 Re(γ )t d〈Eγ g,g〉π .

For a reference on the resolution of the identity for normal operators, see [18]. �
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Lemma 4.3. Let {Pt : t > 0} be as in Lemma 4.2 with infinitesimal generator A and spectral gap
λ. Let σ(−A) be the spectrum of −A and λ̃ = inf{Re(c): Re(c) > 0, c ∈ σ(−A)}, where Re(c)
denotes the real part of c. Then,

(i) λ � λ̃.
(ii) Assume that V is a dense subspace of L2(Ω,π) and the following limit holds

lim
t→∞

∥∥Ptg − π(g)
∥∥

2 = 0, ∀g ∈ V.

Then λ = λ̃. In particular, if λ > 0, then λ = λ̃.

Remark 4.3. The converse of Lemma 4.3(i) is not always true and a typical example is to con-
sider reducible finite Markov chains.

Proof of Lemma 4.3. For the spectrum of −A, since Pt is a contraction for t > 0, σ(−A) is
a subset of the half plane {a + bi: a � 0, b ∈ R}. In the case that Pt is normal, we may choose,
by the spectral decomposition, a resolution of the identity {EB : B ∈ B(C)} corresponding to −A

such that

〈−Ag,g〉 =
∫

σ(−A)

γ d〈Eγ g,g〉π , ∀g ∈ D(A), (4.3)

where B(C) is the Borel algebra over C and D(A) is the domain of A. By Remark 4.1, λ can be
obtained by the formula

inf
{〈−Ag,g〉π : g ∈ D(A), π(g) = 0, π

(
g2)= 1

}
.

For (i), note that if λ = 0, then obviously λ � λ̃. We now assume that λ > 0. Fix δ ∈ (0, λ)

and let Bδ = {c ∈ C: 0 < Re(c) < δ} and T = EBδ . Using (4.3), one may easily compute that,
for g ∈ D(A) with π(g) = 0,〈

T (−A − δ)g, g
〉
π

= 〈
(−A − δ)(T g), T g

〉
π

� (λ − δ)‖T g‖2
2 � 0

and 〈
T (−A − δ)g, g

〉
π

=
∫
Bδ

(γ − δ) d〈Eγ g,g〉π .

Since 〈T (−A − δ)g, g〉π is real, the above identity can be rewritten as

〈
T (−A − δ)g, g

〉
π

=
∫
Bδ

[
Re(γ ) − δ

]
d〈Eγ g,g〉π � 0.

Combining the above three inequalities, we obtain that EBδg = 0 for g ∈ D(A) satisfying
π(g) = 0. It is also clear that EBδ 1 = 0 (since 0 /∈ Bδ and 1 is contained in the range of E{0}).
Thus, using the fact D(A) = L2(Ω,π), we have EBδ = 0 on L2(Ω,π). Finally, because σ(−A)
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is exactly the essential range of the function Ψ (t) = t w.r.t. {EB : B ∈ B(C)}, Bδ and σ(−A) are
mutually disjoint, which implies δ � λ̃ for δ ∈ (0, λ). This proves the first part.

For (ii), it remains to show that λ̃ � λ. Obviously, this inequality holds for λ̃ = 0. For the case
λ̃ > 0, we set C1 = {a + bi: a � λ̃, b ∈ R}. By Lemma 4.2,

∀g ∈ V,
∥∥Ptg − π(g)

∥∥2
2 =

∫
C1

e−2 Re(γ )t d〈Eγ g,g〉π � e−2̃λt‖g‖2
2.

Since V is dense in L2(Ω,π), the above holds true on L2(Ω,π). Thus, λ̃ � λ. �
We are now ready to compute the L2-distance, D(μ, t), using the spectral information of the

infinitesimal generator A of Pt .

Theorem 4.4. Let {Pt : t > 0} be as in Lemma 4.2 with infinitesimal generator A and spectral
gap λ > 0. Assume that A is normal and {EB : B ∈ B(C)} is a resolution of identity for −A. If μ

is a probability measure with an L2-density f w.r.t. π , then

D2(μ, t)2 =
∫

C(λ)

e−2 Re(γ )t d〈Eγ f,f 〉π ,

where C(λ) = {c ∈ C: Re(c) � λ}.

Proof. Let d(μPt ) = ft dπ . Then for g ∈ L2(Ω,π),

〈g,ft 〉π = (μPt )(g) = μ(Ptg) = 〈Ptg,f 〉π = 〈
g,P ∗

t f
〉
π
,

where P ∗
t denotes the adjoint operator of Pt . This implies that ft = P ∗

t f . Since Pt is normal, it
is obvious that ‖Ptg‖2 = ‖P ∗

t g‖2 for all g ∈ L2(Ω,π) and, hence,

D2(μ, t)2 = ∥∥P ∗
t (f − 1)

∥∥2
2 = ∥∥Ptf − π(f )

∥∥2
2 =

∫
C(λ)

e−2 Re(γ )t d〈Eγ f,f 〉π

where the last equality uses Lemmas 4.2 and 4.3. �
The discrete time version for Theorem 4.4 is as follows. The proof is similar.

Theorem 4.5. Let {Pt : t ∈ N} be the family of contractions on L2(Ω,π) defined in (4.1) with
spectral gap λ > 0. Assume that P1 is a normal operator whose corresponding resolution of the
identity is {EB : B ∈ B(C)}. If μ is a probability measure with an L2-density f w.r.t. π , then for
t ∈ N,

D2(μ, t)2 =
∫

C̃(λ)

|γ |2t d〈Eγ f,f 〉π ,

where C̃(λ) = {c ∈ C: |c| � λ}.
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4.4. The L2-cutoff time for families of normal Markov kernels

Now, we shall assume that the initial probability has an L2-density (with respect to the invari-
ant probability). In this case, Theorems 4.4 and 4.5 imply that the L2-distance between a normal
Markov transition function and its stationary measure is a Laplace transform. Thus, the results
in Section 3 are applicable. In detail, let (Ωn, Bn) be a measurable space and pn(t, x, ·), t ∈ T

(T = [0,∞) or N) and x ∈ Ωn, be a Markov transition function on Ωn with invariant probability
measure πn. Let Pn,t be the operator defined by

Pn,tg(x) =
∫
Ωn

g(y)pn(t, x, dy), ∀g ∈ L2(Ωn,πn), t ∈ T , (4.4)

and μn be a probability on (Ωn, Bn) with L2-density fn w.r.t. πn.

• For T = [0,∞), assume that Pn,t is normal, strongly continuous, with positive spectral gap
λn, and that the infinitesimal generator of Pn,t has resolution of the identity {En,B : B ∈
B(C)}, where B(C) is the Borel algebra over C. For λ > 0, let Sλ be the strip {c ∈ C: Re(c) ∈
(0, λ]} and set

Vn(λ) = 〈En,Sλfn, fn〉πn . (4.5)

• For T = N, assume that Pn,1 is normal with positive spectral gap λn and resolution of the
identity {En,B : B ∈ B(C)}. For λ > 0, let Aλ be the annulus {c ∈ C: |c| ∈ [e−λ,1)} and set

Vn(λ) = 〈En,Aλfn, fn〉πn. (4.6)

As a consequence of Theorems 4.4 and 4.5, the L2-distance is given by

Dn,2(μn, t)
2 =

∫
[λn,∞)

e−2λt dVn(λ).

To state the main results of this paper, for δ > 0 and C > 0, set⎧⎪⎪⎨⎪⎪⎩
tn(δ) = Tn,2(μn, δ) = inf

{
t ∈ T : Dn,2(μn, t) � δ

}
,

λn(C) = inf
{
λ: Vn

([λn,λ])> C
}
,

τn(C) = sup

{
log(1 + Vn([λn,λ]))

2λ
: λ � λn(C)

}
.

(4.7)

Further, set{
γn = λn(C)−1, bn = λn(C)−1 log

(
λn(C)τn(C)

)
if T = [0,∞),

γn = max
{
1, λn(C)−1

}
, bn = max

{
1, λn(C)−1 log

(
λn(C)τn(C)

)}
if T = N.

If T = N, we assume in addition that either τn(C) or tn(δ) tends to infinity, for some C or
some δ.
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Theorem 4.6. Referring to the setup and notation described in (4.4)–(4.7),

(i) If lim inf
n→∞ πn(f

2
n ) < ∞, then {pn(t,μn, ·): n � 1} has no L2-precutoff.

(ii) If πn(f
2
n ) → ∞, then the following are equivalent.

(a) {pn(t,μn, ·): t ∈ [0,∞)} has an L2-cutoff.
(b) For some positive constants C,δ, ε,

lim
n→∞ tn(δ)λn(C) = ∞, lim

n→∞

∫
[λn,λn(C))

e−ελtn(δ) dVn(λ) = 0.

(c) For some positive constants C,ε,

lim
n→∞ τn(C)λn(C) = ∞, lim

n→∞

∫
[λn,λn(C))

e−ελτn(C) dVn(λ) = 0.

Further,
– If (b) holds, then {pn(t,μn, ·): n � 1} has a (tn(δ), γn)-L2-cutoff.
– If (c) holds, then {pn(t,μn, ·): n � 1} has a (τn(C), bn)–L2-cutoff.

Proof. Immediate from Theorems 3.5 and 3.8 �
Remark 4.4. By Remark 3.4, if the family {pn(t,μn, ·): t ∈ [0,∞)} has an L2-cutoff, then
Theorem 4.6 (b) and (c) hold for any positive C,δ, ε. Similarly, by Remark 3.6, if the family
{pn(t,μn, ·): t ∈ N} has an L2-cutoff with the L2-mixing time T2(μn, δ) tending to infinity, then
Theorem 4.6 (b) and (c) are true for any positive C,δ, ε.

5. Applications to finite Markov chains

In this section, we spell out how our main results apply to normal Markov chains on finite
state spaces. Let Ω be a finite set and K be an irreducible Markov kernel on Ω with invari-
ant probability measure π . Denote by pd(t, ·,·) the associated discrete time Markov transition
function, that is, pd(t, x, y) = Kt(x, y), t ∈ N. Let pc(t, ·,·) be the associated continuous time
Markov transition function defined by

pc(t, x, y) = e−t (I−K)(x, y) = e−t
∞∑

n=0

tn

n!K
n(x, y), t � 0. (5.1)

To facilitate applications, we discuss continuous and discrete time separately.
For n � 1, let Ωn be a finite set and Kn be an irreducible Markov kernel on Ωn with invariant

probability πn. Let μn be some given initial distribution with density fn with respect to πn. We
assume that Kn is normal. Its eigenvalues and eigenfunctions will be ordered in different ways
in the discrete and continuous time cases. We let pc

n(t, x, y), pd
n(t, x, y) be the corresponding

continuous and discrete time transition functions.
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5.1. Continuous time

Let βn,0 = 1, βn,1, . . . , βn,|Ωn|−1 be the eigenvalues of Kn with orthonormal eigenvectors
ψn,0 ≡ 1,ψn,1, . . . ,ψn,|Ωn|−1 on L2(Ωn,πn), ordered in such a way that

Reβn,i � Reβn,i+1, ∀1 � i � |Ωn| − 2.

Let λn,i = 1 − Reβn,i and set, for C > 0,

jn = jn(C) = min

{
j � 1:

j∑
i=1

∣∣μn(ψn,i)
∣∣2 > C

}
(5.2)

and

τn = τn(C) = max
j�jn

{
log

(∑j

i=0 |μn(ψn,i)|2
)

2λn,j

}
. (5.3)

Note that

Dc
n,2(μn, t) =

(∑
i�1

∣∣μ(ψn,i)
∣∣2e−2λn,i t

)1/2

(5.4)

and set

tn = tn(δ) = T c
n,2(μn, δ) = inf

{
t � 0: Dc

n,2(μn, t) � δ
}
. (5.5)

Theorem 4.6 yields the following result.

Theorem 5.1. Referring to the above setting and notation,

(i) If lim infn→∞ πn(f
2
n ) < ∞, then {pc

n(t,μn, ·): n � 1} has no L2-precutoff.
(ii) If πn(f

2
n ) → ∞, then the following are equivalent.

(a) {pc
n(t,μn, ·): n � 1} has an L2-cutoff.

(b) For some positive constants C,ε, δ,

lim
n→∞ tnλn,jn = ∞, lim

n→∞

jn−1∑
i=1

∣∣μn(ψn,i)
∣∣2e−εtnλn,i = 0.

(c) For some positive constants C,ε,

lim
n→∞ τnλn,jn = ∞, lim

n→∞

jn−1∑
i=1

∣∣μn(ψn,i)
∣∣2e−ετnλn,i = 0.

Furthermore, in case (ii), if (b)/ (c) holds, then {pc
n(t,μn, ·): n � 1} has a (tn, λ

−1
n,jn

)–L2-

cutoff and a (τn, bn)–L2-cutoff with bn = λ−1 log(τnλn,jn).
n,jn
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Remark 5.1. By Remark 3.8, τn(C) � T c
2 (μn,

C
C+1 ) for C > 0.

Remark 5.2. Theorem 5.1 is useful in proving an L2-cutoff if there is indeed one but, as stated,
in order to disprove the existence of an L2-cutoff, one has to show that Theorem 5.1 (b) and (c)
fail for all C,δ, ε. In fact, as stated in Remark 4.4, a stronger version of Theorem 5.1 says that
if pc

n has an L2-cutoff, then (b) holds for any triple (C, ε, δ) and (c) holds for any pair (C, ε).
Hence, to disprove the existence of an L2-cutoff, we only need to check that (b) or (c) fails for
some constants C,ε, δ.

The following is a simple application of Theorem 5.1 which deals with the L2-cutoff for
a specific class of chains, those whose spectral gap is bounded away from 0 as in the case of
expander graphs. The notation is as above.

Corollary 5.2. Assume that Kn is normal and λ−1
n is bounded. Then the family {pc

n(t,μn, ·):
n � 1} has an L2-cutoff if and only if πn(f

2
n ) → ∞.

Furthermore, if πn(f
2
n ) → ∞, then the family {pc

n(t,μn, ·): n � 1} presents a strongly opti-
mal (tn,1)-L2-cutoff, where tn is the constant in (5.5) and δ is any positive constant.

Proof. The first part of this corollary is obvious from Theorem 5.1 whereas the second part
follows from

δe−2c � Dc
n,2(μn, tn + c) � δe−cλn, ∀ − tn < c < 0

and

δe−cλn � Dc
n,2

(
μn, tn + cλ−1

n

)
� δe−2c, ∀c > 0. �

5.2. Discrete time

To treat the discrete time case, order the eigenvalues βn,0 = 1, βn,1, . . . , βn,|Ωn|−1 and or-
thonormal eigenvectors ψn,0 ≡ 1, ψn,1, . . . ,ψn,|Ωn|−1 in such a way that

|βn,i | � |βn,i+1|, ∀1 � i � |Ωn| − 2.

Set λn,i = − log |βn,i | and define jn = jn(C) and τn = τn(C) by (5.2). The L2-distance takes the
form

Dd
n,2(μn, t) =

(∑
i�1

∣∣μ(ψn,i)
∣∣2|βn,i |2t

)1/2

. (5.6)

For δ > 0, set

tn = tn(δ) = T d
n,2(μn, δ) = inf

{
t � 0: Dd

n,2(μn, t) � δ
}
. (5.7)

Theorem 5.3. Referring to the above setting and notation and assuming that either tn(δ) → ∞
for some δ > 0 or τn(C) → ∞ for some C > 0, we have:
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(i) If lim infn→∞ πn(f
2
n ) < ∞, then {pd

n(t,μn, ·): n � 1} has no L2-precutoff.
(ii) If πn(f

2
n ) → ∞, then the following are equivalent.

(a) {pd
n(t,μn, ·): n � 1} has an L2-cutoff.

(b) For some positive constants C,ε, δ,

lim
n→∞ tnλn,jn = ∞, lim

n→∞

jn−1∑
i=1

∣∣μn(ψn,i)
∣∣2|βn,i |εtn = 0.

(c) For some positive constants C,ε,

lim
n→∞ τnλn,jn = ∞, lim

n→∞

jn−1∑
i=1

∣∣μn(ψn,i)
∣∣2|βn,i |ετn = 0.

In case (ii), if (b)/ (c) holds, then {pd
n(t,μn, ·): n � 1} has a (tn, γ

−1
n )–L2-cutoff with γn =

min{λn,jn ,1} and a (τn, bn)-L2-cutoff with bn = max{λ−1
n,jn

log(τnλn,jn),1}.

