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1 study strategic interaction among players who live on a lattice. Each player
interacts directly with only a finite set of neighbors, but any two players indirectly
interact through a finite chain of direct interactions. | examine various stochastic
strategy revision processes, including (myopic) best response and stochastic
choice. I discuss both stationary distributions and the limit behavior of these
Markov processes. Stationary distributions are partially characterized, and the
asymptotic behavior of stochastic choice for those processes whose choice rule
is nearly best-response is related to equilibrium selection in symmetric 2 x 2 and
n X n coordination games. Journal of Economic Literature Classification Number:
C78. © 1993 Academic Press. Inc.

Whoever is united to us by any connexion is always sure of
a share of our love, proportion’d to the connexion, without
enquiring into his other qualities.
David Hume, A Treatise of Human Nature,
Book 11, Chap. 2, Pt. 4

1. INTRODUCTION

To most economists, the chief virtue of the market is its ability to
decentralize the optimal resource allocation problem. As conceived in
modern economic theory, decentralization has come to mean the “paral-
lelization™ of the planning problem. Decisions about consumption and
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production are simultaneously made by small decisionmakers, whose deci-
sions are coordinated by the price system. In the mechanism design litera-
ture, the market is praised for the parsimony of communication that is
required to achieve this parallelization of the planning problem. The
dimension of the message space is small.

Decentralization connotes more than the efficient parallelization of a
complex computation. While the beauty of the Arrow-Debreu analytical
framework is its freedom from particular descriptions of market institu-
tions, it is not given that any set of market institutions will lead to competi-
tive outcomes. Our informal description of the market mechanisminvolves
a Walrasian auctioneer, or centralized price-setting institution. Although
some markets, such as currency futures markets, are organized in this
fashion, others, like the markets for many retail goods and services, are
not. Competition in these markets is not centralized; each firm, providing
services to a neighborhood clientele, may have only a few direct competi-
tors. Nonetheless monopoly power is limited, in this case by extended
chains of local competition. This description of economic interaction is a
key feature of many economic phenomena, including community competi-
tion with local public goods and monopolistic competition. In the first
instance, proximity is geographic. People in the same community interact
in choosing the level of local public good consumption. In the second
instance, proximity has to do with nearness of product. A firm interacts
most directly with those firms that produce close substitutes. In each of
these economic models, one studies how local behaviors propagate
through the system to determine its global behavior.

The phenomenon of decentralization through local competition is even
more prevalent when we turn to social choices that are not resolved by
markets. The emerging literature on the evolution of conventions and
norms is concerned with just this problem. A trivial example is the problem
of determining which side of the road we drive on. Here an interaction
occurs when two drivers approach each other on the road, travelling in
different directions. Each driver will interact with only a small fraction
of the set of all drivers and will interact most often with those who live
or work nearest him. Nonetheless a convention is established.

Local interaction is a sufficiently widespread phenomenon that the small
amount of attention such models have received is surprising. The earliest
explicit treatment of which I am aware is due to Schelling (1971), who is
concerned with processes leading to segregation in residential neighbor-
hoods. An interesting part of Schelling’s paper is his comparisons of
models of “neighborhood tipping” where the interaction is very local with
models where the interactions are more global.! The effects of locality have

! Schelling’s well-known paper (1973) analyzes similar models with global interac-
tions—where individuals care only about the behavior of population aggregates rather than
the behavior of a few neighbors.
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been studied most recently again by Ellison (1992). Whereas Schelling was
more interested in how the size of neighborhoods affects the limit pattern
of choices, Ellison is concerned with the speed of convergence.

In this paper I present some dynamic models of strategic interaction
in a population of players where direct interaction is local but indirect
interaction is global. The models I present are broadly concerned with
the population dynamics of boundedly rational play. This paradigm is the
point of departure for most recent work in evolutionary game theory. One
view of this work is that it describes a population of players, each of
whom “‘adapts” to the environment in which he plays. The players’ envi-
ronment is in turn determined by the choices made by the entire collection
of players.? Recent work from this point of view includes Canning (1990),
Ellison (1992), Fudenberg and Levine (1990), Kandori et al. (1993), Kand-
ori and Rob (1992), Nachbar (1990), and Young (1993). These models of
strategic interaction trade off rationality of the individual for the emer-
gence of collective order in the population. (In this context, Peyton Young
reminds us of Burke’s dictum, “The individual is foolish but the species
is wise.”) The central role of sophisticated rationality hypotheses and
common knowledge suppositions in the traditional analysis is played here
by naive rationality notions and a detailed specification of the process by
which players meet. One looks for the emergence of Nash-like play in
the aggregate rather than at the level of the individual player.

The strategy revision dynamic has two features that represent a depar-
ture from continuous iteration of the (rational) best-response correspon-
dence. First, players do not instantaneously react to their environment.
Having made a decision, they are locked in for some (possibly short)
period of time. Second, players are myopic in their decisionmaking. They
respond to instantaneous reward rather than to some discounted value of
the future reward stream.? A fully rational player would take into account
not only the current play of his neighbors, but also forecasted future
play over the period which he expects to be locked in, and discount
appropriately. I specify two kinds of strategy revision processes. Besi-
response dynamics suppose that each player maximizes instantaneous
payoff flow at each revision opportunity. Stochastic-choice dynamics sup-
pose that at a revision opportunity, players choose their strategies from
some probability distribution over choices whose character depends upon
the payoffs each choice yields. This view is to be contrasted with that
taken in much of the recent literature on population models, where the
dynamics of strategy adoption are driven by biological processes of birth,
death, and fertility.

2 See Crawford (1991) for a discussion of this interpretation of evolutionary game theory.

3 Best-response revision is dominant strategy play of the dynamic game when the discount
factor is sufficiently low relative to the rate at which revision opportunities arrive, and hence
fully rational.
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[n the model examined here, each player interacts directly with his
neighbors, and although each player has few neighbors, all players interact
indirectly through a claim of direct interactions. I study stochastic strategy
revision processes, wherein each player revises his strategic choice in
response to the play of his neighbors. These continuous-time Markov
population processes are examples of infinite particle systems. For games
with two strategies, best-response strategy revision is related to the “voter
model.” The log-linear strategy revision process is a ‘‘stochastic Ising
model,” a stochastic process related to the Ising model of statistical phys-
ics. [A good introduction to these and other infinite particle systems is
Liggett (1985).] Although Section 3 contains some results on best-response
strategy revision, the main results of this paper in Sections S and 6 address
the equilibrium selection problem—the question of which Nash equilibria
emerge in the asymptotic behavior of stochastic strategy revision pro-
cesses, which are small perturbations of best-response processes. In iwo-
strategy coordination games, the risk-dominant equilibrium is selected
for. In games with more than two strategies, some sufficient conditions
for equilibrium selection are given. Proofs and discussion of some ancillary
technical issues are in the appendices.