Remark 5.3. Remarks 5.1 and 5.2 remain true in discrete time cases. One also easily obtains a
discrete version of Corollary 5.2 under the assumption that the eigenvalues βn,i , 0 � i � |Ωn|−1,
βn,0 = 1 of the normal operator Kn satisfy inf{1 − |βn,i |, |βn,i |: 1 � i � |Ωn| − 1, n � 1} > 0.

5.3. Invariant kernels

Next, we specialize Theorems 5.1–5.3 to the case when the kernels Kn are invariant under
some transitive group action, i.e., for each n, there is a group Gn acting transitively on Ωn and
such that

Kn(gx,gy) = Kn(x, y) ∀g ∈ Gn, x, y ∈ Ωn. (5.8)

If |Ωn| � ∞, then the families {pc
n(t, xn, ·): n � 1} and pd

n(t, xn, ·) have no L2-precutoff so
we assume that |Ωn| → ∞. The notable contribution of these results is in the explicit spectral
description of the cutoff time τn.

Theorem 5.4 (Continuous time). Assume that |Ωn| → ∞ and that Kn satisfies (5.8) and is ir-
reducible normal with eigenvalues βn,0 = 1, βn,1, . . . , βn,|Ωn|−1, Reβn,i � Reβn,i+1, ∀1 � i �
|Ωn| − 2. Let λn,i = 1 − Reβn,i , λn = λn,1 and set

τn = sup
j�1

{
log(j + 1)

2λn,j

}
, tn = T c

n,2(xn, δ). (5.9)

The following properties are equivalent.

(a) {pc
n(t, xn, ·): n � 1} has a L2-cutoff.

(b) tnλn → ∞ for some δ > 0.
(c) τnλn → ∞.
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Furthermore, if (b)/ (c) holds, then {pc
n(t, xn, ·): n � 1} has a (tn, λ

−1
n )-L2-cutoff and a (τn, bn)-

L2-cutoff with bn = λ−1
n log(τnλn).

Theorem 5.5 (Discrete time). Assume that |Ωn| → ∞ and that Kn satisfies (5.8) and is ir-
reducible normal with eigenvalues |βn,i | � |βn,i+1|, 0 � i � |Ωn| − 2. Set λn,i = − log |βn,i |,
λn = λn,1, and let τn be defined in terms of these λn,i as in (5.9). Set also tn = T d

n,2(xn, δ).
Assume that either tn → ∞ for some δ > 0 or τn → ∞. Then the following are equivalent.

(a) {pd
n(t, xn, ·): n � 1} has an L2-cutoff.

(b) tnλn → ∞ for some δ > 0.
(c) τnλn → ∞.

Furthermore, if (b)/ (c) holds, then {pd
n(t, xn, ·): n � 1} has a (tn, γ

−1
n )-L2-cutoff with γn =

min{λn,1} and a (τn, bn)-L2-cutoff with bn = max{λ−1
n log(τnλn),1}.

6. The Ehrenfest chain

The Ehrenfest chain is one of the most celebrated example of finite Markov chain. Its state
space is Ωn = {0, . . . , n} and its kernel is given by

Kn(i, i + 1) = 1 − i

n
, Kn(i + 1, i) = i + 1

n
, ∀0 � i < n. (6.1)

It is clear that Kn is irreducible with stationary distribution πn(i) = (
n
i

)
2−n, i ∈ {0,1, . . . , n}.

Note that Kn is periodic. The L2-distance of the Ehrenfest chain to its stationary measure has
been studied by many authors. By lifting the chain to a walk on the hypercube, the representation
theory of (Z2)

n can be used to identify the eigenvalues and eigenvectors of the Ehrenfest chain
and to compute the L2-distance. The following well-known result gives a description on the
eigenvalues and eigenvectors of Kn.

Theorem 6.1. The matrix Kn defined in (6.1) has eigenvalues

βn,i = 1 − 2i

n
, 0 � i � n,

with L2(πn)-normalized right eigenvectors

ψn,i(x) =
(

n

i

)−1/2 i∑
k=0

(−1)k
(

x

k

)(
n − x

i − k

)
, 0 � i, x � n. (6.2)

Proof. See, e.g., [7]. The vectors ψn,i are in fact the Krawtchouk polynomials (up to a constant
multiple) and the desired properties are the orthogonality and recurrence relation of Krawtchouk
polynomials. See [14,16]. �
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To apply our main result using the above spectral information, we need to study ψn,i . Recall
the classical notation

rFs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣z)=
∞∑

k=0

(a1)k · · · (ar )k

(b1)k · · · (bs)k

zk

k!

where, for a ∈ R and n � 0, (a)n is the Pochhammer symbol defined by

(a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1), ∀n � 1.

Using this notation, Krawtchouk polynomials are defined by

Pi(x,p,n) = 2F1

(−i,−x

−n

∣∣∣∣ 1

p

)
for i = 0,1, . . . , n. Then, the eigenvector ψn,i of Kn can be rewritten as

ψn,i(x) =
(

n

i

)1/2

Pi(x,1/2, n). (6.3)

The recurrence relation for Pi(j,1/2, n) is

(n − 2x)Pi(x,1/2, n) = (n − i)Pi+1(x,1/2, n) + iPi−1(x,1/2, n). (6.4)

Note that this is exactly saying that βn,i and ψn,i are eigenvalues and eigenvectors for Kn. Using
the above identity, we are able to apply the results from Section 5 to the Ehrenfest chain.

6.1. The continuous time Ehrenfest process

The transition function of the continuous time Ehrenfest process is given by pc
n(t, ·,·) =

e−t (I−Kn).

Theorem 6.2. Given starting states xn, the family Fc of the continuous time Ehrenfest chains
{pc

n(t, xn, ·), n = 1,2, . . .} has an L2-cutoff if and only if

lim
n→∞

|n − 2xn|√
n

= ∞. (6.5)

Our second result concerns the L2-cutoff time and the optimality of window sequences.

Theorem 6.3. Referring to the Ehrenfest family Fc , Assume that (6.5) holds and let

tn = n

2
log

|n − 2xn|√
n

.

Then, there exist universal positive constants A,N such that for all n � N

e−2c � Dn,2(xn, tn + cn) � Ae−2c,
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where the first inequality holds true for all real c with tn + cn � 0 and the second inequality is
true for c > 0.

Remark 6.1. By Proposition 3.7, this result says that there is an optimal (tn, n)–L2-cutoff. In
fact, the (tn, n)–L2-cutoff is strongly optimal.

Using the relation between the first and the second eigenvectors of Kn, we also obtain a result
concerning the total variation cutoff or equivalently, the L1-cutoff. The details of the proof are
omitted.

Theorem 6.4. Referring to the Ehrenfest family Fc, let Dn,TV(xn, t) be the total variation dis-
tance between the distribution of the nth chain at time t starting from xn and πn. Then, for all
n � 1 and all c such that tn + cn � 0, we have

Dn,TV(xn, tn + cn) � 1 − 8e4c.

Remark 6.2. By Theorems 6.3–6.4, if (6.5) holds, then there is a (tn, n)-total variation cutoff.

Before proving these results, we make some analysis on the eigenvectors ψn,i . Let xn =
1
2 (n + yn) with |yn| � n. Using (6.3), the recurrence relation of Krawtchouk polynomials in
(6.4) yields the following identity

an,i+1 = −yn√
(i + 1)(n − i)

an,i −
√

i(n − i + 1)

(i + 1)(n − i)
an,i−1

= −An,ibnan,i − Bn,ian,i−1 (6.6)

where an,i = ψn,i(xn), bn = yn/
√

n and

An,i =
√

n

(i + 1)(n − i)
, Bn,i =

√
i(n − i + 1)

(i + 1)(n − i)
. (6.7)

To compute an,i using the above iterative formula, one needs the boundary conditions an,1 and
an,2, which can be easily determined using the formula given in Theorem 6.1. They are

an,1 = −bn, an,2 =
√

n

2(n − 1)

(
b2
n − 1

)
. (6.8)

Concerning the L2-distance, the symmetry of the chain implies that there is no loss of gen-
erality in assuming xn � n/2, that is, yn � 0. (Otherwise, one only needs to replace xn with
n − xn without any change on the Lp-distance.) From now on, we assume that xn � n/2. Before
starting the proofs, let λn,i , jn(C) and τn(C) be as in Theorem 5.1. It can be easily seen from
Theorem 6.1 that λn,i = 2i/n. Also, note that (6.5) is equivalent to bn → ∞.
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Proof of Theorem 6.2. We first prove that (6.5) implies an L2-cutoff. Since |ψn,1(xn)| =
bn → ∞, we have jn(1) = 1 for n large enough. This implies that

τn(1) � log |an,1|
λn,1

and, hence, λn,1τn � log |an,1| → ∞ as n → ∞. By Theorem 5.1, Fc has an L2-cutoff.
Suppose now that bn � ∞. By Proposition 2.1, we can assume that bn is bounded from above,

say by B . Observe that, by (6.8),

a2
n,1 + a2

n,2 = b2
n + n

2(n − 1)

(
b2
n − 1

)2 � 1/2.

This implies that jn(1/2) � 2 for all n. Also, it is obvious from (6.7) that

An,i � 1, Bn,i � 1, ∀0 � i < n.

By setting γ = supn bn ∨ 1 using these inequalities and (6.6), one derives that

|an,i+1| � γ |an,i | + |an,i−1|, ∀1 � i < n, n � 1.

Then, an inductive argument along with the fact |an,1| � B and |an,2| � B2 for n > 1 implies
that

|an,i | � B2(γ + 1)i , ∀1 � i � n,

which gives

j∑
i=0

|an,i |2 � B4
j∑

i=0

(γ + 1)2i � B4(γ + 1)2j+1, ∀j � n.

Hence,

τn(1/2)λn,jn(1/2) � logB4 + log(γ + 1) sup
1�j�n

2j + 1

j
< ∞.

By Theorem 5.1, this shows there is no L2-cutoff. �
Proof of Theorem 6.3. Assume that bn → ∞ and set fn(c) = Dn,2(xn, tn + cbn) where tn is the
sequence defined in Theorem 6.3, that is, tn = 1

2n logbn. To prove the desired result, we need to
investigate an,i or instead An,i and Bn,i . The following claim is the only fact we need.

Claim: There exists N > 0 such that

i + 1
An,i + i + 1

Bn,ib
−2
n � 1, ∀2 � i � n − 3, n � N.
i i − 1
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To prove this claim, set θ ∈ (1,4/3). Then, for 2 � i � (1 − 1/θ)n,

i + 1

i
An,i =

√
θ(i + 1)

i
×
√

n

θ(n − i)
�

√
3θ

2
< 1

and, for (1 − 1/θ)n < i � n/2,

i + 1

i
An,i �

(
1 + θ

(θ + 1)n

)
θ2

(θ + 1)n
� 2

n
.

Summarizing, we get

sup
2�i�n/2, n�3

An,i = α < 1.

When i > n/2, since (i + 1)/i is decreasing in i and An,i = An,n−i−1, the same bound holds.
The claim is then proved by choosing N large enough so that

i + 1

i − 1
Bn,ib

−2
n � 3b−2

n < 1 − α, ∀n � N.

Returning to the proof of Theorem 6.3, we apply the triangle inequality in (6.6) to get

|an,i+1| � An,ibnan,i + Bn,ian,i−1. (6.9)

Let N be the integer chosen in the claim above. Then, this iterative inequality and induction
yields

|an,i | � 2

i
bi
n, 1 � i � n − 2, n � N.

Using (6.9) for i = n − 2 and n − 1 implies that

|an,i | � β

i
bi
n, 1 � i � n, n � N,

for some β bigger than 2. To finish the proof, recall that

Dn,2(x, t)2 =
n∑

i=1

∣∣ψn,i(xn)
∣∣2e−2tλn,i .

Hence, for c > 0 and n � N ,

Dn,2(xn, tn + cn)2 �
(

β2
∞∑
i=1

1

i2

)
e−4c,

and for c ∈ R and n � 1,

Dn,2(xn, tn + cn)2 �
∣∣ψn,1(xn)

∣∣2e−2(tn+cn)λn,1 = e−4c. �
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Proof of Remark 6.1. (The cutoff is strongly optimal.) The proof is similar to that of Theo-
rem 6.3. Fix c̃ < 0 and choose N = N(̃c ) > 0 such that

e−2̃c

√
2

N + 1
+ e−4̃cb−2

n � 1 ∀n � N.

Note that, for N � i � n − N − 1 and n � 2N ,

n

(i + 1)(n − i)
� n

(N + 1)(n − N)
� 2

N + 1
.

Combining the above two inequalities then gives

e−2̃cAn,i + e−4̃cBn,ib
−2
n � 1 ∀N � i < n − N, n � 2N.

As before, the iterative inequality (6.9) implies that |an,i | � βe2̃cibi
n for all 1 � i � n and

n � 2N , where β is a universal constant only depending on c̃. Hence, for c > c̃,

Dn,2(xn, tn + cn)2 � β2
∞∑
i=1

e4(̃c−c)i < ∞.

By Proposition 3.7, the family has a strongly optimal (tn, n)–L2-cutoff. �
6.2. Discrete time Ehrenfest chains

Let K ′
n be the Markov kernel obtained by

K ′
n = 1

n + 1
In+1 + n

n + 1
Kn (6.10)

where Kn is the Ehrenfest kernel and In is the n × n identity matrix. As a consequence of
Theorem 6.1, K ′

n has eigenvalues β ′
n,i = 1 − 2i

n+1 with corresponding eigenvectors ψn,i given
by (6.2).

To apply Theorem 5.3 to this chain, we need to reorder the eigenvalues. For 1 � i � n/2, let

λ′
n,2i−1 = λ′

n,2i = − log

(
1 − 2i

n + 1

)
, ψ ′

n,2i−1 = ψn,n−i+1, ψ ′
n,2i = ψn,i . (6.11)

Then, the L2-distance D′
n,2 in the discrete time case is given by

D′
n,2(x, t) =

n∑
i=1

∣∣ψ ′
n,i(x)

∣∣2e−2tλ′
n,i . (6.12)

Write (6.3) in the form

ψn,i+1(x) = −n − 2x√ An,iψn,i(x) − Bn,iψn,i−1(x), 1 � i < n,

n
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and

ψn,1(x) = n − 2x√
n

ψn,0(x), ψn,n−1(x) = n − 2x√
n

ψn,n(x),

where ψn,0 ≡ 1, ψn,n(x) = (−1)x with

An,i =
√

n

(i + 1)(n − i)
, Bn,i =

√
i(n − i + 1)

(i + 1)(n − i)
.

Note that for 1 � i � n/2,

An,n−i = An,i/Bn,i , Bn,n−i = 1/Bn,i .

This implies

ψn,n−i−1(x) = −n − 2x√
n

An,iψn,n−i (x) − Bn,iψn,n−i+1(x).

Since ψn,i+1 and ψn,n−i−1 are derived by the same iterative formulae with respective initial
values 1 and (−1)x , they are related as follows.

ψn,n−i (x) = (−1)xψn,i(x) ∀x, i ∈ {0,1, . . . , n}.
This identity implies∣∣ψ ′

n,1(x)
∣∣= 1,

∣∣ψ ′
n,2i (x)

∣∣= ∣∣ψ ′
n,2i+1(x)

∣∣ ∀1 � i � n/2. (6.13)

This discussion will be used for the proof of the following theorem.

Theorem 6.5. Let Ωn = {0,1, . . . , n} and F ′ = {(Ωn,K
′
n,πn): n = 1,2, . . .} be the family of

Markov chains given by (6.10) with starting states (xn)
∞
1 . Then, the following are equivalent.

(i) |n − 2xn|/√n → ∞;
(ii) The family F ′ has an L2-cutoff.

Furthermore, if (i) holds true, then F ′ has a strongly optimal (tn, n)–L2-cutoff and a (tn, n)-total
variation cutoff, where

tn = n

2
log

|n − 2xn|√
n

.

Proof. The standard way to prove the above result would be to apply Theorem 5.3. Here, instead,
we bound D′

n,2 using the L2-distance, Dn,2, of the Ehrenfest process discussed in Theorem 6.3.
In detail, by (6.11), (6.12) and (6.13), we have

D′
n,2(x, t)2 � e

−2λ′
n,1t + 2

[n/2]∑∣∣ψ ′
n,2i (x)

∣∣2e−2λ′
n,2i t � e

−2λ′
n,1t + Dn,2(x, t)2
i=1
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where the last inequality uses the fact log(1 − t) � −t for all t ∈ (0,1), which implies that
λ′

n,2i � 2i/n = 1 − βn,i and βn,i is the term defined in Theorem 6.1. For the lower bound, we

use the second term in the series of D′
n,i(x, t)2, that is,

D′
n,2(x, t)2 �

∣∣ψ ′
n,2(x)

∣∣2e−2λ′
n,2t = (n − 2x)2

n
e
−2λ′

n,2t .

By writing λ′
n,2 = 2/n(1 + cn), it can be easily shown that cn = O(1/n).

Recall that xn = (n + yn)/2 with 0 � yn � n. By Theorem 6.3, if yn/
√

n is bounded, then
there exists ε > 0 such that the ε-mixing time T d

n,2(xn, ε) of D′
n,2 is of order at most n. (In fact,

it is of order n using the lower bound obtained above.) Let jn(C) be the integer in Theorem 5.3.
It is clear that jn(1) = 1 and, hence, λ′

n,1 = λ′
n,2 and

Tn,2(xn, ε)λ
′
n,1 = O(n) × 2

n
(1 + cn) = O(1).

By Theorem 5.3, F ′ has no L2-cutoff. In the case yn/
√

n → ∞, Theorem 6.3 and Remark 6.1
imply that

lim sup
n→∞

Dn,2(xn, tn + cn)

{
< ∞ if c < 0,

� Ae−2c if c > 0,

where A is a constant and tn = (n/2) log(yn/
√

n). Using the bounds for D′
n,2 established above,

we get

lim sup
n→∞

D′
n,2(xn, tn + cn)

{
< ∞ if c < 0,

� Ae−2c if c > 0

and

lim inf
n→∞ D′

n,2(xn, tn + cn) � e−2c ∀c ∈ R.

This implies that F ′ has a strongly optimal (tn, n)–L2-cutoff. The proof of the total variation
cutoff is as in the continuous time case. �
7. Constant rate birth and death chains

This section applies the main results of this paper to the study of constant rate birth and
death chains. Finding the L2-cutoff of family of Markov chains from arbitrary starting points is a
difficult task that requires a great deal of spectral information. The following examples illustrate
this very well. First, we treat families of finite constant rate birth and death chains on {0, . . . , n}
with n tending to infinity and arbitrary constant rates pn, qn. Second, we discuss the case when
the state space is the countable set {0,1, . . .}.
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7.1. Chains of finite length

Karlin and McGregor [12,13] observed that the spectral analysis of any given birth and death
chain can be treated as an orthogonal polynomial problem. This sometimes leads to the exact
computation of the spectrum. See, e.g., [10,12,13,20] and also [17] for a somewhat different
approach based on continued fractions.

The families of interest here are of the following simple type. For n � 1, let Ωn = {0,1, . . . , n}
and let Kn be the Markov kernel of a birth and death chain on Ωn with constant rates

pn(x) = pn, qn(x) = qn = 1 − pn, ∀0 � x � n, (7.1)

where pn(x) and qn(x) denote respectively the birth rate and the death rate with the usual conven-
tion that qn(0) = rn(0), pn(n) = rn(n) are holding probabilities. This has stationary (reversible)
distribution πn given by

πn(x) = cn

(
pn

qn

)x

, with cn =
(

1 − pn

qn

)[
1 −

(
pn

qn

)n+1]−1

. (7.2)

Set

βn,0 = 1, βn,j = 2
√

pnqn cos
jπ

n + 1
, ∀1 � j � n, (7.3)

and let ψn,j be a vector on Ωn defined by ψn,0 ≡ 1 and, for 1 � j � n and x ∈ Ωn,

ψn,j (x) = Cn,j

{(
qn

pn

)(x+1)/2

sin
j (x + 1)π

n + 1
−
(

qn

pn

)(x+2)/2

sin
jxπ

n + 1

}
, (7.4)

where C−2
n,j = cn(n + 1)qnλn,j /(2p2

n) and λn,j = 1 − βn,j . Then, βn,j is an eigenvalue of Kn

with corresponding normalized eigenvector ψn,j . See [9, Chapter XVI.3].
Let xn ∈ Ωn, n � 1, be a sequence of initial states and set as before D

γ

n,2(xn, t), γ ∈ {c, d},
to be the L2-distance for the nth chain starting from xn(c denotes the continuous time case and
d stands for the discrete time case). Then, by Theorem 5.1(i) and Theorem 5.3(i), a necessary
condition for the family {Dγ

n,2(xn, t), n = 1,2, . . .}, γ ∈ {c, d}, to have a cutoff is πn(xn) → 0
as n → ∞. The following lemma gives an equivalent condition for such a limit using pn and xn.

Lemma 7.1. For n � 1, let πn(·) be the probability defined in (7.2) with pn ∈ (0,1/2). Then, for
xn ∈ {0,1, . . . , n}, πn(xn) → 0 if and only if

lim
n→∞

(
1

1 − 2pn

+ xn

pn

)
= ∞.

Proof. Set, for n � 1, bn = (pn/qn)
xn . Then, πn(xn) = bncn. Assume that πn(xn) → 0. Using

the fact log(1 + t) � t , we have

log cn = − log
(
1 + pn/qn + · · · + (pn/qn)

n
)
� −(qn − pn)

−1
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and

logbn = −xn log

(
1 + qn − pn

pn

)
� − xn

pn

.

Thus, bncn → 0 implies xn/pn + 1/(qn − pn) → ∞ as desired.
For the other direction, assume that lim supn→∞ πn(xn) > 0. Since bn � 1 and cn � 1, we may

choose a subsequence (nk)k�1 such that infk bnk
> 0 and infk cnk

> 0. Consider the following
identity.

1 − cn = (pn/qn)
(
1 − cn(pn/qn)

n
)
.

This implies that

cn → 0 ⇔ pn → 1/2

and, hence,

lim sup
k→∞

pnk
= p < 1/2.

Using the last observation and the fact infk bnk
> 0, it is clear that xnk

has to be bounded. Con-
cerning the value of xnk

, let A = {nk: xnk
= 0} = {n′

k: k � 1} and B = {nk: k = 1,2, . . .} \ A =
{n′′

k : k � 1}. Observe that |A| = ∞ or |B| = ∞ must hold. In the former case, it is easy to see
that

lim inf
n→∞

(
1

1 − 2pn

+ xn

pn

)
� lim sup

k→∞
1

1 − 2pn′
k

� 1

1 − 2p
< ∞.

In the latter case, since xn′′
k

� 1 and infk bn′′
k

� infk bnk
> 0, it must be true that infk pn′′

k
> 0.

Hence, we obtain

lim inf
n→∞

(
1

1 − 2pn

+ xn

pn

)
� lim sup

k→∞
1

1 − 2pn′′
k

+ lim sup
k→∞

xn′′
k

pn′′
k

� 1

1 − 2p
+ supk xn′′

k

infk pn′′
k

< ∞. �

The next theorem concerns the L2-cutoff for these birth and death chains and the associated
cutoff time.

Theorem 7.2. Referring to the setting introduced above, for n � 1 and γ ∈ {c, d}, let p
γ
n (t, ·,·)

be the (continuous/discrete) associated Markov transition function. Fix a sequence of states
xn ∈ Ωn. Assume that 0 < pn < 1/2. Then, for γ ∈ {c, d}, the family {pγ

n (t, xn, ·): n � 1} has an
L2-cutoff if and only if

lim
n→∞xn

(
qn − 1

)
= ∞. (7.5)
pn
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Moreover, if the above condition holds, then, for γ ∈ {c, d}, the family p
γ
n (t, xn, ·) has a (t

γ
n , b

γ
n )–

L2-cutoff where

tcn = xn(logqn − logpn)

2(1 − 2
√

pnqn)
, tdn =

⌊
xn(logqn − logpn)

− log(4pnqn)

⌋
,

and

bc
n = log log(qn/pn)

xn

1 − 2
√

pnqn

, bd
n = log log(qn/pn)

xn

− log(4pnqn)
.

Remark 7.1. Note that the cutoff time (if there is an L2-cutoff) is independent of the size of the
state space.

Remark 7.2. Concerning the case pn ≡ p ∈ (0,1/2), by Theorem 7.2, the existence of the L2-
cutoff for p

γ
n (t, xn, ·), γ ∈ {c, d}, is equivalent to the condition xn → ∞. As a consequence of

Theorem 7.2, if xn → ∞, the family p
γ
n (t, xn, ·), τ ∈ {c, d}, has a (t

γ
n , b

γ
n )–L2-cutoff with

tcn = (logq − logp)xn

2(1 − 2
√

pq)
, tdn = (logq − logp)xn

− log(4pq)
, bc

n = bd
n = logxn.

Diaconis and Saloff-Coste proved in [8] that both families pc
n(t, n, ·) and pd

n(t, n, ·) have a sep-
aration cutoff at time n

q−p
. One can check that

logq − logp

2(1 − 2
√

pq)
>

logq − logp

− log(4pq)
>

1

q − p
∀p ∈ (0,1/2). (7.6)

Thus, tcn � tdn and the L2-cutoff occurs later than the separation cutoff (this is not always true).
Note that the window given here is not optimal. For example, in continuous time case, it can
be proved directly using the expression in (5.4) and the formulas (7.3), (7.4) that pc

n(t, n, ·) has
a strongly optimal (tcn,1)–L2-cutoff, where the strong optimality uses Corollary 5.2. Similarly,
for any integer m, the L2-distance between pd

n(tdn + m,n, ·) and πn always converges to 0 as
n → ∞.

Remark 7.3. In the case pn → 0, the equivalent condition for the existence of the L2-cutoff is
xn → ∞. If this holds true, then the family p

γ
n (t, xn, ·) has a (t

γ
n , b

γ
n )–L2-cutoff with

tcn = 1

2
xn log(1/pn), bc

n = logxn

and

tdn = xn, bd
n = logxn

log(1/pn)
.

Note that tcn and tdn are of different order.
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Remark 7.4. In the case pn → 1/2, write pn = 1
2 − δn

n
, where δn = o(n). By Theorem 7.2, for

γ ∈ {c, d}, p
γ
n (t, xn, ·) has an L2-cutoff if and only if xnδn/n → ∞. Moreover, if xnδn/n → ∞,

then both families in continuous time and discrete time cases have a (tn, bn)–L2-cutoff with

tn = nxn

δn

, bn = xn + n2

δ2
n

log
xnδn

n
.

Theorem 7.2 also holds in the case pn = qn = 1/2 where there is no cutoff. This is well known
and we omit the details.

Proof of Theorem 7.2. The proof of Theorem 7.2 involves considering several cases. We shall
use the convention that, for any two sequences of positive numbers sn, tn,⎧⎨⎩

sn ∼ tn if limn→∞ sn/tn = 1;
sn � tn if lim supn→∞{sn/tn} < ∞;
sn � tn if sn � tn, tn � sn.

(7.7)

Set pn = 1
2 − δn

n
and let xn ∈ {0,1, . . . , n}. Then, for any sequence of pairs (xn,pn), there exists

a subsequence nk such that the conjunction of one A(i) and one B(j) holds, where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A(1): δnk
= o(1); B(1): xnk

≡ 0;
A(2): δnk

� 1; B(2): xnk
� 1;

A(3): δnk
→ ∞, δnk

= o(nk); B(3): xnk
→ ∞, xnk

δnk
= o(nk);

A(4): δnk
/nk → δ ∈ (0,1/2); B(4): xnk

→ ∞, xnk
δnk

� nk;
A(5): δnk

/nk → 1/2; B(5): xnk
→ ∞, nk = o(xnk

δnk
).

Let R(i, j) denote the case when A(i) and B(j) hold. Clearly, R(1,4), R(1,5), R(2,5), R(4,3),
R(4,4), R(5,3) and R(5,4) can not happen. By Lemma 7.1, it is easy to see that πn(xn) � 1 is
equivalent to cases R(4,1), R(4,2) and R(5,1). Thus, by Theorem 5.1, the family of continuous
time chains has no L2-cutoff in those cases. For the family of discrete time chains, we can show
that

lim
n→∞πn

(∣∣∣∣pd
n(0,0, ·)
πn(·) − 1

∣∣∣∣2)= 0 in R(5,1)

and

∀t > 0 lim inf
n→∞ πn

(∣∣∣∣pd
n(t,0, ·)
πn(·) − 1

∣∣∣∣2)> 0 in R(4,1) and R(4,2).

This implies that no L2-cutoff exists, where the case R(5,1) uses the first equality and cases
R(4,1) and R(4,2) use the second inequality and Corollary 3.3.

Let ξ = {nk: k � 1} and Fξ be the subfamily of F indexed by ξ . By Proposition 2.1, to prove
Theorem 7.2, in cases R(3,5), R(4,5), R(5,2) and R(5,5), it suffices to show that Fξ has an
L2-cutoff. In cases R(i, j) with i, j ∈ {1,2,3} and R(2,4),R(3,4), it suffices to show that Fξ

has no L2-cutoff. To simplify the notations, we write F for Fξ . Let ψc
n,0 = ψd

n,0 ≡ 1 and set

λc = λn,i = 1 − βn,i , ψc = ψn,i, ∀1 � i � n, (7.8)
n,i n,i
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and, for 1 � i � [(n + 1)/2],
λd

n,2i−1 = λd
n,2i = − logβn,i , ψd

n,2i−1 = ψn,i, ψd
n,2i = ψn,n+1−i . (7.9)

As before, c and d represent the continuous time and discrete time cases, and Fc and Fd are the
corresponding families.

Necessity of (7.5). Consider the cases R(1, j) with 1 � j � 3 and R(i, j) with i ∈ {2,3} and
j ∈ {1,2,3,4}. Rewrite (7.4) as follows.

ψ2
n,i(xn) = 2�2

n,i

(n + 1)πn(xn)λn,i

, ∀1 � i � n, (7.10)

where �n,i = √
pn sin i(xn+1)π

n+1 − √
qn sin ixnπ

n+1 . Note that, for 0 � s � π/2 and 0 � t � π with
s < t ,

1

8
(t2 − s2) � cos s − cos t � 1

2

(
t2 − s2).

This implies that, for 1 � i � n,

λn,i = (qn − pn)
2

(
√

qn + √
pn)2

+ 2
√

pnqn

(
1 − cos

iπ

n + 1

){� αn,i/5,

� 5αn,i
(7.11)

where

αn,i = 1

n2

(
δ2
n + i2

√
1 − 4δ2

n

n2

)
.

Note also that, for j ∈ {1,2,3,4},

πn(xn) �
{

1/n for R(1, j), R(2, j),

δn/n for R(3, j).
(7.12)

Now, we are going to disprove the existence of L2-cutoff using Theorems 5.1–5.3. We first
treat the continuous time cases. For C > 0, let jn(C), τn(C) be as defined in (5.2), (5.3). Step 1
and Step 2 below treat the cases R(1, j) with j ∈ {1,2,3} and R(2, j) with j ∈ {1,2,3,4},
whereas Step 3 and Step 4 discuss the cases R(3, j) with 1 � j � 4.

Step 1: There exists C0 > 0 such that jn(C0) � 1.
Note that A(1) or A(2) implies pn → 1/2 and δn = O(1). When A(1) holds, by writing

�n,i = √
pn

(
sin

i(xn + 1)π

n + 1
− sin

ixnπ

n + 1

)
+ (√

pn − √
qn

)
sin

ixnπ

n + 1
, (7.13)

we have |�n,1| � 1/n and |�n,2| � 1/n. In a detailed computation, one can get{ |�n,1| � 1/n if xn/n ∈ [0,3/8] ∪ [5/8,1],

|�n,2| � 1/n if xn/n ∈ [3/8,5/8].
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Thus, �2
n,1 + �2

n,2 � n−2. When A(2) holds, we may choose a constant ε ∈ (0,1/2) such that

|�n,1| � 1/n, ∀xn ∈ [0, εn] ∪ [n/2, n]. (7.14)

Clearly, for all k � 1, |�n,k| � 1/n using (7.13). To get a similar bound as in A(1), observe that
for fixed k � 1, if xn ∈ [n/(2k), n/k], then

|�n,k| = √
pn

(
sin

kxnπ

n + 1
− sin

k(xn + 1)π

n + 1

)
+ (√

qn − √
pn

)
sin

kxnπ

n + 1

� √
pn

(
sin

kxnπ

n + 1
− sin

(kxn + 1)π

n + 1

)
+ (√

qn − √
pn

)
sin

kxnπ

n + 1
� 1/n,

where the last asymptotic inequality is given by (7.14). Consequently, by setting K = �1/(2ε)	,
we have

�2
n,1 + · · · + �2

n,K � n−2.

Hence, in either case of A(1) and A(2),
∑K

i=1 �2
n,i � n−2. Plugging this result, (7.11) and (7.12)

into (7.10) then gives

K∑
i=1

ψ2
n,i(xn) �

2(�2
n,1 + · · · + �2

n,K)

(n + 1)πn(xn)λn,K

� 1.