2. THE MoODEL

Each site on the d-dimensional integer Z¢ is the address of one player.
Every site s € Z¢ is directly connected to only a finite number of other
sites. The set of sites directly connected to site s is the neighborhood of
s. This nonempty set is called V,. For any finite set of vertices T C Z¢ the
boundary of Tis the set 3T = {U,c,V \T. This depiction of the neighbor-
hood relation implicitly assumes that it is symmetric: If ¢ is a neighbor of
s, then s is a neighbor of r. (There are natural economic models where
this is not the case.) I also assume that the neighborhoods are translation-
invariant on the lattice: V, = {s} + V,. A convenient representation of
the neighborhood arrangement is to imagine an (unoriented) graph whose
vertices are the elements of Z¢ and whose edges connect neighbors: There
is an edge connecting s and ¢ if and only if t € V.. Players are referred
to by their addresses; player s is the player at site s.

Objects of choice for all players are actions in the set W =
{0,...,] W| — 1}. A configuration of the population is a function ¢:
Z¢ + W. A configuration describes the strategy choices of the player
population: ¢(¢) is the strategy employed by player ¢. For any T C Z7 and
configuration m, n(T) denotes the restriction of » to T. For any finite set
T C Z9 of players, let X(T) denote the set of configurations of sites in 7.
Let ¢(—s) denote the configuration ¢(Z4\{s}) of all players other than
player s, and similarly, ¢(—T) will denote the configuration ¢(ZAT).
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Finally, for a given configuration ¢ and action w, let ¢ denote the configu-
ration identical to ¢ except that player s is using strategy w.

A player who has chosen an action w receives a payoff flow from each
of his neighbors determined by w and each neighbor’s choice of action.
He receives instantaneous payoff G(w, v) from a given neighbor if he
plays action w while that neighbor plays action v. His instantaneous payoff
from playing strategy w is the sum of the instantaneous payoffs received
from playing w against each of his neighbors. The total payoff flow to
players x from playing w € W when the play of the population is described
by the configuration ¢ is

>, G(w, ().

1EV,

A strategy-revision process is a continuous-time Markov process on
the space of configurations that describes the evolution of players’ choices
through time. A formal description of the process is given in terms of the
generator of its semigroup in Appendix 1. Roughly speaking, the process
works as follows. All players have i.i.d. Poisson ‘‘alarm clocks.”” At
randomly chosen moments (exponentially distributed with mean 1) a given
player’s alarm goes off. When it does, he responds to his neighbors’
current configuration by choosing an action according to some choice
rule. I consider here processes constructed from two classes of choice
rules: First, simple best response, and second, stochastic choice.

With simple best response, the player chooses equiprobably from among
those strategies that give the highest payoff flow given the current play
of his neighbors. Formally, let M(n, s5) denote the set of best responses
by s when the population configuration is n:

M(n, s) = argmax Z G(w, n(1).

weW  (ev,

Let p(v | ¢) denote the probability that the player at site s will choose
v € W given that the rest of the population is configured according to ¢.
Then

1/IM(d, 5) ifv € M(o, s),
px(v|¢)={ (M@, 5) ne .5 2.1

0 otherwise.

Note that this definition depends only upon the coordinates r € V| of ¢,
d(Vy).

With stochastic choice, choice is random, as it can be with the best-
response rule when the best response by player s is not unique, but the
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random draw is not confined to best responses. Two sources of random
choice behavior are mistakes and unpredictable experimentation. These
motivations are discussed, among other places, in Canning (1990), Kandori
et al. (1993), and Young (1993). Let { p?} denote the selection probabilities
given by Eq. (2.1). Let {q,} denote another system of selection probabili-
ties: g{° | @) is a completely mixed probability distribution on W that
depends upon ¢ only through the coordinates in V,. Then

1
1+ 8

pw | ) = —B— pPw ] ) +

e 4v|9) 2.2)

is a perturbation of best-response choice that places positive probability
on each outcome. Obviously, as 8 grows large, this choice distribution
converges to the best-response distribution. I make the following assump-
tions on the system {g,}:

(i) Like the system {p}, they are shift invariant. If &(V,) = ¢(V),
then forallw € W, g, (w | @) = q(w | ¢).
(ii) For all s, w, and ¢, g, (w | $) > 0.

I refer to stochastic-choice rules described by Eq. (2.2) as perturbed
best-response rules.

Another source of stochastic choice is as the outcome of a rational
stochastic-choice theory. One such theory is the random utility model.
Here the return to any action is random and varies across each player’s
choice opportunities. To the modeler with incomplete information about
the return to actions at any instant, each player’s choice given the model-
er’s information will appear to be random.

An important random utility model is the log-linear model, where the
log-odds of the player at site s choosing strategy v to strategy w are
proportional to some function of the payoffs that v and w achieve from
the interaction of the player with his neighbors. Again, the choice of
strategy by player s depends upon the strategic-choice processes of other
players only in that payoffs are calculated at the current configuration
of s’s neighbors. It proves useful to parametrize choice functions by a
multiplicative constant of proportionality 3:

pv|d) _ ~
08Ty~ B 2, O 4(0) = Glw, (1), @3

The selection probabilities are

-1
pvld) = { > expp éEV G(w, ¢(1) — G(v, ¢(z))} .

weEW
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Again, this definition depends only upon the coordinates 1 € V, of ¢. The
constant 8 parameterizes the sensitivity of choice. When 8 = 0, this
distribution puts equal weight on all strategic choices. As 8 1 =, this
distribution converges to one that puts equal positive weight on all best
responses and 0 weight on all other responses. Thus best-response revision
arises as a limiting case of the stochastic-choice model as the proportional-
ity constant becomes large. Stochastic-choice models like that described
by Eq. (2.3) originated in Thurstone’s study of comparative judgment.
The characterization of these choice models as random utility models was
first established by Block and Marschak (1960).

The class of stochastic choice models described by Eq. (2.3) is important
in its own right, and it also provides comparison processes useful to the
study of the perturbed best-response models described by Eq. (2.2). In
what follows, I refer to the models of Eq. (2.3) as the log-linear rule.
Unfortunately the class of stochastic choice rules described by Eq. (2.2)
does not contain the log-linear rule. When the log-linear rule is rewritten
in additive form, it is clear that as 8 grows, the additive perturbation {q}
changes. I have chosen the peculiar parametrization of Eq. (2.2) to simplify
the statements of results. To further simplify statements of theorems,
when referring to any stochastic choice rule I write 8 = = to signify best-
response strategy revision.