This proves Step 1.

Step 2: Let C0 be as in Step 1. Then, τn(C0) � n2.
In order to prove this fact, we need the following computations.

|�n,i | � √
pn

∣∣∣∣sin
i(xn + 1)π

n + 1
− sin

ixnπ

n + 1

∣∣∣∣+ (√
qn − √

pn

)∣∣∣∣sin
ixnπ

n + 1

∣∣∣∣
� iπ

n

(
1 + 4xnδn

n

)
� (1 + 4δn)πi

n
. (7.15)

Using the last inequality and (7.10)–(7.12), we obtain

∣∣ψ2
n,i(xn)

∣∣� 10π2(1 + 4δn)
2i2/n2

(n + 1)πn(xn)αn,i

� 10π2(1 + 4δn)
2

(n + 1)πn(xn)
√

1 − 4δ2
n/n2

� 1,

where the last asymptotic relation is uniform for 1 � i � n. This implies that

sup
{
ψ2

n,i(xn): 1 � i � n, n � 1
}= M < ∞

and, hence,

n2 � log(1 + C0)

2λn,jn(C0)

� τn(C0) � max
1�i�n

log(1 + Mi)

2λn,i

� n2.

This proves Step 2.
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It is immediate from Step 1 and Step 2 that λn,jn(C0)τn(C0) � 1 and then, by Theorem 5.1, the
family {pc

n(t, xn, ·): n = 1,2, . . .} has no L2-cutoff.
In Step 3 and Step 4, we treat the cases R(3, j) with 1 � j � 4.

Step 3: There exists C1 > 0 such that jn(C1) � δn.
To see the detail, recall those identities introduced in (7.10)–(7.12). It is an immediate result

of (7.11) that if A(3) holds, then

λn,i � (
δ2
n + i2)n−2, uniformly for 1 � i � n. (7.16)

We first consider R(3, j) with j ∈ {1,2,3}. In these cases, it is obvious that xnδn = o(n). Using
this fact, one can easily compute∣∣∣∣sin

i(xn + 1)π

n + 1
− sin

ixnπ

n + 1

∣∣∣∣� i

n
,

(√
qn − √

pn

)∣∣∣∣sin
ixnπ

n + 1

∣∣∣∣� ixnδn

n2
= o

(
i

n

)
,

where � and o(·) are uniform for 1 � i � (n + 1)/(4(xn + 1)). This implies

�2
n,i � i2/n2, uniformly for 1 � i � δn. (7.17)

By replacing corresponding terms in (7.10) with (7.12), (7.16) and (7.17), we obtain

ψ2
n,i(xn) � i2

δ3
n

, uniformly for 1 � i � δn.

Thus, for C small enough, jn(C) � δn.
We now consider the case R(3,4), that is, δn → ∞, xn → ∞ and δnxn � n. As before, apply-

ing (7.12), (7.15) and (7.16) to (7.10) gives

ψ2
n,i(xn) � i2

δn(δ2
n + i2)

uniformly for 1 � i � n. (7.18)

This implies jn(C) � δn for all C > 0. To see the inverse direction, observe that for n+1
2xn

� i �
n+1
xn

,

|�n,i | = √
pn

∣∣∣∣sin
i(xn + 1)π

n + 1
− sin

ixnπ

n + 1

∣∣∣∣+ (√
qn − √

pn

)∣∣∣∣sin
ixnπ

n + 1

∣∣∣∣. (7.19)

This can be easily seen from (7.13). To analyze the right side summation, we compute that

∀n + 1

2xn

� i � 3(n + 1)

4xn

, sin
ixnπ

n + 1
� 1

2
� 2xni

3(n + 1)
,

and

∀3(n + 1) � i � n + 1
,

∣∣∣∣sin
i(xn + 1)π − sin

ixnπ
∣∣∣∣� iπ

.

4xn xn n + 1 n + 1 2(n + 1)
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Putting these two inequalities back to (7.19) gives

|�n,i | � i/n, uniformly for
n + 1

2xn

� i � n + 1

xn

.

Hence, by applying this result with (7.10), (7.12) and (7.16), we get


 n+1
xn

�∑
i=1

ψ2
n,i(xn) �


 n+1
xn

�∑
i=� n+1

2xn
	
ψ2

n,i(xn) �

 n+1

xn
�∑

i=� n+1
2xn

	

i2

δn(δ2
n + i2)

� 1.

This implies jn(C) � n/xn � δn for C small enough. Consequently, in R(3,4), jn(C) � δn for
C small enough.

Step 4: Let C1 be as in Step 3. Then, τn(C1) � n2/δ2
n.

Note that, in cases B(1)–B(4), xnδn/n � 1. By the second inequality of (7.15), this implies

|�n,i | � i/n uniformly for 1 � i � n.

As before, applying this result with (7.10), (7.12) and (7.16) gives

sup
{
ψ2

n,i(xn)δn: 1 � i � n, n � 1
}= N < ∞.

Thus, we have

n2

δ2
n

� log(1 + C1)

λn,jn(C1)

� τn(C1) � max
jn(C1)�i�n

log(1 + iN/δn)

λn,i

� n2

δ2
n

.

As a consequence of Step 3 and Step 4, we have λn,jn(C1)τn(C1) � 1. By Theorem 5.1, this
implies that the family {pc

n(t, xn, ·): n = 1,2, . . .} has no L2-cutoff.
The proof for discrete time cases goes in a similar way. Recall in the following the spectral

information displayed in (7.9) using the setting given by (7.3) and (7.4). For 1 � i � n/2,

ψd
n,2i−1 = ψn,i, ψd

n,2i = ψn,n+1−i , (7.20)

and

λd
n,2i−1 = λd

n,2i = − logβn,i .

Note that

∀1 � i � n, − logβn,i = − log(1 − λn,i) � λn,i

and, for all L > 2,

− logβn,i � λn,i uniformly for 1 � i � n/L.

Using the above comparison relationship, it is easy to show from the definition of jn(C) and
τn(C) given in (5.2) and (5.3) that Step 1 and Step 2 remain true in cases R(1, j) with j =
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1,2,3 and R(2, j) with j = 1,2,3,4. As a consequence of Theorem 5.3, the family {pd
n(t, xn, ·):

n = 1,2, . . .} has no L2-cutoff.
For cases R(3, j) with j ∈ {1,2,3,4}, let C1 be the constant for families of continuous

time chains selected in Step 3. Using (7.20), one can easily show that, for discrete time chains,
jn(C1) � δn, whereas (7.18) gives jn(C) � δn for all C > 0. This implies jn(C1) � δn. A sim-
ilar proof as that for Step 4 implies τn(C) � n2/δ2

n. By Theorem 5.3, the family {pd
n(t, xn, ·):

n = 1,2, . . .} has no L2-cutoff.

Sufficiency of (7.5). First of all, recall the notations defined in (7.2)–(7.4) and (7.7)–(7.9), and
rewrite (7.10) and λn,i in the following way.

∀1 � i � n, ψ2
n,i(xn) = 2 sin2(( ixn

n+1 + θn,i)π)

(n + 1)πn(xn)
, (7.21)

where θn,i ∈ (1/2,1) is such that

sin(θn,iπ) =
√

pn sin iπ
n+1√

λn,i

, cos(θn,iπ) =
√

pn cos iπ
n+1 − √

qn√
λn,i

, (7.22)

and

∀1 � i � n, λn,i = (√
pn − √

qn

)2 + 2
√

pnqn

(
1 − cos

iπ

n + 1

)
= 4δ2

n/n2

1 + 2
√

pnqn

(
1 + O

(
i2

δ2
n

))
, (7.23)

where O is uniform for 1 � i � n. According to the discussion in the beginning of the proof,
only cases R(3,5), R(4,5), R(5,2) and R(5,5) are needed to be considered. Obviously, either
of them implies

lim
n→∞ δn = ∞, lim

n→∞
xnδn

n
= ∞

and further that

πn(x) ∼ 2δn

nqn

(
pn

qn

)x

. (7.24)

We will prove the sufficiency of (7.5) using Theorems 5.1–5.3. For C > 0, let j
γ
n (C) and

τ
γ
n (C), γ ∈ {c, d}, be as defined in (5.2) and (5.3). In what follows, Steps 5, 6 and 7 deal with

cases R(3,5), R(4,5) and R(5,5), whereas Step 8 consider R(5,2).

Step 5: For C > 0, jd
n (C) � 2jc

n(C) − 1 and jc
n(C) � �δn(pn/qn)

xn/3	.
Clearly, the first inequality follows from the setting ψd

n,2i−1 = ψc
n,i . To see the second one,

observe that

1 − θn,i ∼ pn + √
pnqn × i

uniformly for 1 � i � n/xn.

2 δn
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This can be proved without difficulty using (7.23). By this fact, one can show that

ixn

n + 1
+ θn,i − 1 ∼ ixn

n
uniformly for 1 � i � n

xn

.

Hence, we have

sin2
((

ixn

n + 1
+ θn,i

)
π

)
�
(

ixn

n

)2

uniformly for 1 � i � n/(2xn). (7.25)

As the above result can hold only for xn � n/2, we consider two subcases.
Case 1: xn ��� n/2. In this case, one may use (7.25) to show that for 1 � j � n/(2xn),

log

(
j∑

i=1

∣∣ψc
n,i

∣∣2(xn)

)
= log

((
qn

pn

)xn j3x2
n

δnn2

)
+ O(1). (7.26)

Using the inequality log(1 + t) � 1
2 (t ∧ 1) for t � 0, we obtain

qn

pn

� δn

n
∧ 1

2
� δn

2n
.

This implies

δn

(
pn

qn

)xn/3

� δn exp

{
−xnδn

6n

}
= δn × o

(
n

xnδn

)
= o

(
n

xn

)
. (7.27)

Hence, for C > 0,

jn(C)c �
⌈(

pn

qn

)xn/3(
δnn

2

x2
n

)1/3⌉
�
⌈
δn

(
pn

qn

)xn/3⌉
.

Case 2: xn > n/2. In this case, we go back to (7.10). Note that for xn > n/2,

|�n,1| = √
pn

(
sin

xnπ

n + 1
− sin

(xn + 1)π

n + 1

)
+ (√

qn − √
pn

)
sin

xnπ

n + 1
,

where the right side is a sum of positive terms. In a few computations, one can show that for
pn < 1/4 or xn < 3n/4,

(√
qn − √

pn

)
sin

xnπ

n + 1
� 1

n
,

and for pn � 1/4 and xn � 3n/4,

√
pn

(
sin

xnπ − sin
(xn + 1)π

)
� 1

.

n + 1 n + 1 n
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Thus, |�n,1| � n−1. Applying this result with (7.10), (7.23) and (7.24) gives

ψ2
n,1(xn) � 1

δ3
n

(
qn

pn

)xn

.

Moreover, using the fact log(1 + t) � 1
2 (t ∧ 1), we have

logψ2
n,1(xn) � xn log

qn

pn

+ O(log δn) � n
[
(δn/n) ∧ 1

]+ O(log δn), (7.28)

where the most right summation tends to infinity. This implies that for any C > 0, jc
n(C) = 1 as

n large enough. Then, Step 5 is an immediate result of (7.27).

Step 6: For C > 0 and γ ∈ {c, d},

τ
γ
n (C) � xn log(qn/pn) + O(log log(qn/pn)

xn)

2λ
γ

n,1

.

To prove this inequality, we set, for n � 1,

�n = n

xn

(
xn log

qn

pn

)−1/2

.

Using the first inequality of (7.27), one can show that

∀C > 0, δn

(
pn

qn

)xn/3

= o(�n), �n = o

(
n

xn

)
. (7.29)

As the proof for Step 5, we consider the following two cases.
Case 1: xn ��� n/2. An immediate result of (7.29) is that for any C > 0,

jc
n(C) � ��n	 � n

2xn

, for n large enough. (7.30)

Putting this fact with (7.23), (7.26) and (7.27) together gives

τ c
n(C) �

log
∑��n	

i=0 |ψc
n,i(xn)|2

2λc
n,��n	

� xn log(qn/pn) + O(log log(qn/pn)
xn)

2λc
n,1(1 + O((��n	 − 1)2/δ2

n))

= xn log(qn/pn) + O(log log(qn/pn)
xn)

2λc
n,1

∼ xn log(qn/pn)

2λc
n,1

. (7.31)

For discrete time chains, one can compute without difficulty that

λd
n,2i−1 = λd

n,2i = − log

(
2
√

pnqn cos
iπ

n + 1

)
= λd

n,1

(
1 + O

(
(i − 1)2

δ2
n

))
(7.32)

where O is uniformly for 1 � i � n/xn. Applying this fact with (7.20) and (7.31), we have
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τd
n (C) �

∑2��n	
i=0 |ψd

n,i(xn)|2
2λd

n,2��n	
�

∑��n	
i=0 |ψc

n,i(xn)|2
2λd

n,1(1 + O((��n	 − 1)2/δ2
n))

= xn log(qn/pn) + O(log log(qn/pn)
xn)

2λd
n,1

∼ xn log(qn/pn)

2λd
n,1

. (7.33)

Case 2: xn > n/2. It has been shown in Case 2 of Step 5 that for any C > 0, j
γ
n (C) = 1 for n

large enough. Then, by (7.28), we have

τ
γ
n (C) �

log(ψ2
n,1(xn))

2λ
γ

n,1

= xn log(qn/pn) + O(log(xnδn/n))

2λ
γ

n,1

.

This proves Step 6 using the first inequality of (7.27).
To determine the existence of the L2-cutoff using Theorems 5.1 and 5.3, we have to compute

λ
γ

n,j
γ
n (C)

. Using (7.23) and (7.32), one can show that

λ
γ

n,i ∼ λ
γ

n,1 uniform for 1 � i � Cn/xn, γ ∈ {c, d}

where C is any positive constant. By Step 5 and (7.29), it is easy to see that j
γ
n (C) � n/xn.

Putting these two results together gives

λ
γ

n,j
γ
n (C)

∼ λ
γ

n,1, ∀C > 0.

Then, by Step 6, we obtain that for γ ∈ {c, d},

τ
γ
n (C)λ

γ

n,j
γ
n (C)

∼ τ
γ
n (C)λ

γ

n,1 � xn log

(
qn

pn

)
→ ∞ as n → ∞

and

j
γ
n (C)−1∑

i=1

∣∣ψγ

n,i(xn)
∣∣2e−2λ

γ
n,i τ

γ
n (C) � Ce

−2λ
γ

n,1τ
γ
n (C) → 0 as n → ∞.

As a consequently of Theorems 5.1 and 5.3, the family {pγ
n (t, xn, ·): n � 1} has a (τ

γ
n (C), l

γ
n )–

L2-cutoff with

lcn = (
λc

n,1

)−1 log
(
τ c
n(C)λc

n,1

)
(7.34)

and

ldn = max
{
1,
(
λd

n,1

)−1 log
(
τd
n (C)λd

n,1

)}
. (7.35)

This proves the sufficiency of the L2-cutoff for cases R(3,5), R(4,5) and R(5,5). In the next
step, we make a detailed computation on the L2-cutoff times and cutoff windows yielded above.
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Step 7: For C > 0 and γ ∈ {c, d},

τ
γ
n (C) = xn log(qn/pn) + O(log log(qn/pn)

xn)

2λ
γ

n,1

.

By Step 6, it remains to give an adequate upper bound for τ
γ
n (C). Obviously, by (7.2) and

(7.21), we have

ψ2
n,i(xn) � 2

(n + 1)πn(xn)
� 1

δn

(
qn

pn

)xn

∀1 � i � n.

This implies for γ ∈ {c, d},

τ
γ
n (C) � max

j
γ
n (C)�i�n

{
xn log(qn/pn) + log((i + 1)/δn)

2λ
γ

n,i

}
. (7.36)

We consider two subcases concerning the value of pn. In the case pn < 1/4, or equivalently
δn � n/4, it is obvious from (7.36) that

∀C > 0, γ ∈ {c, d}, τ
γ
n (C) � xn log(qn/pn) + log 4

2λ
γ

n,1

.

In the case pn � 1/4, one can show that there is a constant N > 0 such that, for n large enough,

λ
γ

n,i � λ
γ

n,1

(
1 + i2 − 1

Nδ2
n

)
∀1 � i � n, γ ∈ {c, d}.

Using this fact, we may prove that for xnδ2
n

n
< i � n,

xn log(qn/pn) + log((i + 1)/δn)

2λ
γ

n,i

� xn log(qn/pn)

2λ
γ

n,1

× max
xnδ2

n/n<i�n

{
N log((i + 1)/δn)

(i2 − 1)/δ2
n

}

= o

(
xn log(qn/pn)

λ
γ

n,1

)
.

Moreover, for 1 � i � xnδ2
n

n
,

xn log(qn/pn) + log((i + 1)/δn)

2λ
γ

n,i

� xn log(qn/pn) + log(xnδn/n))

2λ
γ

n,1

.

Consequently, we get

τ
γ
n (C) � xn log(qn/pn) + O(log(xnδn/n))

2λ
γ

n,1

.

This proves Step 7 since δnxn/n = O((qn/pn)
xn).
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Next, we use Step 7 and the conclusion in the end of Step 6 to determine the desired cutoff
times and cutoff windows. Set, for n � 1,

v
γ
n = xn log(qn/pn)

2λ
γ

n,1

, γ ∈ {c, d},

and

wc
n = log log(qn/pn)

xn

λc
n,1

, wd
n = max

{
1,

log log(qn/pn)
xn

λd
n,1

}
.

In Step 6, the windows for the L2-mixing time in (7.34) and (7.35) satisfy

l
γ
n � w

γ
n , γ ∈ {c, d}.

By Step 7, this derives τ
γ
n (C) = v

γ
n + O(w

γ
n ) and then, by [5, Corollary 2.5(v)], the family

p
γ
n (t, xn, ·) has a (v

γ
n ,w

γ
n )–L2-cutoff. Consider the following identities.⎧⎪⎨⎪⎩

λc
n,1 = (

1 − 2
√

pnqn

)(
1 + O

(√
pnδ

−2
n

))
,

λd
n,1 = (− log(4pnqn)

)(1

2
+ O

(
δ−2
n

))
.

(7.37)

Let tcn, tdn , bc
n, b

d
n be as in Theorem 7.2. Then, (7.37) implies

vc
n = tcn + O

(√
pnxn log(qn/pn)

δ2
n(1 − 2

√
pnqn)

)
, vd

n = tdn + O

(
max

{
1,

xn log(qn/pn)

−δ2
n log(4pnqn)

})
.

Observe that if pn � 1, then

log
qn

pn

= log

(
1 + 2δn

pnn

)
� δn

n
,

and if pn = o(1), then δn ∼ n/2 and

log
qn

pn

� − log 4pnqn = o
(
1/

√
pn

)
.

This implies

√
pnxn log(qn/pn)

δ2
n(1 − 2

√
pnqn )

� 1

δn(1 − 2
√

pnqn )
= o

(
wc

n

)
and

xn log(qn/pn)

2
� 1

max

{
1,

1
}

= o
(
wd

n

)
.
−δn log(4pnqn) δn − log(4pnqn)
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Thus, v
γ
n = t

γ
n + O(w

γ
n ) for γ ∈ {c, d}. Again, by [5, Corollary 2.5(v)], the family p

γ
n (t, xn, ·)

presents a (t
γ
n ,w

γ
n )–L2-cutoff.

To see b
γ
n is the desired cutoff window, note that in case R(3,5), R(4,5) and R(5,5), it is

assumed δn → ∞. By (7.37), one has wc
n � bc

n and

wd
n � bd

n if logxn � log

(
1

pn

)
.

As a consequence of [5, Corollary 2.5(v)], pc
n(t, xn, ·) presents a (tcn, bc

n)–L2-cutoff and, in case
logxn � log(1/pn), the family pd

n(t, xn, ·) presents a (tdn , bd
n)–L2-cutoff. It remains to consider

the discrete time case with the condition logxn = o(log(1/pn)). In cases R(3,5), R(4,5) and
R(5,5), this can happen only if pn → 0 and xn = o(1/pn). Recall the L2-distance in (5.6) as
follows.

[
Dd

n,2(xn, t)
]2 =

n∑
j=1

2 sin2( jxn

n+1 + θn,j

)
π

(n + 1)πn(xn)

(
4pnqn cos2 jπ

n + 1

)t

,

where θn,j ∈ (0,1/2) is the term satisfying (7.22). In the assumption pn → 0, it is clear that

πn(xn) ∼
(

pn

qn

)xn

, θn,j ∼ 1 uniformly for 1 � j � n. (7.38)

By setting sn = xn log(qn/pn)
− log(4pnqn)

, the former identity of (7.38) implies πn(xn) ∼ (4pnqn)
sn and then

for any ε ∈ (0,1/2),

[(1−ε)n]∑
j=[εn]

2 sin2( jxn

n+1 + θn,j

)
π

(n + 1)πn(xn)

(
4pnqn cos2 jπ

n + 1

)sn

= o(1).

Thus, we have

lim
n→∞

[
Dd

n,2(xn, sn)
]2 � 2ε + o(1) ∀ε ∈ (0,1/2)

which yields Dd
n,2(xn, sn) → 0 as n → ∞. To see Dd

n,2(xn, sn − 1), it loses no generality to
assume that limn→∞ xn/n = c ∈ [0,1]. For c ∈ (0,1/2], we have

[
Dd

n,2(xn, sn − 1)
]2 � 1

pn

[3/(4c)]∑
j=[1/(4c)]

2 sin2(
jxn

n+1 + θn,j )π

n

(
cos

jπ

n + 1

)2(sn−1)

� 1

npn

� 1

xnpn

→ ∞

where the second asymptote uses the second identity in (7.37). In a similar reasoning, if c = 0,
one has
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[
Dd

n,2(xn, sn − 1)
]2 � 1

pn

[n/(2xn)]∑
j=1

2 sin2( jxn

n+1 + θn,j

)
π

n

(
cos

jπ

n + 1

)2(sn−1)

� 1

xnpn

→ ∞.

The proof for c ∈ (1/2,1] is almost the same using the symmetry of sine and cosine functions
and, consequently, we achieve Dd

n,2(xn, sn − 1) → ∞. This proves the desired cutoff.

Step 8: In case R(5,2), that is, pn → 0 and xn � 1, we prove the existence of the L2-cutoff and
determine a cutoff time and a cutoff window by computing the L2-distance in detail instead of
using Theorems 5.1 and 5.3. First, let D

γ

n,2(xn, t), γ ∈ {c, d}, be the L2-distance of the nth chain
at time t starting from xn. Using (5.4), (5.6) and (7.21), one can derive

(
Dc

n,2(xn, t)
)2 =

n∑
j=1

2 sin2( jxn

n+1 + θn,j

)
π

(n + 1)πn(xn)
exp

{
−2t

(
1 − 2

√
pnqn cos

jπ

n + 1

)}

and

(
Dd

n,2(xn, t)
)2 =

n∑
j=1

2 sin2( jxn

n+1 + θn,j

)
π

(n + 1)πn(xn)

(
2
√

pnqn cos
jπ

n + 1

)2t

.

Using the second part of (7.38) and the fact xn � 1, we have, for any M � 0,

n∑
j=1

sin2( jxn

n+1 + θn,j

)
π

n + 1

(
cos

jπ

n + 1

)Mxn

�
n∑

j=1

sin2( jxn

n+1 + θn,j

)
π

n + 1
� 1.

Putting all above together, we obtain

Dc
n,2

(
xn,

xn log(qn/pn) + c

2(1 − 2
√

pnqn)

)
� e−c ∀c ∈ R

and

Dd
n,2(xn, xn + c) � p

−c/2
n ∀c ∈ Z, xn + c � 0.

Consequently, the continuous time family has a strongly optimal (
xn log(qn/pn)

2(1−2
√

pnqn)
,1)–L2-cutoff and

the discrete time family has a (xn, cn)–L2-cutoff where (cn)
∞
1 is any sequence of positive num-

bers tending to 0. The desired cutoff for discrete time cases is obtained due to the facts

0 < tdn − xn = xn log(4q2
n)

− log(4pnqn)
= o(1), bd

n � 1

log(1/pn)
= o(1). �
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7.2. Countable chains

In this section, we consider birth and death chains on Ω = {0,1,2, . . .} with transition func-
tions pγ (t, ·,·), γ ∈ {c, d}, associated with the kernel

K(x,y) =
{

p if y = x + 1,

q if y = x − 1 or x = y = 0.
(7.39)

Let π be a probability measurable on Ω given by

∀x ∈ Ω, π(x) = q − p

q

(
p

q

)x

.

Here, we assume that p < 1/2 so that there exists a unique invariant probability measure, which is
equal to π , associated with pγ (t, ·,·). In order to investigate the L2-cutoff for families of birth and
death chains on Ω using Theorems 5.1 and 5.3, one has to compute the spectral information of
this infinite chain and this is given in [11]. Here, we consider another approach without the uses of
spectral information but establishing a relationship on the L2-distances between the distributions
of finite and infinite chains and their stationarity. This is the main thought in this section and is
realized in the following lemma.

Lemma 7.3. Let pγ (t, ·,·), γ ∈ {c, d}, be the Markov transition functions given by (7.39) with
p < 1/2. For m � 1, let p

γ
m(t, ·,·) be a birth and death chain on Ωm = {0,1, . . . ,m} with con-

stant birth rate p and constant death rate q = 1 − p. For x ∈ Ω and y ∈ Ωm, let Dγ (x, t) and
D

γ
m(y, t) be the L2-distances associated with pγ (t, x, ·) and p

γ
m(t, y, ·). Then, for t > 0 and

x � 0 such that m � x + t ,

(
Dd

m(x, t)
)2 + 1 = [(

Dd(x, t)
)2 + 1

]× [
1 − (p/q)m+1]2

,(
Dd(x, t)

)2 − (
Dd

m(x, t)
)2 = [(

Dd(x, t)
)2 + 1

]
(p/q)m+1[2 − (p/q)m+1].

Moreover, for m � x,

∣∣(Dc(x, t)
)2 − (

Dc
m(x, t)

)2∣∣� 6
[(

Dd(x,0)
)2 + 1

](
(p/q)m+1 + e−t

∑
j>m−x

tj

j !
)

.

Proof. Let π,πm be the invariant probabilities associated with p(t, ·,·),pm(t, ·,·). Then, the
first and second identities follow immediately from the fact π(y) = πm(y)[1 − (p/q)m+1] for
0 � y � m and

(
Dd(x, t)

)2 =
x+t∑
y=0

(
pd(t, x, y)

)2
/π(y) − 1,

(
Dd

m(x, t)
)2 =

x+t∑(
pd

m(t, x, y)
)2

/πm(y) − 1.
y=0
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To see the last inequality, set A = {0,1, . . . ,m − x} and Ac = Ω \ A. A simple computation
shows that

(
pc(t, x, y)

)2 =
(∑

i∈A

e−t t
i

i!p
d(i, x, y)

)2

+
( ∑

j∈Ac

e−t t
j

j !p
d(j, x, y)

)2

+ 2e−2t
∑

i∈A,j∈Ac

t i+j

i!j ! pd(i, x, y)pd(j, x, y).

For the second and third terms on the right side, we may prove using Jensen’s and Cauchy
inequality that( ∑

i∈Ac

e−t t
i

i!p
d(i, x, y)

)2

�
( ∑

i∈Ac

e−t t
i

i!
) ∑

j∈Ac

e−t t
j

j !
(
pd(j, x, y)

)2

and ( ∑
y∈Ω

pd(i, x, y)pd(j, x, y)

π(y)

)2

�
( ∑

y∈Ω

(pd(i, x, y))2

π(y)

)( ∑
y∈Ω

(pd(j, x, y))2

π(y)

)
.

This implies ∣∣∣∣(Dc(x, t)
)2 + 1 −

∑
y∈Ω

(∑
i∈A

e−t t
i

i!p
d(i, x, y)

)2 1

π(y)

∣∣∣∣
�
[(

Dd(x,0)
)2 + 1

]∑
i∈Ac

e−t t
i

i! .

Similarly, for the transition functions pc
m(t, ·,·) and pd

m(t, ·,·), we have

∣∣∣∣(Dc
m(x, t)

)2 + 1 −
∑

y∈Ωm

(∑
i∈A

e−t t
i

i!p
d
m(i, x, y)

)2 1

πm(y)

∣∣∣∣
� 3

[(
Dd

m(x,0)
)2 + 1

]∑
i∈Ac

e−t t
i

i! .

Note that

for m � x, Dd(x,0) = Dd
m(x,0) = 1√

πm(x)
� 1√

π(x)
= Dd(x,0)

and

pd(i, x, y) =
{

pd
m(i, x, y) for i ∈ A, y � m,
0 for i ∈ A, y > m.
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Putting all above together and applying the triangle inequality gives

∣∣(Dc(x, t)
)2 − (

Dc
m(x, t)

)2∣∣� (p/q)m+1
∑
y∈Ω

(∑
i∈A

e−t t
i

i!p
d(i, x, y)

)2 1

π(y)

+ 6
[(

Dd(x,0)
)2 + 1

] ∑
j∈Ac

e−t t
j

j !

� 6
[(

Dd(x,0)
)2 + 1

](
(p/q)m+1 +

∑
j∈Ac

e−t t
j

j !
)

,

where the last inequality uses Jensen’s inequality on the summation w.r.t. i. �
The next theorem concerns birth and death chains on non-negative integers and contains The-

orem 7.2.

Theorem 7.4. Let Ω be the set of non-negative integers. For n � 1, let pn ∈ (0,1/2), qn = 1−pn

and let p
γ
n (t, ·,·), γ ∈ {c, d}, be the continuous or discrete time Markov transition function on Ω

associated with (7.39) for p = pn. Then, the family p
γ
n (t, xn, ·) with xn ∈ Ω has an L2-cutoff if

and only if (7.5) holds. Moreover, if (7.5) holds, then for γ ∈ {c, d}, p
γ
n (t, xn, ·) has a (t

γ
n , b

γ
n )–

L2-cutoff, where t
γ
n and b

γ
n are as defined in Theorem 7.2.

Proof of Theorem 7.4. For n � 1 and γ ∈ {c, d}, let D
γ
n (t) be the L2-distance between

p
γ
n (t, xn, ·) and its stationary distribution. Let t

γ
n be as in Theorem 7.2 and set

sn = inf
{
t > 0: D

γ
n (t) � 1, γ ∈ {c, d}}+ tcn.

Note that, for n � 1, we may choose mn � max{xn,mn−1 + 1} with m0 = 0 such that

lim
n→∞

[(
Dd

n(xn,0)
)2 + 1

](
(pn/qn)

mn + e−2sn

∞∑
i=mn−xn

(2sn)
i

i!

)
= 0.

Let p̃d
n(t, ·,·) be the transition function on Ωmn satisfying

∀x, y ∈ Ωmn, p̃d
n(1, x, y) =

{
pd

n(1, x, y) if (x, y) �= (mn,mn),

pn if (x, y) = (mn,mn),

and let p̃c
n(t, ·,·) be the associated continuous time chain. Let D̃

γ
n (t) be the L2-distance between

p̃
γ
n (t, xn, ·) and its stationary distribution. In the above setting, one may prove using Lemma 7.3

that for τ ∈ {c, d},

sup
∣∣Dγ

n (t) − D̃
γ
n (t)

∣∣= o(1). (7.40)

0�t�2sn
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Fig. 1. This is the graph associated with K4 in (8.2). For undefined arrows, those away from 0 and the loops at 4,−4
have weight q4, whereas those into 0 and the loop at 0 have weight p4.

If (7.5) holds true, then by Theorem 7.2, the family P̃
γ
n (t, xn, ·) has a (t

γ
n , b

γ
n )–L2-cutoff. Since

tdn � tcn � sn, (7.40) implies that p
γ
n (t, xn, ·) also has a (t

γ
n , b

γ
n )–L2-cutoff. Conversely, assume

that the family p
γ
n (t, xn, ·) has an L2-cutoff with cutoff time s̄

γ
n . In this case, it is clear that

lim sup
n→∞

s̄
γ
n

sn
� 1, for γ ∈ {c, d}.

By (7.5), this implies that p̃
γ
n (t, xn, ·) also has an L2-cutoff. As a consequence of Theorem 7.2,

we obtain (7.5). This proves Theorem 7.4. �
8. A peak/valley example

Recall that, by Proposition 4.1, a family of ergodic Markov processes has an L2-cutoff if

lim
n→∞Tn,2(μn, ε)λn = ∞. (8.1)

In the normal case, this sufficient condition for an L2-cutoff can be regarded as a special case of
Theorems 5.1 and 5.3 with jn(C) = 1. However, it is possible that an L2-cutoff exists but (8.1)
fails. That is, (8.1) is not a necessary condition. This is illustrated by the examples in this section.