With both best-response rules and stochastic choice rules, the objects
of choice are pure strategies, not mixed strategies. When a choice opportu-
nity arrives, the player must choose a pure strategy and not a distribution.
When he observes the play of his neighbors, he sees the pure strategy
choices they have made. But even though players choose only pure strate-
gies, players will confront distributions of actions. At a typical moment
in time, the configuration of choices will be polymorphic—many choices
will be represented in the population. Each player cares about the distribu-
tion of choice in his neighborhood, and this distribution may well be
mixed.

The key features of both best response and stochastic choice are, first,
lock-in, and second, bounded rationality. By lock-in I mean that once a
player makes a choice, he is committed to it for some while. He cannot
revise his choice until his alarm clock goes off again. It is easy to imagine
how lock-in can arise by instituting decision costs or fixed costs for strategy
revision. Technically speaking, the random lock-in assumption plays a
critical role. A consequence of the Poisson assumption is that in any
sufficiently small interval of time, it is unlikely that more than one player
is making a decision. The dynamics of simultaneous strategy revision are
very different.

Even if we assume that the lock-in is ‘‘technologically given,”” both
decision rules still describe boundedly rational choice. For best-response
dynamics, this bounded rationality arises because, at the moment of deci-
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sion, players contemplate only the present rewards to each choice, and
not the expected flow of future rewards. Full rationality entails each player
forming beliefs about the future play of his neighbors given their play up
to the present, and then maximizes an expected present discounted value
of the utility stream computed with some given discount factor. The
Markov property for a fully rational strategy revision process requires
that information about the configuration before date ¢ be irrelevant to
choice at ¢. Typically this will not be the case: For a player s estimating
the future play of his neighbor s’ at time ¢ + ¢', it would be useful to
know s'’s neighbors’ play at time t. These cannot be observed directly
by the player except for the play of those neighbors whom he shares in
common with s'. But information about s'’s neighbors’ play at ¢ is carried
by the play of s’ at times before . Markov play will arise when each
player’s discount factor is small relative to the mean waiting time between
rings of the alarm clocks. In this case, future play is irrelevant, and full
rationality entails maximizing the current instantaneous payoff flow, in
other words, the simple best-response rule. Nonetheless I resist this fully
rational interpretation of best-response dynamics in favor of one emphasiz-
ing players’ myopia as a departure from rationality.

The state space for all stochastic strategy revision processes is the Borel
space X of configurations with the product discrete topology. Let Pr (A)
denote the probability of some measurable event A in the space of sample
paths for a strategy revision process with initial distribution of configura-
tions u, and let Pr (-) denote the case where u is a point mass on configura-
tion ¢. A formal description in terms of its infinitesimal generator and
some additional technical apparatus is given in Appendix 1.

DEFINITION 2.1. A probability measure w on X is stationary for
the process {¢,},=, if, for all 1 = 0 and every measurable set of states B,
Pr (¢, € B) = u(B).

The goal of the analysis in the remainder of this paper is to relate stationary
distributions of strategy revision processes to equilibrium concepts for
noncooperative games. But first I record the existence of stationary distri-
butions and their continuity with respect to parameters. The first theorem
is the standard stationary distribution existence theorem for Feller pro-
cesses on compact domains:

THEOREM 2.1. The set of stationary distributions of best-response and
stochastic-choice strategy revision processes with choice probabilitics
{p}icz? is nonempty, convex and compact, and the closed convex hull of
its extreme points. For both the perturbed best-response rule and the log-
linear rule, the correspondence mapping (8, G) into the set of stationary
measures of the corresponding process is pointwise upper hemicontinuous
in the weak convergence topology for measures on w’.
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In particular, the limit of any weakly convergent sequence of stationary
distributions as 8 grows large for either stochastic choice rule is a station-
ary distribution for the best-response strategy revision process.

3. ITERATED ELIMINATION OF DOMINATED STRATEGIES

In this section, stationary behavior and the dynamic behavior of strategy
revision processes are seen to respect the iterated elimination of strongly
dominated strategies.

Recall that a strategy w; is strongly dominated (in the set of mixed
strategies) for player i if and only if there is no probability distribution
over the play of i’s opponents for which w, is a best response. In games
on the lattice where each player is best responding to the play of his
neighbors, it follows from the symmetry of the strategic situation and
the additivity of payoff flows that only the numbers of occurrences, or
frequencies, of choices by the neighbors of s can affect his choice at any
of his revision opportunities. But because s has only |V | neighbors, there
are only a finite number of play distributions that he could possibly ob-
serve. For instance, if |W| = 2, the possible distributions are those where
fraction k/|V,| of s’s neighbors play strategy 1 and the remaining fraction,
(V] — k/|V | plays strategy 2, where k is an integer between 0 and V.
This motivates the following definition:

DEFINITION 3.1.  Strategy wis V -dominated if there is no configuration
&(V)) of play among the neighbors of s for which w is a best response.
Let W, denote the set of V,-undominated outcomes and define inductively
U, to be the set of outcomes w € W, _,, which are a best response to no
configuration ¢(V,) taking values only in W,_,, and W, = W,_,/U,. The
strategy w is V. -iteratively dominated if w € U, for some k.

In the two-player symmetric three-by-three game with payoff matrix

1 0 -10
-2 0 1
-1 -1 -1

the bottom strategy is not dominated. In particular it is a best response
to the mixed strategy (0.7, 0.1, 0.2). However, it is V -dominated in the
lattice game on the line with neighborhoods V, = {s — 1, s + 1} since
there is no pure strategy combination for s’s two neighbors, which has
bottom as a best response. Clearly for a given game with rational payoffs,
there is a neighborhood large enough that each strategy w € Wis V-
dominated if and only if it is dominated in the two-player game.
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Only a finite number K of rounds of iterative elimination suffice to
eliminate all V,.-dominated strategies, so the V -undominated stategies are
precisely those in Wy. Note that if w is strictly dominated, then it is V-
dominated. The following result connects stationary distributions with
iterated elimination of V -dominated strategies. The theorem states that
stationary distributions for best-response dynamics place all their mass
on iteratively undominated strategies.

THEOREM 3.1. Suppose that w € W is iteratively W -dominated in the
game matrix G. If @ is an invariant distribution on X for best-response
strategy revision, then u{d(s) = w} = 0.

Proof. No player will ever switch to a V -dominated strategy, and
every player will switch away from a V -dominated strategy. Suppose all
iteratively V_dominated strategies can be eliminated in at most K rounds
of elimination. Fix s. Let §, = V|, U {s}, and proceeding inductively, let
S, = 8,y U aS,_,. The set §; contains a finite number of players. The
waiting time until all of the players in S, have had at least one revision
opportunity is almost surely finite. Call it 1. At any time after . all
players in S, _, respond only to configurations that take values in W, . Let
tx_, denote the waiting time until all players in S, _, have had a revision
opportunity subsequent to time ¢, . The waiting time ¢, _, is finite. At any
time after 1,_,, all players in S;_, respond only to configurations that
take values in W,. Proceeding inductively, we establish a finite time ¢,
after which s responds only to configurations in W, _, . For all time beyond
t, he will choose only strategies in Wy, the set of V -iteratively undomi-
nated strategies. m

An immediate consequence of Theorem 3.1 and the upper hemicontinu-
ity of the stationary distribution correspondence for both stochastic choice
rules in the parameter 8 (Theorem 2.1) is:

COROLLARY 3.1.  Let{ug}denote a sequence of stationary distributions
for either a log-linear or a perturbed best-response strategy revision pro-
cess with fixed G as B becomes large. If w is iteratively V ~-dominated in
the game matrix G, then limg, .. ugld(s) = w} = 0.

Iteratively eliminated strategies tend not to arise in stationary strategy
revision processes. Starting from an arbitrary initial (nonstationary) distri-
bution of play, do iteratively eliminated strategies tend to disappear? Of
course this must be true for ergodic processes, but not all strategy revision
processes are ergodic. Nonetheless, the proof of Theorem 3.1 shows this
to be true for 8 = =, and the proofs for the stochastic-choice rules can
be found in Appendix 3.
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THEOREM 3.2  For any stochastic-choice rule and for all initial config-
urations o,

lim inf Pro {¢,(s) is iteratively V-undominated}
—>o

equals 1 at B = = and converges to 1 as 8 grows large.

4. NasH EqQuiLiBRIA OF LATTICE GAMES

This section begins the analysis of the relationship between stationary
distributions of strategy revision processes and Nash equilibrium. First 1
identify a class of configurations called Nash configurations, which exhibit
the best-response property of Nash equilibrium, and then I take up the
questions of when they exist and when stationary distributions are concen-
trated on them.

Consider the one-shot game wherein each player s € Z? chooses one
strategy that is used simultaneously in play against all of his neighbors
t € V,. A (pure strategy) Nash equilibrium for this infinite player game
is a configuration wherein each player chooses an action that maximizes
the sum of the returns against the play of each of his neighbors.

DEFINITION 4.1. The configuration 5 is a Nash configuration if for
each player s € Z9, n(s) € M(n, s). The set of Nash configurations is
denoted by N.

The following example shows that Nash configurations may fail to exist.

ExAMPLE 4.1. The game Rock, Scissors, and Paper, played on the
one-dimensional integer lattice with nearest-neighbor interactions, shows
that not all games have Nash configurations. Take d = 1. Each player’s
neighbors are those players nearest to him on either side: V, = {s — 1,
s + 1}. The game is given by the payoff matrix (for all s € Z9)

’

0 2
1 0
2 1

Q
H
[~ & I

where each number g,; records the row player’s payoff from the strategy
combination (i, j).

Player s cannot play strategy 1 in any Nash configuration, for he will
only play | if one of his neighbors plays 3 and the other does not play 2.
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But no plaver will play 3 if any of his neighbors plays 1. Similar arguments
show that player s also cannot play 2 or 3 in any Nash configuration, so
no Nash configurations exist.

This countable-player game has mixed strategy Nash equilibria; the stan-
dard existence proofs apply. It is pure strategy Nash equilibria that fail
to exist.

In the one-shot game, a pure strategy Nash equilibrium may present a
nontrivial distribution of strategies across the population. Consider the
‘“‘anti-coordination’’ game

o
G =
1 0

played on the integer line Z' with neighborhoods V, = {s — 1, s + 1}.
Two Nash configurations have sites alternating their play: ¢ (s) = s mod
2,and n(s) = s + 1 mod 2. In these strategies, the fraction of the population
playing ‘“‘up’” (0) equals §. Although in this game the population fractions
correspond to a mixed strategy Nash equilibrium of the two-player game,
this is a coincidental feature of this example. Changing any one of the 1's
to I + & reduces the weight that the mixed strategy Nash equilibrium
places on the corresponding column, but ¢ and 5 will still be Nash configu-
rations of the infinite-player one-shot game.

In addition to the regular-looking Nash configurations ¢ and %, this game
has other Nash configurations that do not respect the periodic structure of
the lattice. The configuration {(s), which equals ¢(s) for s < 0 and 7n(s)
for s = 0, is also a Nash configuration. This is not delicate—¢ is a Nash
configuration for any game G where G(0, 1) > G(1, 0) and the diagonal
payoffs are sufficiently near 0.

The analysis of best-response strategy revision processes is made com-
plicated by the fact that when a player has several best responses, he will
choose among them with equal probability. In this case, for instance,
point masses cannot be invariant. Fortunately, this situation typically fails
to arise. If |V | is finite, then player s could see only a finite number of
distributions of play among his neighbors, and so for generic payoff matri-
ces each player has a unique best response to every configuration of play.

DEFINITION 4.2. A configuration ¢ € X has a unique best respconse
for the game G on Z¢ if for all s, there is a unique w € W such that
Sev, Gw, ¢(1) = 2oy, G(w', $(1)) for all w' € W. The game G on Al
has the unique best-response property for the neighborhoods {V } ..« if
all configurations ¢ € X have unique best responses.

When the game G has the unique best-response property for the neigh-
borhoods {V },cz¢, a complete characterization of stationary distributions
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for best-response strategy revision, as well as a large 8 approximation
result for stochastic choice strategy revision, is possible.

THEOREM 4.1  Suppose that G has the unique best-response property
Jor the neighborhoods {V },cz4. The distribution w is a stationary distribu-
tion for the best-response strategy revision process if and only if for every
finite set of sites S = {s,, . . ., s;} and configuration ¢ of S,

2 un(s) = d(s) | n(S) = $(S)) — w(M(n, 5) = dls) [ n(S) (4.1)
J
= HSNMu(n(S) = &(S,) = 0,

where S; = S/{s;}. Furthermore, for any stochastic-choice rule and for all
€ > 0, there is a b such that, if 8 > b then the expression in Eq. (4.1)
differs from O by at most € for all finite sets of sites S and configura-
tions ¢.

In the case where § is a singleton, Eq. (4.1) becomes u{w = M(¢p, 5)} =
n{d(s) = w}. The events {w = M(¢, )} and {¢(s) = w} are identical for
all s if and only if ¢ is a pure strategy Nash equilibrium for the game G
on Z¢. But even if the lattice game has no pure strategy Nash equilibria,
these pairs of events must occur with the same probability.