Consider the following birth and death chain. Let n be a positive integer and Kn be the Markov
kernel on Ωn = {−n, . . . ,−1,0,1, . . . , n} defined by

Kn(−i,−j) = Kn(i, j), ∀i � 0, j � 0,

Kn(i, i + 1) = Kn(n,n) = qn, ∀0 < i < n, Kn(0,1) = qn/2,

Kn(i + 1, i) = Kn(0,0) = pn, ∀0 � i < n, (8.2)

where pn + qn = 1. See Fig. 1 for an example of n = 4.
Obviously, Kn has invariant probability

πn(0) = cn, πn(x) = cn

2

(
qn

pn

)|x|
, ∀x �= 0 (8.3)

where

cn =
{

(1 − qn/pn)[1 − (qn/pn)
n+1]−1 if pn �= qn,

1/(n + 1) if pn = qn.

Using the method in [9, Chapter XVI], Kn has eigenvalues βn,0 = 1 and

βn,1 =
{√

pnqn(an + a−1
n ) if pn/qn � n2/(n + 1)2,√ 2 2 (8.4)
2 pnqn cos θn,1 if pn/qn > n /(n + 1)
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and

βn,l =
{

2
√

pnqn cos θn,j if l = 2j − 1 and 2 � j � n,

2
√

pnqn cos jπ
n+1 if l = 2j and 1 � j � n

(8.5)

where, for 1 � j � n, θn,j is a solution to

sinnθ

sin(n + 1)θ
=
√

pn

qn

, θ ∈
(

(j − 1)π

n
,

jπ

n + 1

)
and an solves fn(t) = √

pn/qn with

fn(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tn−t−n

tn+1−t−n−1 if t /∈ {0,±1},
0 if t = 0,

n
n+1 if t = 1,

−n
n+1 if t = −1.

(8.6)

Let ψn,i be a normalized (in L2(πn)) eigenvector for Kn associated with βn,i . Then, ψn,0 = 1 is
the constant function with value 1 and

ψn,1(x) = Cn,1

(
pn

qn

)|x|/2
⎧⎨⎩

ax
n − a−x

n if pn/qn < n2/(n + 1)2,

x if pn/qn = n2/(n + 1)2,

sinxθn,1 if pn/qn > n2/(n + 1)2

and

ψn,2j−1(x) = Cn,2j−1

(
pn

qn

)|x|/2

sinxθn,j , 2 � j � n,

and

ψn,2j (x) = Cn,2j

(
pn

qn

)|x|/2{√
qn sin

j (|x| + 1)π

n + 1
− √

pn sin
j |x|π
n + 1

}
where

C−2
n,1 = cn

⎧⎪⎪⎨⎪⎪⎩
[ a2n+1

n −a−2n−1
n

an−a−1
n

− (2n + 1)] if pn/qn < n2/(n + 1)2,

n(n + 1)(2n + 1)/6 if pn/qn = n2/(n + 1)2,

1
2 [n − sinnθn,1 cos(n+1)θn,1

sin θn,1
] if pn/qn > n2/(n + 1)2

and

C−2
n,2j−1 = cn

[
n − sinnθn,j cos(n + 1)θn,j

]
, C−2

n,2j = cn(n + 1)(1 − βn,2j )
.

2 sin θn,j 2
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Clearly, βn,i � βn,i+1 for all 1 � i < 2n and

max
{|βn,1|, |βn,2n|

}= |βn,1| ∀n.

Remark 8.1. Note that 1,1 and βn,2j−1(x),ψn,2j−1(x) with 1 � j � n and x ∈ {0,1, . . . , n} are
the eigenvalues and eigenfunctions of the transition matrix

∀1 � x < n, K(x, x + 1) = K(n,n) = qn, K(x, x − 1) = pn, K(0,0) = 1,

whereas 1,1 and βn,2j ,ψn,2j (n − x) with 1 � j � n and x ∈ {0,1, . . . , n} are the eigenvalues
and eigenvectors for the transition matrix in (7.1).

With work, the above spectral information leads to the following result.

Theorem 8.1. Let {(Ωn,Kn,πn): n = 1,2, . . .} be the family introduced in (8.2) and let xn be
the initial state of the nth chain. Then, in the continuous and the discrete time cases, if pn � qn,
the family has an L2-cutoff if and only if

|xn|
(

pn

qn

− 1

)
→ ∞. (8.7)

If pn < qn, then the family has an L2-cutoff if and only if

n(qn − pn) → ∞ and |xn|(qn − pn) → 0. (8.8)

Moreover, if there is an L2-cutoff, then the cutoff time is t
γ
n (|xn|) if pn > qn and t

γ
n (n − |xn|) if

pn < qn, where c and d represent for continuous time and discrete time cases and

tcn(x) = x| logpn − logqn|
2(1 − √

pnqn)
, tdn (x) =

⌊
x| logpn − logqn|

− log(4pnqn)

⌋
.

Remark 8.2. A (non-optimal) window size can be obtained by arguments similar to those in
Theorem 7.2. It is not included because it involves additional long computations.

Remark 8.3. As illustrated in (8.5) and (8.15), except perhaps for the second largest one, the
eigenvalues of Kn are distributed in way that is very similar to those of the chains treated in
Theorem 7.2. In the case pn > qn, this is true even for the second largest eigenvalue. When pn <

qn, however, the spectral gap 1 −βn,1 is of much smaller order than for the chain in Theorem 7.2
and βn,1 is separated from the rest of the eigenvalues. In the latter case, it is easy to see from
Theorem 8.1 and (8.15) that if there is an L2-cutoff, then the cutoff time is of order smaller than
the inverse of the spectral gap. This means the optimal window size is not directly related to the
spectral gap but depends on the rest of the eigenvalues.

Remark 8.4. Theorem 8.1 covers two very different cases depending on whether pn >> qn or
pn << qn.

When pn > qn, the stationary distribution has a sharp peak at 0 and this case is not much
different from the one treated in Theorem 7.2. The spectral gap is relatively large in this case
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(bounded away from 0 when pn/qn > 1 stays bounded away from 1). To reach stationarity, the
walk must have a chance to visit the peak. To present a cutoff, the walk must start far enough
from the peak, just as in Theorem 7.2.

When pn < qn, the stationary measure has a unique valley bottom at 0. In this case, to reach
stationarity, the walk must have a chance to cross the bottom. The bottom creates a bottle neck
which implies that the spectral gap 1 − βn,1 is very close to 0 if pn/qn < 1 stays bounded away
from 1. However, the rest of the spectrum (in the continuous time case, say, i.e., 1 − βn,j , j > 1)
is bounded away from 0. In this case, there is no cutoff, except if one starts very close to 0 where
the eigenvector associated with the spectral gap takes very small values. This illustrates one of the
main feature of the central results of this paper: in order to understand the cutoff and the cutoff
time from specified starting points, one may have to drop those eigenvalues (including possibly
the spectral gap) whose eigenvectors take very small values at the specified starting points.

Before proving Theorem 8.1, we make some analysis on 1 − βn,1, where βn,1 is defined
in (8.4). Set pn = 1/2 − δn/n and assume first that |δn| = o(n). In the case pn/qn > n2/(n+ 1)2,
the fact θn,1 ∈ (0,π/(n + 1)) yields

1 − βn,1 = 1 − 2
√

pnqn + 2
√

pnqn(1 − cos θn,1)

�
{

δ2
n/n2 + θ2

n,1 if |δn| = O(1),

δ2
n/n2 if |δn| → ∞.

(8.9)

In the subcase |δn| = O(1), one may use the following identity

sinnθn,1

sin(n + 1)θn,1
=
√

pn

qn

,

to derive

sinnθn,1

(√
qn

pn

− 1

)
= sin(n + 1)θn,1 − sinnθn,1 =

(n+1)θn,1∫
nθn,1

cos t dt. (8.10)

This implies

θn,1 ∈
{

(0,π/(2n + 1) if δn > 0,

(π/(2n + 1),π/(n + 1)) if δn < 0.
(8.11)

Thus, by (8.9), if |δn| = O(1) and δn < 0, then 1 − βn,1 � 1/n2. For the further subcase |δn| =
O(1) and δn > 0, consider the following computations.

δn � sinnθn,1

θn,1

(√
qn

pn

− 1

)
= 1

θn,1

(n+1)θn,1∫
cos t dt = cos θ̃n,
nθn,1
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where θ̃n ∈ (nθn,1, (n + 1)θn,1). Note that the first asymptote uses the fact θn,1 ∈
(0,π/(2n + 1)) whereas the first equality applies (8.10). Hence, if δn → 0 and δn > 0, then
θ̃n → π

2 or equivalently nθn,1 → π/2. As a consequence of (8.9), if |δn| = O(1) and δn > 0, then

1 − βn,1 � δ2
n + n2θ2

n,1

n2
� 1

n2
.

In the case pn/qn = n2/(n + 1)2, it is obvious that δn ∼ 1/2 and 1 − βn,1 = 1 − 2
√

pnqn ∼
2δ2

n/n2 ∼ 1/(2n2). In the case pn/qn < n2/(n + 1)2, let an ∈ (0,1) be such that fn(an) =√
pn/qn, where fn(t) is the function in (8.6). That is,√

pn

qn

= an
n − a−n

n

an+1
n − a−n−1

n

= an − (1 − a2
n)a

2n+1
n

1 − a2n+2
n

.

Then, we have

0 < 1 − an < 1 −
√

pn

qn

∼ 2δn

n
as n → ∞. (8.12)

Write an = 1 − ζn

n
with ζn � 0. If |δn| = O(1), then the last asymptote implies that ζn = O(1)

and

an
n = exp

{
ζn

(
1 + o(1)

)}� 1, 1 − a2n
n = 1 − exp

{
2ζn

(
1 + o(1)

)}� ζn,

and

1 − a2n+2
n = 1 − a2

n + a2
n

(
1 − a2n

n

)� ζn.

Thus, we have

1 − βn,1 =
√

pnqn(1 − a2
n)

2a2n−1
n

(1 − a2n)(1 − a2n+2)
� 1

n2
as n → ∞.

If |δn| → ∞ or equivalently δn → ∞, one can compute

1 − an ∼ 2δn

n
,

(
1

an

√
pn

qn

)n

=
(

1 − (1 − a2
n)a

2n
n

1 − a2n+2
n

)n

∼ 1 as n → ∞, (8.13)

which yields

1 − βn,1 =
√

pnqn(1 − a2
n)

2a2n−1
n

(1 − a2n)(1 − a2n+2)
∼ 8δ2

n

n2

(
pn

qn

)n

. (8.14)

For the case |δn| � n, it is clear that if δn < 0, then 1 − βn,1 � 1 and if δn > 0, then

lim suppn < 1/2.

n→∞
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Note that the function fn in (8.6) converges uniformly to the identity map on [0,1]. Thus, in the
case δn � n, we have

lim sup
n→∞

an < 1.

This implies that the second part of (8.13) holds true and (8.14) becomes

1 − βn,1 �
(

pn

qn

)n+1/2

.

Summarizing from the above discussions, we achieve

1 − βn,1 �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if δn → −∞ and |δn| � n,

δ2
n/n2 if δn → −∞ and |δn| = o(n),

1/n2 if |δn| = O(1),

(δ2
n/n2)(pn/qn)

n if δn → ∞ and |δn| = o(n),

(pn/qn)
n+1/2 if δn � n.

(8.15)

Proof of Theorem 8.1. Recall those notations introduced in (7.7). Write pn = 1/2 − δn/n. In
this setting, (8.7) is equivalent to

|xnδn|
nqn

→ ∞ (8.16)

and (8.8) becomes

δn → ∞ and
|xn|δn

n
→ 0. (8.17)

Due to the symmetry of the transition probabilities about 0, we can assume that xn � 0. In the
case xn = 0, by binding states i and −i together, the origin chain in (8.2) collapses to the chain
in (7.1) with the exchange of pn and qn. Then, the results in Theorem 7.2 and Remark 7.4 yield
the equivalent conditions in (8.16) and (8.17) and the desired cutoff time. We assume in the
following that xn � 1 and prove this theorem by considering all possible cases of δn and xn.

Throughout this proof, we let j
γ
n (C) and τ

γ
n (C) be those defined in (5.2) and (5.3), where c

and d denote respectively continuous time cases and discrete time cases. Let λc
n,j and λd

n,j be the
rearrangements of 1 − βn,j and − log |βn,j | in the way that

λ
γ

n,j � λ
γ

n,j+1, ∀1 � j < 2n, γ ∈ {c, d}.

Similarly, let ψ
γ

n,i be the rearrangement of ψn,i according to λ
γ

n,i . In this setting, one can see that

ψc
n,1 = ψd

n,1 = ψn,1 and

λc
n,j = 1 − βn,j ∀1 � j � 2n, (8.18)

and

λd = − log |βn,j |, λd = − log |βn,2n−j+1| ∀1 � j � n. (8.19)
n,2j−1 n,2j
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Case 1: |δn| = O(1). In this case, it is easy to see that none of (8.16) and (8.17) are satisfied
and we shall prove that there is no L2-cutoff. To achieve this conclusion, one needs to compute
τ

γ
n (C) and j

γ
n (C) and, first of all, the order of ψ2

n,i(x) should be determined. In the assumption
|δn| = O(1), it is clear that

(pn/qn)
x � 1 uniformly for |x| � n,

and then the normalizing constant for the stationary distribution πn satisfies

cn = 1 − qn/pn

1 − (qn/pn)n+1
= 1

1 + qn/pn + · · · + (qn/pn)n
� 1

n
.

In the case pn/qn < n2/(n + 1)2, one may apply (8.12) to get

tx � 1 uniformly for |x| � n + 1, t ∈ [
an, a

−1
n

]
and

a−x
n − ax

n =
a−1
n∫

an

xtx−1 dt � x
(
a−1
n − an

)
uniformly for 1 � |x| � n.

The last asymptote leads to the following estimations,

C−2
n,1 = cn

n∑
x=1

(
a−x
n − ax

n

)2 � n2(a−1
n − an

)2

and

ψ2
n,1(x) � x2

n2
uniformly for 1 � |x| � n.

Such a conclusion is obviously true for the case pn/qn = n2/(n + 1)2. When pn/qn > n2/

(n + 1)2, observe that

1

2

(
n − sinnθ cos(n + 1)θ

sin θ

)
=

n∑
x=1

sin2 xθ, sin2 xθ � 1

θ

xθ∫
(x−1)θ

sin2 t dt

where the second asymptote holds true uniformly for θ ∈ (0,π/(n + 1)), x ∈ {1,2, . . . , n} and
n � 1. Using these observations, we have for θ ∈ (0,π/(n + 1)),

n∑
x=1

sin2 xθ � 1

θ

nθ∫
sin2 t dt � n3θ2.
0
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Hence, C−2
n,1 � n2θ2

n,1 and

ψ2
n,1(x) � x2

n2
uniformly for 1 � |x| � n.

For ψn,2j−1, the fact θn,j ∈ [(j − 1)π/n, jπ/(n + 1)] implies∣∣∣∣ sinnθn,j cos(n + 1)θn,j

sin θn,j

∣∣∣∣� 1

sin θn,j

� 1

sin π
n+1

� n + 1

2
(8.20)

and, hence, C−2
n,2j−1 � 1 uniformly for 1 < j � n and

ψ2
n,2j−1(x) � sin2 xθn,j � 1 uniformly for 1 � |x| � n, 1 < j � n.

To estimate ψn,2j , note that

C−2
n,2j = cn(n + 1)(1 − βn,2j )

2
� 1 − βn,2j uniformly for 1 � j � n.

By setting

sin θ̃n,j =
√

qn sin jπ
n+1√

1 − βn,2j

, cos θ̃n,j =
√

qn cos jπ
n+1 − √

pn√
1 − βn,2j

, (8.21)

the last asymptote yields

ψ2
n,2j (x) � sin2

(
j |x|π
n + 1

+ θ̃n,j

)
� 1 uniformly for 1 � |x| � n, 1 � j � n.

As a consequence of the above discussions, we have

ψ2
n,j (x) � 1 uniformly for 1 � |x| � n, 1 � j � n. (8.22)

Now, it is ready to estimate j
γ
n (C) and τ

γ
n (C). By (8.5), (8.15), (8.18) and (8.19), one can

compute

λ
γ

n,j � j2

n2
uniformly for 1 � j � 2n, γ ∈ {c, d}

and

λ
γ

n,j � j2

n2
uniformly for 1 � j � n, γ ∈ {c, d}.

These two facts and (8.22) then lead to

τ
γ
n (C) � sup

γ

{
log(j + 1)

j2/n2

}
� n2 ∀C > 0, γ ∈ {c, d}
j�jn (C)
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regardless of the initial states (xn)
∞
n=1. For j

γ
n (C), we may choose, by Remark 7.4, Remark 8.1

and Step 1 in the proof of Theorem 7.2, two constants C0 and N such that

N∑
j=1

∣∣ψγ

n,2j (x)
∣∣2 � C0 ∀0 � x � n, n � 1, γ ∈ {c, d}.