COROLLARY 4.1.  Suppose that G has the unique best-response prop-
erty for the neighborhoods {V }.c,<. If ¢ is a Nash configuration, then 8,
is a stationary distribution for the best-response strategy revision process.

5. GAMES WITH Two STRATEGIES

The analysis of stochastic-choice strategy revision for games with two
strategies is particularly simple. All log-linear strategy revision processes
fall into the class of stochastic processes known as stochastic Ising models.
The proofs of most theorems on log-linear strategy revision follow directly
from the mapping of log-linear strategy revision processes into stochastic
Ising models, which 1 describe below. The analysis of perturbed best-
response strategy revision works by comparing a given perturbed best-
response strategy revision process to selected log-linear strategy revision
processes. The comparison technique is described in Appendix 3.

5.1. Stochastic Ising Models and Log-Linear Strategy Revision

Stochastic Ising models are surveyed in Liggett (1985, Chap. 4), and
the proofs of most Theorems in this section follow directly from the
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mapping of log-linear strategy revision processes into stochastic Ising
models, which 1 now decribe.

While stochastic-choice models are described by selection probabilities,
stochastic Ising models are described by ‘‘flip rates’’; the rate at which
a player changes fromitoj, {,j =0, 1,i# j. Let W = {0, 1}. (Note the
departure from the convention of labeling the first strategy 1, to simplify
notation.) The flip rate describes the rate at which a given player (site in
the language of stochastic Ising models), flips from 0 to 1 or from 1 to 0.
The rate at which player s flips is equal to p(0 | ¢) if ¢(s) = 1, and
p,(1 | @) if ¢(s) = 0. While the selection probabilities for player s in any
strategy revision process are independent of the current play at s. this
will not be the case for flip rates because they describe the probability of
departing from current play.

It is clear from Eq. (2.3) that selection probabilities for a given game
matrix G are unchanged if the matrix is perturbed in such a manner
that the difference between any two elements in the same column are

unchanged. Given
G = ( gn gl:)
81 8n

define

_8nut 88— 8n _8u Tt 8n— 8~ S
a= 3 , b= 3 .

(o o)+l =)
+
—-b b -a —a
has the same payoff differences against any strategy of the opponent. This
canonical representation simplifies calculations and is used throughout

this section.
For a given G, the selection probabilities for log-linear choice are

Then the matrix

~1
p0{ ) = (1 + exp - ZB{aIVJ +b };/ (2 o(n) — 1)})
1EV, )

-1
p1]d = (1 +exp28 {alvsl b5 080 - n}) .
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Thus the flip rate at s is

c(s, d)
-1
= (1 + exp2B {alel(M(S) -D+b EV 2o — D2e(s) — 1)}) .
1€V,

These flip rates can be written in the form

-1
c(s, ) = (1 +exp2 2 Je [ Qo) - 1)) , 3.1

R3s tER

where

BV if|R[=1,
Jo=|Bb ifR={s, t}forsomet €V, (5.2)
0 otherwise,

and R indexes the finite subsets of Z9. A collection {Jx} of real numbers
indexed by the finite subsets of Z¢ is called a potential for the stochastic
Ising model with flip rates given by Eq. (5.1).

Although there is no complete characterization of the stationary distribu-
tions for stochastic Ising models, much can be learned from a special
class of stationary distributions called Gibbs states.

DEFINITION 5.1. A probability distribution ¢ on the space X of config-
urations is a Gibbs state for the potential {Jg} of Eq. (5.2) if, for w €
{0, 1},

-1
vin(s) = wiln_,) = (1 +exp — 2 2, Jx [] Qo) - 1)) . (5.3)

R>s 1ER

As the terminology indicates, Gibbs state is an equilibrium concept that
has been extensively employed in physics. Follmer (1974) has used Gibbs
states to describe equilibrium of some stochastic general equilibrium mod-
els. In the present context, a Gibbs state is a stationary distribution for
the stochastic strategy revision process that has a special property: The
spatial distribution of equilibrium play is given by the system of conditional
probability systems {p,}.

Theorem 5.1. A probability distribution u. on the space X of configura-
tions is a Gibbs state for the system {p.} of log-linear choice probabilities
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iff
un(s) = w|n(—s) = d(—35) =pw|d).

The utility of Gibbs states for the analysis of two-strategy games comes
from the five facts which are summarized immediately below [see, for
instance, Liggett (1985, Chap. 4)). A translation on the lattice is an opera-
torv,: X — X such that 7 (n)(t) = n(t — s). A distribution p is translation-
invariant on the lattice Z4 if for every lattice site s, measurable event A C
X and translation 7, u(r,A) = u(A).

Facts. (1) Gibbs states exist.
(2) Every Gibbs state is a stationary distribution.
(3) All translation-invariant stationary distributions are Gibbs states.
(4) If the lattice dimension d is 1 or 2, every stationary distribution
is a Gibbs state.
(5) The set of Gibbs states varies upper hemicontinuously with 8 in
the weak convergence topology.

If S is any subgroup of Z¢ of finite index (e.g., {s : =, s, = 0 mod 2}),
the set of measures invariant under all the 7, are called S-periodic. and
Fact (3) is still true (as is also Fact (10) of Section 4.2). The converse of
Fact (3) is false for dimension d = 3. There exist Gibbs states that are
not translation-invariant on Z¢ when d = 3.

It is clear from Eq. (5.3) that, when 8 is large, the probability of any
particular player’s choice given the configuration of all other players is
highest for those choices, which are best responses to the play of the
neighbors. As B grows, this converges to play concentrated on best re-
sponses. This leads to a connection between Gibbs states and Nash con-
figurations. Let N denote the set of Nash configurations.

THEOREM 5.2. If distribution p on X is the weak limit of a sequence
of Gibbs states {ug} as B 1 = for a log-linear strategy revision process
with payoff matrix G, then wu is a stationary distribution for best-response
strategy revision and p(N) = 1.

CoRrROLLARY S.1. For every two-by-two lattice game such that
u(v, wy = u)v, w) for all v and w, pure strategy Nash equilibria exist;
N # .

5.2. Ergodic Behavior with Log-Linear Strategy Revision

One notion of ergodicity for Markov processes is the existence of a
probability measure » on X such that for any continuous real-valued func-
tion fon X,
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T-1
lim 7= 3% E(f@)lé0 = [ flm) dvim)
for all ¢,. A stronger requirement is that
lim E(fi6)ly) = [ fen) dvin)

for all ¢,. For any Feller process on a compact state space, the first
property is equivalent to the uniqueness of the stationary distribution.
The second property is somewhat stronger. In this paper the word ergodic
refers to the second property, which the literature alternately calls ergodic-
ity or strong ergodicity.

Here are some facts about the ergodic behavior of the stochastic Ising
model. Again see Liggett (1985, Chap. IV).

Facts. (6) If the log-linear strategy revision process is ergodic, then
there is a unique Gibbs state.

(7) If b = 0 there is a B, (possibly infinite) such that the log-linear
strategy revision process is ergodic for all 8 < 8. and nonergodic for all
B> B,.

(8) If b = 0, then the log-linear strategy revision process is ergodic
forallBifa#0orifd= 1. AsfB 1 =, the unique stationary distribution
converges weakly to point mass at n(s) = 0 if a > 0, and to point mass
atn(s)=1ifa < 0.

(9) Every log-linear strategy revision process is ergodic for 8 near 0.

(10) Let v, denote a translation-invariant initial distribution for a log-
linear strategy revision process. Then any subsequential limit of the set
{¥,};=¢ is a translation-invariant Gibbs state (Kiinsch, 1984).

(1) If d = 1 and g, is the unique Gibbs state, then there is an £ >
0 such that for each continuous function f: X — R and initial configura-
tion ¢y,

B )Ibg) — [ Fdu.] = BO) exp {l_;_;_;}

where 0 < B(f) < . If, in addition, ¥ > 0, the convergence rate is
exponential (Holley 1985, 1987).

In summary, ergodic log-linear strategy revision processes result from
“‘most’” games when & = 0. The ergodic behavior for stochastic Ising
models with & < 0 is less well understood, but note that the asymptotic
theory already discussed for iterative V -domination applies to games with
b < 0.If a > —b, strategy 0 is a dominant strategy, and if » > a, then
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strategy 1 is dominant. According to these facts, Example 5.1 gives rise
to an ergodic strategy revision process for x # 1, as does Example 5.2
fora = —1and a # 1. When |a| = 1, the strategy revision process will
be ergodic on Z', but not on Z“ for d = 2,

Fact (11) discusses rates of convergence in one dimension. The indicator
function 14(-), which takes the value 1 if n(A) = ¢(A) and 0 otherwise, is
continuous. Its expectation with respect to distribution g, is the limit
probability of the players in A playing the configuration ¢(A). In one
dimension, the limit probability of a particular configuration in a given
finite set of players exists, and convergence to it is at the rate given in
Fact (11).

5.3. Examples

In a number of cases, Gibbs states can be computed. In the following
examples, each player plays against his ‘‘nearest neighbors’; V., = {1 :
e — sll= 1}. The properties of Gibbs states and sometimes the asymptotics
of the process are determined by the parameters a and b of the potential.

ExampLE 5.1. Consider the game matrix

o )

0 x|’

Here b = (1 + x)4anda = (1 — x)/4. When x < 0, the dominated strategy
is played with decreasing probability as 8 grows large. Suppose that x =
0 and fix 8. When d = 1, the probability that any one given player plays
““down’’ is analytic in x, near 1 for large x, equal to 4 for x = 1, and near
0 for x sufficiently small. The same is true when d = 2 for sufficiently low 8.
But when g is sufficiently large, there is a discontinuity in this probability at

x = 1. The limit as x | 1 of the probability of down is some number § +
g, and the limit as x T lis$ — &. As 8 grows big, & goes to }.

ExAMPLE 5.2. Consider the game matrix
[—] - a 1 - a]
l+a —-1+a
and let d = 1. In the previous example, b was positive, indicating some
tendency toward positive correlation of strategy choice among players.
For the class of matrices described in this example, b = —1, indicating

some tendency toward negative correlation of strategy choice among
neighboring players. The asymptotic behavior of these stochastic strategy
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revision processes is very different from those of the preceding example.
When b is positive, the value of a only determines which strategy the
players will ultimately correlate on. When b is negative, the negative
correlation effect can be overcome by an a term of sufficient magnitude.
When there is a dominant strategy, |a] > 1 and there is a unique Gibbs
state. The probability that player s will play down goes to 0 or 1 as 8
grows, depending on the sign of a. When |a| < 1, the behavior of the
system is different. Let 5, , denote the configuration in which player s plays
“‘up’’ if s is even, and down otherwise. Let 7, denote the configuration in
which player s plays up if s is odd, and down otherwise. As 8 grows, the
(unique) limit-invariant measure is that which puts mass 4 on each of the
configurations 7, and 7, . The system alternately locks in near to all up
or near to all down, each with equal probability, independent of the initial
condition. The convergence rate, as described by fact (11), is not quite
exponential. When a = 1, the unique invariant measure is the measure
that, on the set of sites { —n, . . . , n}, assigns equal conditional probability
given any boundary behavior (¢(—n — 1), ¢(n + 1)) to all configurations
that have up at no two consecutive sites. A similar statement holds for
the case @ = —1. In higher dimensions with |a| < 1, there are multiple
Gibbs states. For each of the two configurations n(s) = (- 1)"* "% and
&(s) = (— )15+ there is, for large B, a Gibbs state that is (weakly)
near point mass on the respective configuration.

5.4 Coordination Games

One of the most interesting questions in the population dynamics litera-
ture is how (and if) coordination emerges in a population of players, each
adapting to their environment. With stochastic-choice strategy revision,
coordination emerges as limit behavior of the population over time if 8
is sufficiently large.

Consider the special case of Example 5.1 where x = 2:

o o)

0 2]

In this game b = §and a = }. Ind = 1 and d = 2, the probability of

playing down goes to 1 as 8 — +%. Both the configurations “‘all play

down”” and ‘‘all play up’” are Nash configurations, but the limit of bound-

edly rational play selects only the former, Pareto-superior equilibrium.
This example is particularly interesting because it illustrates how equilib-

rium selection arises from adaptive behavior of the population. One might

hope that letting 8 — = always selects a Pareto-best equilibrium, but this
is not always the case.
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ExAaMPLE 5.3. Consider the game matrix

N

3 4]

here b = § and a = —4. As 8 — +x, the probability of playing down
goes to 1.

In the preceding example the Harsanyi and Selten (1988) risk-dominant
equilibrium was selected as 8 grew large. This is generally true in symmet-
ric games with two strategies. Suppose a game is given with matrix

y ozl
This game is a coordination game if the two “‘diagonal’’ outcomes are
Nash equilibria of the two-player game. This entails w > y and z > x. A

calculation shows that » > 0 and that a > 0 or a < 0 as strategy 0 or 1,
respectively, is risk dominant. Consequently [from Fact (8)]:

THEOREM 5.3. Suppose that G describes a two-person coordination
game, and that O is the unique risk-dominant equilibrium in the two-person
game. Then the log-linear strategy revision process is ergodic and for all
players s and initial configurations ¢,,

lim lim Prd,u (P (s)=0)=1.