This implies for γ ∈ {c, d}, j
γ
n (C0) � 1 and

τ
γ
n (C0) � 1

λ
γ

n,j
γ
n (C0)

� n2, λ
γ

n,j
γ
n (C0)

τ
γ
n (C0) � 1.

Hence, by Theorems 5.1 and 5.3, both families in discrete time and continuous time cases have
no L2-cutoffs.

Case 2: δn → −∞ and |δn| = o(n). In this case, we will prove that the L2-cutoff exists if
and only if |δn|xn/n → ∞. By (8.5) and the conclusion in (8.15), it is easy to see that

λ
γ

n,j � δ2
n + j2

n2
uniformly for 1 � j � 2n, γ ∈ {c, d}

and

λ
γ

n,j � δ2
n + j2

n2
uniformly for 1 � j � n, γ ∈ {c, d}.

To estimate the order of |ψγ

n,j (xn)|2, we have to determine the constants Cn,2j−1. First, the
normalizing constant cn in (8.3) satisfies

cn = 1 − qn/pn

1 − (qn/pn)n+1
∼ 2|δn|

n
.

For Cn,1, note that the fact δn < 0 implies θn,1 ∈ [π/(2n + 1),π/(n + 1)] and

sin2 xθn,1 � x2

n2
uniformly for 1 � x � n/2.

This yields

n �
n∑

x=0

sin2 xθn,1 � n, C−2
n,1 = cn

2

n∑
x=1

sin2 xθn,1 � ncn � |δn|.

For Cn,2j−1, observe that the conclusion developed in (8.20) is also valid here. Thus, we have

C−2
n,2j−1 � ncn � |δn| uniformly for 1 < j � n.

Consequently, the above discussion gives

∣∣ψn,2j−1(x)
∣∣2 �

(
pn

)|x| sin2 xθn,j
uniformly for 1 � j, |x| � n. (8.23)
qn |δn|
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Consider two subcases, |δn|xn = O(n) and |δn|xn/n → ∞. In the former situation, it is easy
to check that ∣∣ψn,2j−1(xn)

∣∣2 � 1

|δn| uniformly for 1 � j � n.

This implies

sup
1�j�n

{ log
(
1 +∑j

i=1 |ψc
n,2i−1(xn)|2

)
λc

n,2j−1

}
� n2

δ2
n

sup
1�j�n

{
log(1 + j/|δn|)

1 + j2/δ2
n

}
� n2

δ2
n

(8.24)

and similarly,

sup
1�j�n

{ log
(
1 +∑j

i=1(|ψd
n,4i−3(xn)|2 + |ψd

n,4i (xn)|2)
)

λd
n,4j−3

}
� n2

δ2
n

. (8.25)

Recall the conclusions of Step 3 and Step 4 in the proof of Theorem 7.2: There exist M and C1
such that

M|δn|∑
i=1

∣∣ψn,2i (xn)
∣∣2 � C1

and

sup
M|δn|�j�n

{ log
(
1 +∑j

i=1 |ψc
n,2i (xn)|2

)
λc

n,2j

}
� n2

δ2
n

(8.26)

and

sup
M|δn|�j�n

{ log
(
1 +∑j

i=1 |ψd
n,4i−2(xn)|2 + |ψd

2,4i−1(xn)|2
)

λd
n,4j−2

}
� n2

δ2
n

. (8.27)

The first inequality implies j
γ
n (C1) � |δn| and

∀γ ∈ {c, d}, τ
γ
n (C1) � 1

λ
γ

n,jn(C1)

� n2

δ2
n

.

Using the fact log(1 + a + b) < log(1 + a) + log(1 + b) for a, b > 0, one may conclude from
(8.24)–(8.27) that τ

γ
n (C1) � n2/δ2

n for γ ∈ {c, d}, which yields τ
γ
n (C1) � n2/δ2

n for γ ∈ {c, d}.
Consequently, τ

γ
n (C1)λ

γ

n,j
γ
n (C1)

� 1 and, by Theorems 5.1 and 5.3, both families in discrete time

and continuous time cases have no L2-cutoff.
For the subcase |δn|xn/n → ∞, let D

γ

n,2(xn, t) be the L2-distance for the nth Markov chain.
Then, for γ ∈ {c, d}, (

D
γ

(xn, t)
)2 = L

γ
(t) + L

γ
(t) (8.28)
n,2 n,1 n,2
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where

Lc
n,1(t) =

n∑
j=1

∣∣ψn,2j−1(xn)
∣∣2e−2t (1−βn,2j−1), Ld

n,1(t) =
n∑

j=1

∣∣ψn,2j−1(xn)
∣∣2|βn,2j−1|2t

and

Lc
n,2(t) =

n∑
j=1

∣∣ψn,2j (xn)
∣∣2e−2t (1−βn,2j ), Ld

n,2(t) =
n∑

j=1

∣∣ψn,2j (xn)
∣∣2|βn,2j |2t .

Note that L
γ

n,2(t) is exactly the square of the L2-distance for the chain in (7.1) starting from xn.
In the assumption of |δn|xn/n → ∞, Theorem 7.2 implies that, for γ ∈ {c, d}, the family
{Lγ

n,2(t): n = 1,2, . . .} presents an L2-cutoff with cutoff time nxn/|δn|. Using this fact, it re-

mains to show that {Lγ

n,1(t): n = 1,2, . . .} also possesses an L2-cutoff with the same cutoff time.
In detail, write

λ̃c
n,j = 1 − βn,2j−1 ∀1 � j � n

and

λ̃d
n,2j−1 = − log |βn,2j−1|, λ̃d

n,2j = − log |βn,2n−2j+1| ∀1 � j � n/2,

and let ψ̃
γ

n,j be the rearrangement of ψn,2j−1 associated with λ̃
γ

n,j . In this setting, it is clear that

λ̃
γ

n,j � λ̃
γ

n,j+1 for 1 � j < n and γ ∈ {c, d} and

L
γ

n,1(t) =
n∑

j=1

∣∣ψ̃γ

n,j

∣∣2 exp
{−2t λ̃

γ

n,j

}
.

Let j̃
γ
n (C) and τ̃

γ
n (C) be those in (5.2) and (5.3) associated with λ̃

γ

n,j and ψ̃
γ

n,j . Then, by (8.11)
and (8.23), we have

j∑
i=1

∣∣ψ̃γ

n,i(xn)
∣∣2 �

(
pn

qn

)xn j3x2
n

|δn|n2
uniformly for 1 � j �

⌈
n

2xn

⌉
.

Using this, one can compute

log

(
1 +

�n/2xn	∑
i=1

∣∣ψ̃γ

n,i(xn)
∣∣2)� 4xn|δn|

n

(
1 + o(1)

)→ ∞ as n → ∞,

which gives j̃
γ
n (C) � n/xn for n large enough and

τ̃
γ
n (C) � 4xn|δn|/n(1 + o(1))

2̃λ
γ ∼ 4xn|δn|/n

2̃λ
γ ∼ nxn

|δn| ∀C > 0. (8.29)

n,�n/xn	 n,1
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Hence, τ̃
γ
n (C)̃λ

γ

n,j̃
γ
n (C)

� xn|δn|
n

→ ∞ and

lim
n→∞

j̃
γ
n (C)−1∑
j=1

∣∣ψ̃γ

n,j (xn)
∣∣2e−2τ̃

γ
n (C)̃λ

γ
n,j � lim

n→∞Ce
−2τ̃

γ
n (C)̃λ

γ

n,1 = 0.

By Theorems 5.1 and 5.3, both families have an L2-cutoff.
To see nxn/|δn| is a cutoff time, we need the following facts. For some universal constant

N > 0,

λ̃
γ

n,j � λ̃
γ

n,1

(
1 + j2 − 1

Nδ2
n

)
∀1 � j � n, n � 1, γ ∈ {c, d},

and ∣∣ψ̃γ

n,j (xn)
∣∣2 �

(
pn

qn

)xn 1

|δn| uniformly for 1 � j � n.

The former comes immediate from the definition of λ
γ

n,2j−1 whereas the latter is a simple corol-
lary of (8.23). Using these two inequalities, one can prove that

log
(
1 +∑j

i=1 |ψ̃γ

n,i(xn)|2
)

2̃λ
γ

n,i

� xn|δn|/n + [log(j + 1)/|δn|]
λ̃

γ

n,1(j
2 − 1)/δ2

n

= o

(
nxn

|δn|
)

uniformly for δ2
nxn/n � j � n.

and

log
(
1 +∑j

i=1 |ψ̃γ

n,i(xn)|2
)

2̃λ
γ

n,i

� xn log(pn/qn) + log(xn|δn|/n) + O(1)

2̃λ
γ

n,1

∼ nxn

|δn| uniformly for 1 � j � xnδ
2
n/n.

As a consequence of the above computations and (8.29), the L2-cutoff time for both families is
nxn/|δn|.
Case 3: δn → ∞ and δn = o(n). In this case, one can use (8.13) to get

a−2n−1
n − a2n+1

n

n(a−1
n − an)

∼ exp{4δn(1 + o(1))}
4δn

→ ∞.

This implies Cn,1 ∼ 1 and

∣∣ψn,1(xn)
∣∣2 ∼

(
pn

qn

)xn(
a−xn
n − axn

n

)2

∼ (
1 − a2x

n

)2
{� 1 if xnδn/n � 1,

(8.30)
= o(1) if xnδn/n = o(1).
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We discuss the L2-cutoff by considering these two subcase. In the assumption xnδn/n � 1, one
may choose C2 such that

j
γ
n (C2) = 1,

which implies τ
γ
n (C2) � 1/λ

γ

n,1. To find τ
γ
n (C2), note that (8.20) implies

C−2
2j−1 � ncn � δn

(
pn

qn

)n

.

Thus, we have

∣∣ψn,2j−1(xn)
∣∣2 � 1

δn

(
qn

pn

)n

uniformly for 1 � j � n. (8.31)

Observe that C−2
n,2j ∼ 2δn(1 − βn,2j )(pn/qn)

n uniformly for 1 � j � n. Using the notations in-
troduced at (8.21), one can derive

∣∣ψn,2j (xn)
∣∣2 � 1

δn

(
qn

pn

)n

uniformly for 1 � j � n. (8.32)

By the fact

λ
γ

n,j � δ2
n + j2

n2
uniformly for 1 < j � 2n,

(8.31) and (8.32) yield

τ
γ
n (C2) � max

{
1

λ
γ

n,1

,
n2

δ2
n

sup
2�j�2n

n log(qn/pn) + log(j/δn)

1 + j2/δ2
n

}

� max

{
1

λ
γ

n,1

,
n2

δn

}
� 1

λ
γ

n,1

,

where the last asymptotic is a result of (8.15). Consequently, τ
γ
n (C2)λ

γ

n,1 � 1 for γ ∈ {c, d} and,

by Theorems 5.1 and 5.3, there is no L2-cutoff in either case.
In the case xnδn/n = o(1), recall (8.28). By Theorem 7.2, the family {Lγ

n,2: n = 1,2, . . .} has

an L2-cutoff with cutoff time

(n − xn) log(qn/pn)

2λ
γ

n,2

∼ n2

δn

∀γ ∈ {c, d}.

For L
γ

n,1(t), let λ̃
γ

n,j and ψ̃
γ

n,j be those defined in Case 3. Note that one may choose a universal

constant Ñ > 0 such that

λ̃
γ

n,j � 2δ2
n

2

(
1 + Ñj2

2

)
∀2 � j � n, γ ∈ {c, d}.
n δn
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As before, (8.20) implies

∣∣ψ̃n,j (xn)
∣∣2 � 1

δn

(
qn

pn

)n

= e4δn(1+o(1))

δn

uniformly for 1 < j � n.

By setting tn = n2/δn, we may compute using (8.30) that, for any ε > 0 and γ ∈ {c, d},

L
γ

n,1

(
(1 + ε)tn

)=
n∑

j=2

∣∣ψ̃γ

n,j (xn)
∣∣2 exp

{
−2(1 + ε)tñλ

γ

n,j

}
+ o(1)

� 1

δn

∞∑
j=2

exp

{−4Ñj2

δn

}
+ o(1)

� 1√
δn

(
1 + 1√

δn

∞∑
j�√

δn

exp

{−4Ñj√
δn

})
+ o(1)

� 1√
δn

(
1 +

∞∫
0

e−4Ñz dz

)
+ o(1) = o(1).

Consequently, for ε ∈ (0,1) and γ ∈ {c, d},

lim
n→∞D

γ

n,2

(
xn, (1 + ε)n2/δn

)
= lim

n→∞L
γ

n,1

(
(1 + ε)n2/δn

)+ lim
n→∞L

γ

n,2

(
(1 + ε)n2/δn

)= 0

and

lim
n→∞D

γ

n,2

(
xn, (1 − ε)n2/δn

)
� lim

n→∞L
γ

n,2

(
(1 − ε)n2/δn

)= ∞.

This means that both families have an L2-cutoff with cutoff time n2/δn as desired.
Case 4: |δn| � n. We first deal with the case δn > 0. Recall that(

qn/pn

a2
n

)n

∼ 1.

Using this fact, it is easy to check

∣∣ψn,1(xn)
∣∣2 � (

1 − a2xn
n

)2 � 1,

where the last asymptote uses the assumption xn � 1. Thus, by (8.15), we have λ
γ

n,1 �
(pn/qn)

n+1/2 and
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2n∑
j=2

∣∣ψγ

n,j (xn)
∣∣2 exp

{−2
(
λ

γ

n,1

)−1
λ

γ

n,j

}
� 1

πn(xn)
exp

{−2λ
γ

n,2/λ
γ

n,1

}
� exp

{
n log(qn/pn) − C(qn/pn)

n+1/2 + O(1)
}= o(1)

where C is a universal positive constant. This yields

D
γ

n,2

(
xn, ε/λ

γ

n,1

)� e−ε ∀ε > 0

which means that both families have no L2-cutoff.
In the case δn < 0, (8.7) becomes xn/qn → ∞. First, assume that xn/qn = O(1) or equiv-

alently xn = O(1) and 1/qn = O(1). For continuous time cases, since 1/πn(xn) is bounded,
Corollary 5.2 implies that no L2-cutoff exists. For discrete time cases, using the notation
in (8.28), one can show without difficulty that

∀t > 0, lim inf
n→∞ Dd

n,2(xn, t) � lim inf
n→∞ Ld

n,2(t) > 0.

Hence, by Corollary 3.3, these is no L2-cutoff.
To see the sufficiency of xn/qn → ∞, set

sc
n = xn(logpn − logqn)

2(1 − 2
√

pnqn)
, sd

n =
⌊

xn(logpn − logqn)

− log(4pnqn)

⌋
.

By Theorem 7.2, the family {Lγ

n,2: n = 1,2, . . .} has an L2-cutoff with cutoff time s
γ
n . This

implies for ε ∈ (0,1) and γ ∈ {c, d},

lim inf
n→∞ D

γ

n,2

(
xn, (1 − ε)s

γ
n

)
� L

γ

n,2

(
(1 − ε)s

γ
n

)= ∞.

To get an upper bound on the L2-distance, note that

λc
n,1 ∼ 1 − 2

√
pnqn, λd

n,1 ∼ − log(4pnqn).

This implies, for ε > 0,

D
γ

n,2

(
xn, (1 + ε)s

γ
n

)2 � 1

πn(xn)
exp

{−2(1 + ε)s
γ
n λ

γ

n,1

}
= exp

{
xn(logpn − logqn) − 2(1 + ε)s

γ
n λ

γ

n,1 + O(1)
}
.

Hence, in the assumption xn/qn → ∞, we have

sd
n ∼ xn(logpn − logqn)

− log(4pnqn)
, xn(logpn − logqn) → ∞,

and, for γ ∈ {c, d} and ε > 0,

D
γ

n,2

(
xn, (1 + ε)s

γ
n

)2 � exp
{−2ε

(
1 + o(1)

)
xn(logpn − logqn)

}= o(1). �
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Appendix A. Techniques and proofs

Proof of Lemma 3.2. There is no loss of generality in assuming that tn = 1 for all n since one
may always consider the following sequence of functions.

gn(t) = fn(ttn) =
∫

(0,∞)

e−tλ dV ′
n(λ)

where V ′
n(λ) = Vn(λ/tn). By letting Vn(0) = lim

λ↓0
Vn(λ) and

∀s ∈ (0,1), hn(s) = sup
{
e−λ: Vn(λ) − Vn(0) > sfn(0)

}
,

we may express fn as follows.

fn(t) = fn(0)

∫
(0,1)

ht
n(s) ds, ∀t > 0. (A.1)

It is clear that hn is a non-increasing non-negative function bounded from above by 1. Using
the sequential compactness of monotonic functions, we may choose a subsequence nk such that
hnk

converges almost surely to a non-increasing function h and fnk
(0) converges to C � 0.