B«-x %

This conclusion for log-linear strategy revision is the same as that found
by Kandori et al. (1993) for stochastic perturbations of discrete-time best-
response strategy revision in a finite population with global matching.
The risk-dominant equilibrium is the equilibrium with the largest basin of
attraction in the set of possible mixed strategies. This means that the
number of mistakes necessary to leave the risk-dominant equilibrium is
larger than the number of mistakes necessary to leave the other equilib-
rium. Kandori et al. (1993) and Young (1993) show that the number of
mistakes necessary in transiting from one state of the population to another
defines a stochastic potential that is minimized by the population dynamic.
Theorem 5.3 works for similar reasons. The process acts to maximize a
potential function defined in terms of the payoff structure of the game.
Configurations with larger potential have larger basins of attraction, and so
the process tends to the configurations with the largest basins of attraction,
which is the risk-dominant equilibrium configuration.

In one dimension, convergence to equilibrium is at exponential rate,
according to Fact (11). Let u,z denote the unique invariant distribution of
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a log-linear strategy revision process with parameter 8 for a coordination
game with a unique risk-dominant strategy. There is a A > 0 such that
for any finite set A of layers and configuration n(4) of their play,

|Prg, (9(A) = n(A)) ~ pald(A) = n(A))| < B(n(A)) exp — Af.

Note that only the multiplicative constant depends on the set of players;
the convergence rate A is independent of the size of the player set and
the initial configuration. This is consistent with Ellison’s (1992) simulation
results that in large finite populations, convergence rates seem to be inde-
pendent of population size.

5.5. Perturbed Best-Response Strategy Revision

Most “‘large 8°° asymptotic results that can be demonstrated for the log-
linear strategy revision process also hold for the perturbed best-response
process. Typical are the results on iterative V -domination showing that
the iteratively V -undominated strategies emerge over time when 8 is
large. A similar result is true for selecting risk-dominant Nash equilibria:

THEOREM 5.4. Suppose that G describes a two-person two-strategy
coordination game and that 0 is the unique risk-dominant equilibrium in
the two-person game. For the perturbed best-response process, and for
all players s and initial configurations ¢,.

lim lim inf Pr,, (¢,)(s) = 0) = 1.
ﬁ—-):x: —x

This and other results here are proved by a method of comparing Markov
processes. The idea is this: If process A is always more likely to switch
toward state ¢ than is process B, and if process A is always less likely
to leave state ¢ than is process B, then if process B converges to ¢, then
so does process A. The technique for making this intuition precise is called
coupling and is used to prove many of the results in this paper. A coupling
is the construction of two or more stochastic processes on the same
probability space so as to connect their transition mechanisms. Statements
about the behavior of one process can then be inferred from known state-
ments about the behavior of the other process. The basic coupling used
in this paper and proofs of the applications are in Appendix 3.

6. GAMES WITH MANY STRATEGIES

When it is applicable, the analysis of the previous section carries over
in a straightforward way to those games for which |W| > 2. But it does
not always apply. The source of the difficulty can be seen in Eq. (5.3). It
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is not true that any arbitrarily specified collection of conditional probability
distributions is consistent in the sense that they derive from a common
joint distribution. For symmetric two-by-two games, the log-linear choice
rule generates consistent conditional probabilities, but perturbed best-
response choice rules typically will not and neither will log-linear choice
in games with more than two strategies.

6.1. Gibbs States

Gibbs states are defined in terms of a potential just as in the previous
section; but the definition of a potential must be enlarged to accommodate
more strategies for each player.

DEFINITION 6.1. A potential for a stochastic-choice strategy revision
process is a collection {J;} of real-valued functions indexed by the finite
subsets of T, each with domain X(7T), such that for all sites S € § and
actions v, w € W,

V,
2o |8V} _ s 1 gnm) ~ J@uT).

log o Totvar ~ &,

A Gibbs state for the potential {J,} is a probability distribution u on the
space X of configurations such that, for each finite set T of sites and given
boundary condition ¢(—T),

exp 2. grrez Jr(DRn7)
zw(nexm exXp 21::-. rar=<a JR(@%aT) ,

wn(D) | $(—T)} = (6.1)

where ¢% is the configuration that takes on the value ¢(s) at all s € S, and
P(s)atalls € S.

This condition extends Eq. (5.3).

When [W| > 2, Gibbs states may not exist. Suppose that u is a Gibbs
state for the system of choice probabilities {p,}. Then for any player ¢,
configuration ¢, and actions v, w € W, a calculation shows that
w(@d?))/ u(d?) = p(v | ¢Ypw | ¢). For any probability distribution, odds
ratios must meet a consistency condition: Pr(4)/Pr(C) = (Pr(A)/Pr(B))
(Pr(B)Pr(()). For strategy revision processes, the odds ratio of any two
configurations that differ only on a finite set of players can be computed
by multiplying together the odds ratios for a sequence of one-player
changes. In general, there will be many different sequences of one-player
changes that connect the initial and final configuration, and the calculation
should give the same answer no matter which route is chosen. For two
players s and ¢, four (not necessarily distinct) actions «, v, w, x € W and
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a configuration ¢, let

u ifr =s,
d“(r) = Qv ifr=1,
&(r) otherwise.

The consistency condition works out to be that

pul &) pol &) _ plv] &) pul by
pw @i plx | i) plx| b pw | L

(6.2)

and that this ratio equals () u(dy"). The existence of a Gibbs state
implies the satisfaction of Eq. (6.2) for all sites s and ¢ and actions u, v,
w, x € W. The left-hand side of Eq. (6.2) assumes a path along which
first player s switches and then player . On the right-hand side, the
switching order is reversed; first ¢ and then s. This consistency condition
turns out to imply all of the other consistency conditions involving infinite
numbers of players. In Appendix 2, it is shown that the satisfaction of
Eq. (6.2) is sufficient for the existence of Gibbs states.

Example 4.1 describes a process where Eq. (6.2) will not be satisfied.
Let ¢ denote the configuration that is identically 0, and consider the two
paths ¢ — ¢y— @i} and ¢ — @} — ¢ii. Computing along the first path,
we would have for any Gibbs state that log u(¢il) — log u(é) = 38.
Computing along the second path, log u(¢4}) — log u(¢) = 0. So no Gibbs
state can exist.