Consequently, one can show without difficulty that

lim
k→∞fnk

(a) = C

∫
(0,1)

ha(s) ds, ∀a > 0.

Using a similar argument as before, one may show that the right-hand side above is in fact
a Laplace transform and then, by Lemma 3.1, is analytic on (0,∞).

It remains to prove that such a convergence is uniform on any compact subset of (0,∞). Note
that

∣∣xb − yb
∣∣� b

a

∣∣xa − ya
∣∣, ∀x, y ∈ (0,1), b > a > 0.

Using this fact, one can show that

sup
b∈[2a,3a]

∣∣fnk
(b) − fnl

(b)
∣∣� ∣∣fnk

(0) − fnl
(0)

∣∣+ fnk
(0) sup

b∈[2a,3a]

∫
(0,1)

∣∣hb
nk

(s) − hb
nl

(s)
∣∣ds

�
∣∣fnk

(0) − fnl
(0)

∣∣+ 3fnk
(0)

∫ ∣∣ha
nk

(s) − ha
nl

(s)
∣∣ds
(0,1)
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which converges to 0 as k, l tends to infinity. This proves that fnk
converges uniformly on [2a,3a]

for all a > 0 as desired. The last part of this lemma is easy to show using the locally uniform
convergence of fnk

and the continuity of the limiting function. �
Proof of Corollary 3.3. By scaling the time t up to a constant, one only needs to prove the
continuity of F1,F2 at t = 1. We give the proof for F1 but omit the similar proof for F2. By
Lemma 3.2, we may choose a subsequence fnk

such that

lim
k→∞fnk

(atnk
) = f (a) ∀a > 0

and f (1) = F1(1), where f is continuous on (0,∞). Clearly, F1 and f are non-increasing and
satisfy f � F1. This implies

F1(1) = f (1) = lim
a↓1

f (a) � lim inf
a↓1

F1(a) � lim sup
a↓1

F1(a) � F1(1)

which proves the right-continuity of F1 at 1.
Concerning the left-continuity, set

L = lim
a↑1

F1(a).

Let m0 = 1. For k � 1, we may choose xk ∈ (1 − 2−k,1) and mk � mk−1 such that fmk
(xktmk

) ∈
(L − 1/k,L + 1/k). Referring to the subsequence sequence mk , we may choose by Lemma 3.2
a further subsequence m′

k such that the function a 
→ fm′
k
(atm′

k
) converges uniformly to a con-

tinuous function g on any compact subset of (0,∞). This implies

L = lim
k→∞fm′

k
(xktm′

k
) = lim

k→∞g(xk) = g(1).

Again, since F1 is non-increasing and g � F1, we get

F1(1) � L = g(1) � F1(1),

that is, F1 is left-continuous.
For the second part of this corollary, assume that F1(c) > 0 for some c > 0. As before, we

may choose, by Lemma 3.2, a subsequence nk such that fnk
converges to an analytic function f

and f (c) = F1(c) > 0. Clearly, F1 � f and then, by the analyticity of f on (0,∞), F1 > 0. �
Proof of Corollary 3.4. Set gn(s) = fn(tn + s). It is clear that

gn(s) = fn(tn)

∫
(0,∞)

e−sλ dṼn(λ) for s > 0,

where Ṽ is a probability distribution defined by

Ṽn(γ ) =
∫
(0,γ ] e

−tnλ dVn(λ)∫
e−tnλ dV (λ)

∀γ > 0.

(0,∞) n
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Part (i) is then obtained by applying Corollary 3.3 to gn and bn. In the first case of (ii), assume
the inverse that F(c0) < ∞ for some c0 < 0. For n � 1, let g̃n(s) = fn(tn + c0bn + s). Since F
has a (tn, bn)-cutoff, hn is well-defined on [0,∞) for n large enough. For c > 0, let

G(c) = lim inf
n→∞ g̃n(cbn).

Obviously,

G(c) = F(c + c0), G(−c0) = F(0) > 0, H(0) � F(c0) < ∞.

As a consequence of Corollary 3.3, the analyticity of H implies that G > 0 on (0,∞) or equiv-
alently F > 0 on (c0,∞). This contradicts the assumption that F(c) = 0 for some c > 0. Thus,
F = ∞ on (−∞,0). In the second case of (ii), we prove as before by contradiction. Assume the
inverse that F(c1) < ∞ for some c1 < 0. This is equivalent to the existence of a subsequence nk

such that fnk
(c1) is bounded. By considering the subsequence fnk

, a similar proof as that of the
first case will derive a confliction. Hence, F = ∞ on (−∞,0).

For (iii), let tn = T (fn, δ) with δ > 0 and set

Fε(c) = F(c + ε), F ε(c) = F(c + ε), ∀ε ∈ R.

According to the definition of the δ-mixing time, it can be easily shown that

Fε(0) = F(ε) � δ < ∞, ∀ε > 0,

and

Fε(0) = F(ε) � δ > 0, ∀ε < 0.

By [5, Corollary 2.4], the family F also presents a (tn + εbn, bn)-cutoff for all ε ∈ R. Using the
former inequality in the above, we may conclude from (i) that, for ε > 0, either Fε > 0 or Fε ≡ 0
on (0,∞). This is equivalent to say that either F > 0 or F ≡ 0 on (0,∞). The proof for (ii) in
this case is similar to that of (i) using the latter inequality. �
Proof of Theorem 3.5. Part (i) is an immediate result of Corollary 3.3. For (ii), we assume that
there is a cutoff for F = {fn: n = 1,2, . . .}. By [5, Corollary 2.5(i)], the cutoff time sequence
can be chosen to be tn = T (fn, δ) for any δ > 0. Let C be any positive number and λn = λn(C)

be the constant defined in (3.2). Note that, for n � 1,

fn(2tn) �
∫

(0,2λn]
e−2λtn dVn(λ) � max

{
Ce−4λntn ,

∫
(0,λn)

e−2λtn dVn(λ)

}
.

Then, the existence of the cutoff for F implies that fn(2tn) → 0 as n → ∞. This proves (a) and
(b) with arbitrary C > 0, δ > 0 and ε = 2. In fact, (c) is true for all ε > 0. To see this, let V ′

n be
a function defined by

V ′
n(λ) =

{
Vn(λ) if λ ∈ (0, λn),
limt↑λn Vn(t) if λ ∈ [λn,∞)
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and set

gn(t) =
∫

(0,∞)

e−λt dV ′
n(λ) =

∫
(0,λn)

e−λt dVn(λ).

Clearly, gn(0) = Vn((0, λn)) � C for all n � 1 and

lim sup
n→∞

gn(2tn) = 0.

By Corollary 3.3, we obtain

lim sup
n→∞

gn(εtn) = 0 ∀ε > 0.

For the other direction, assume that C,δ, ε are positive constants such that (a) and (b) hold
and let

tn = T (fn, δ), bn = 1/λn = 1/λn(C).

In this setting, one can show that for c > 0 and n � N = N(c),

fn(tn + cbn) �
∫

(0,λn)

e−λtn/2 dVn(λ) + δe−c/2

and

fn(tn − cbn) � ec/2
(

δ −
∫

(0,λn)

e−λtn/2 dVn(λ)

)
.

By Corollary 3.3, (b) implies
∫
(0,λn)

e−λtn/2 dVn(λ) → 0 as n → ∞. Consequently, F has
a (tn, bn)-cutoff as desired. �
Proof of Theorem 3.6. Part (i) is immediate from Remark 3.2. For (ii), let T d(fn, δ) and
T c(fn, δ) be respectively the mixing time for fn with domain N and [0,∞). By Defini-
tion 2.3, |T d(fn, δ) − T c(fn, δ)| � 1 and using the assumption T d(fn, δ) → ∞, we know
that T d(fn, δ) ∼ T c(fn, δ) for all δ > 0. This implies that Theorem 3.5 (a)–(b) hold for
T c(fn, δ), λn(C) if and only if they are true for T d(fn, δ), λn(C). Also [5, Propositions 2.3–2.4],
{fn : [0,∞) → [0,∞] | n = 1,2, . . .} has a cutoff if and only if {fn : N → [0,∞] | n = 1,2, . . .}
has a cutoff. Consequently, Theorem 3.6 is then a corollary of Theorem 3.5.

To see a cutoff window, note that, by Theorem 3.5, {fn : [0,∞) → [0,∞] | n = 1,2, . . .}
has a (T c(fn, δ), λ

−1
n )-cutoff. Recall the fact |T d(fn, δ) − T c(fn, δ)| � 1. Then, by [5, Proposi-

tions 2.3–2.4], {fn : N → [0,∞] | n = 1,2, . . .} has a (T d(fn, δ), γ
−1
n )-cutoff. �

Proof of Proposition 3.7. We only consider the case where the domain of fn is [0,∞). To see
why the assumption bn → ∞ arises in the case of discrete domain, confer [5, Remark 2.9].

Since F has a cutoff, Theorem 3.5 implies that M = lim supn fn(0) = ∞. Let F,F be func-
tions in (2.1). Part (ii) is an immediate result of Corollary 3.4. For (i), we first assume that
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F(c) > 0 for some c > 0. From the definition of mixing time and the monotonicity of fn, it is
clear that F(c/2) � δ. Then, by [5, Proposition 2.2], the (tn, bn)-cutoff is optimal. Since an opti-
mal cutoff must be a weakly optimal cutoff, it remains to show that if there is a weakly optimal
cutoff, then F(c) > 0 for some c > 0, which is equivalent to F(c) > 0 for all c > 0 using Corol-
lary 3.4. Assume the inverse that F(c0) = 0 for some c0 > 0 and let nk be a subsequence such
that fnk

(tnk
+ c0bnk

) → 0 as k → ∞. Consider the subfamily G = {fnk
: k � 1} and let

G(c) = lim inf
k→∞ fnk

(tnk
+ cbnk

), G(c) = lim sup
k→∞

fnk
(tnk

+ cbnk
).

Obviously, G(c0) = G(c0) = 0 and, by Corollary 3.4, this implies

G(c) = G(c) = 0 ∀c > 0, G(c) = G(c) = ∞ ∀c < 0.

Then, by [5, Proposition 2.2], the (tnk
, bnk

)-cutoff for G can not be weakly optimal and this
contradicts Proposition 2.1. �
Proof of Theorem 3.8. We first assume that (a) and (b) hold for some positive constants C,ε.
Note that (a) restricts us to case (ii) of Theorem 3.5 because one may choose a sequence λ′

n > λn

such that

log(1 + Vn((0, λ′
n]))

λ′
n

� τn/2.

This implies

τnλn � τnλ
′
n � 2 log

(
1 + Vn

((
0, λ′

n

]))
� 2 log

(
1 + Vn(0,∞)

)→ ∞,

as n → ∞. By Corollary 3.3, (b) is true for all ε > 0. Note that, for n � 1, we may choose a
non-decreasing sequence (λn,k)

∞
k=1 such that

λn,k � λn ∀k � 1, rn,k = log(1 + Vn((0, λn,k]))
λn,k

→ τn as k → ∞.

In this setting, it is easy to see that, for k � 1,

fn(rn,k) �
∫

(0,λn,k]
e−λrn,k dVn(λ) � e−λn,krn,kVn

(
(0, λn,k]

)

= Vn((0, λn,k])
1 + Vn((0, λn,k]) � Vn((0, λn])

1 + Vn((0, λn]) � C

1 + C
.

By letting C = C/(1 + C), we obtain from the above computations that τn � T (fn,C). Conse-
quently,

lim T (fn,C)λn � lim τnλn = ∞

n→∞ n→∞
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and ∫
(0,λn)

e−λT (fn,C) dVn(λ) �
∫

(0,λn)

e−λτn dVn(λ) = 0.

By Theorem 3.5, F presents a cutoff.
For the inverse direction, assume the existence of the cutoff for F . By Theorem 3.5 and

Remark 3.4, the following are true for any positive constants C,δ, ε.

λnT (fn, δ) → ∞,

∫
(0,λn)

e−ελT (fn,δ) dVn(λ) → 0,

where λn = λn(C) is the constant defined in (3.2). Using these facts, it remains to show that, for
some δ > 0, T (fn, δ) = O(τn). Let C > 0 and τn = τn(C) be the quantity defined in (3.3). For
η > 0 and n � 1, we let An,j = [λn(1 + η)j , λn(1 + η)j+1) for j � 0. Consider the following
computations.

fn(t) =
∫

(0,∞)

e−λt dVn(λ) � C +
∑
j�0

∫
An,j

e−λt dVn(λ)

� C +
∑
j�0

e−λn(1+η)j tVn

((
0, λn(1 + η)j+1))

� C +
∑
j�0

exp
{−λn(1 + η)j+1(t/(1 + η) − τn

)}
.

By letting t = (1 + η)2τn, we have

fn

(
(1 + η)2τn

)
� C + exp{−ητnλn}

1 − exp{−η2τnλn} . (A.2)

Let v : (0,∞) → (0,∞) be any function satisfying

sup
{
v(t)/t : t � log(1 + C)

}
< ∞, inf

t>0
ev(t)

(
1 − e−v2(t)/t

)= L > 0.

If one puts η = v(τnλn)/(τnλn) in (A.2), then there exists some positive constant N such that

∀n � N, fn(τn + dn) � C̃,

where

C̃ = C + 2/L, dn = 2bn(1 + bn/τn), bn = λ−1
n v(τnλn).

Thus, T (fn, C̃) � τn +dn for n � N . To derive the desired identity T (fn, C̃) = O(τn), it suffices
to show that bn = O(τn), which can be easily computed out using the fact τnλn � log(1+C) > 0.
For a realization of v, one may choose v(t) = t1/2.
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To see a cutoff sequence, assume that F has a cutoff or, equivalently, Theorem 3.8 (a)–(b)
hold. In this case, one may go through all arguments in the above to choose positive constants
C, C̃ such that

T (fn, C̃) − dn � τn � T (fn,C) for n large enough, (A.3)

where dn = 2bn(1 + bn/τn), bn = λ−1
n w(τnλn) and w : (0,∞) → (0,∞) is a function satisfying

lim sup
t→∞

w(t)

t
< ∞, lim inf

t→∞ ew(t)
(
1 − e−w2(t)/t

)
> 0. (A.4)

Thus, τn is a cutoff sequence for F if and only if there exists a function w satisfying (A.4) such
that dn = o(τn). This is equivalent to bn = o(τn) or w(t) = o(t) as t → ∞. As one can see that
w(t) = t1/2 is qualified for (3.4), τn is a cutoff sequence.

To get a window sequence corresponding to τn, assume that w is a function satisfying (3.4).
By Theorem 3.5, F has a (T (fn, δ), λ

−1
n )-cutoff for any δ > 0 and, by [5, Proposition 2.3], there

exists C1 > 0 such that

T (fn,C) � T (fn, C̃) + C1λ
−1
n for n large enough.

Putting this inequality and (A.3) together gives∣∣τn − T (fn, C̃)
∣∣= O

(
bn + λ−1

n

)= O
(
λ−1

n

(
w(τnλn) + 1

))
.

Note that the second condition of (3.4) implies that w(t) → ∞ as t → ∞. This implies
|τn − T (fn, C̃)| = O(bn) and then, by [5, Corollary 2.5(v)], F has a (τn, bn)-cutoff. �
Proof of Theorem 3.9. Let Fc and Fd be families in Theorems 3.8 and 3.9 and, for δ > 0, let
T c(fn, δ) and T d(fn, δ) be respectively their mixing time sequences. In this setting, it is clear
that

T c(fn, δ) � T d(fn, δ) � T c(fn, δ) + 1. (A.5)

Recall in the proof of Theorem 3.8 that

τn(C) � T c
(
fn,C/(C + 1)

) ∀C > 0, n � 1.

This implies

τn(C) → ∞ ⇒ T d
(
fn,C/(C + 1)

)→ ∞.

Thus, in Theorem 3.9, we always have T d(fn, δ) → ∞ for some δ > 0. Consequently, by
[5, Propositions 2.3–2.4], the above fact and (A.5) imply

Fc has a cutoff ⇔ Fd has a cutoff

and, for bn such that infn bn > 0,

Fc has a (tn, bn)-cutoff ⇔ Fd has a (tn, bn)-cutoff.

Hence, Theorem 3.9 is an immediate result of Theorem 3.8. �
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