Whether or not a given payoff matrix has such distributions is largely
aproperty of the best-response correspondence, even though the definition
of the stochastic-choice strategy revision process involves the entire order-
ing of all the alternatives.

DEFINITION 6.2. The payoff matrices G and G'are strongly best-
response equivalent if there exists numbers a« > 0 and §; such
that G'(i, j) = aG(, ) + B;.

Contrast this notion with best-response equivalence. One can show that
the two payoff matrices G and G' are best-response equivalent, that is,
they have the same best-response correspondence for the two-person
game, if all strong domination relations are preserved, and if the relation-
ship of the definition holds for all strictly undominated rows of G.

DEFINITION 6.3. The matrix G has a potential if G is strongly best-
response equivalent to a matrix G' = B + A, where B is symmetric with
0 column sums, A has column sums equal to 0, and all elements of any



410 LAWRENCE BLUME

row of A are equal. The potential for G is:

BIVAD(s), d(s)) if T ={s},
J{(d(T)) = § B B(@(s), $(1)) if T={s,fandt€V,, (6.3)

0 otherwise.

Note that the matrices A and B are uniquely determined by G, and that,
although the potential depends upon the neighborhoods {V } .4, the prop-
erty of having a potential is independent of the neighborhoods.

The matrices A and B are best understood through the following algo-
rithm used to find them: First, add a number g; to each element in the jth
column of G so that the column sums of the resulting matrix G are 0. This
transformation always leaves both the best-response correspondence and
selection probabilities for log-linear strategy revision unchanged. Next,
construct B by subtracting from each element in row i the average payoff
in that row of G: (1/K) 2; G(, j). This average is the common element in
the ith row of A. The matrix B of deviations is symmetric if and only if
G has a potential.

THEOREM 6.1. The log-linear strategy revision process with parameter
B has a Gibbs state w if and only if the payoff matrix G has a potential.

The potential in Eq. (6.3) is easy to work with, but it is better understood
by an alternative expression in terms of the G matrix:

Gd(s), if T = {s, drtev,,
,T(d)r):{ﬁ (d(s), (1)) i {s,t}and 1€V, 6.4)

0 otherwise.

Games that have a potential as described here are precisely the symmet-
ric two-person games with a potential in the sense of Monderer and
Shapley (1991). All symmetric 2 X 2 games have potentials, but most
symmetric n X n games do not. The set of n X n payoff matrices having
potentials is a linear subspace of the n>-dimensional set of payoff matrices
with dimension (n® + 3n — 2)/2.

6.2. Results of Processes with Gibbs States

For those payoff matrices for which Gibbs states exist, most of the
results in Section 5 carry over. In particular, Facts (2) through (6), (9),
and (10) are valid. (I do not know if the rate results in Fact (11) work for
more than two strategies.) Again, the existence of Nash configurations is
connected to the existence of Gibbs states:
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THEOREM 6.2.  Suppose a payoff matrix G has a potential. If distribu-
tion u on X is the weak limit of a sequence of Gibbs states {ug} as 8 1
x for a long-linear strategy revision process with payoff matrix G, then
@ is a stationary distribution for best-response strategy revision and
MN) = 1. Conversely, if the lattice game has no Nash configurations,
then the system { p,} with log-linear choice rules has no Gibbs states for

any f3.

In particular, if the lattice game has no pure strategy Nash equilibrium,
then Gibbs states will not exist. The converse is obviously false. Take
any game with three or more strategies having a potential and a strict
Nash equilibrium for the lattice game, such as a pure coordination game.
The set of nearby games preserving any particular (strict) Nash configura-
tion has nonempty interior, but the set of games with a potential is lower-
dimensional,

Although it is hard to get asymptotic results for stochastic strategy
revision processes with [W| > 2, Fact (10) does have some strong conse-
quences for games with a unique Gibbs state. And some games with unique
Gibbs states are easy to identify. The following result can be viewed as
a first approach to many-strategy coordination games, although it also
applies to other games.

THEOREM 6.3. Suppose that G has a potential, and also that
G, 0) > GG, j) for all (i, j) # (0, 0). Let vy denote an initial distribution
of configurations such that players’ initial strategies are i.i.d. Then for
log-linear strategy revision and for ve-almost all configurations ¢y,

ll}im liminfPr, ((s) =0) = 1.
SUPE

Proof. The idea of the proof is to work on the space of initial configura-
tions with probability distribution v, and exploit the fact that the limit
Gibbs distribution is an extreme point of the set of probability distributions
on configurations.

The hypothesis of the Theorem guarantees that the potential has a
unique ‘*ground state’’—a unique configuration that maximizes the poten-
tial among all configurations differing from it at only a finite number of
sites. For large enough 8, such potentials have a unique Gibbs state,
which, in this case, converges to point-mass at the configuration ¢(s) =
0 (Georgii, 1988, pp. 147-148). It then follows from Fact (10) that for any
i.i.d. initial distribution vy, limg, .. lim, », is point mass at the configuration
o(s) = 0. Write

v(A) = X Pr(d, € A | do(B) = n(B)ry(n(B))

nB)

= > vMBNSH(A | do(B) = n(B)vo(m(B)),

n(B)
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where $*(#) is the adjoint operator on measures induced by the Markov
operator S(f) on the space of continuous real-valued functions of configu-
rations. Since the point mass is an extreme point in the weakly corapact
and convex set of probability distributions on configurations, it follows
that for any finite set of sites B and configuration ¢,,

lim lim ianr¢0 (P(s) = 0] do(B)) = 1.
px i

Let D = {¢, : limg_,.. lim inf, .. Pryq (¢(s) = 0) = 1}. Let & denote the
product o-field on X and let &, denote the sub-o-field generated by the
events X(—B,) x A, where A is a subset of B,, the cube with center 0,
and edge length 2n + 1. Then E[1,(¢) | #,) = 1, and from the martingale
convergence theorem lim,_,,. E[1,(¢) | ¥,] = E[15(¢) | Flvs-almost surely.
Thus E[15(d) | #]is ve-almost surely 1. =

This idea can be extended somewhat. Consider Example 5.2 with |a| <
1. There for large 8 there is a unique translation-invariant Gibbs state that
converges to (33, — (%)8,,“ ,- Using similar arguments, one can see that
for any pair of players {s, s + 1},

lim lim inf Pr (¢,({s, s + 1) €{(0, 1), (1, 0)} | &o(B)) = 1.
B—,a:

—x

Note that the asymmetric Nash configurations discussed in Secticon 4
are not selected for as 8 — . Nonetheless, the application of this kind
of argument is limited, and in general there is not much to say about the
evolution of these processes from non translation-invariant initial condi-
tions. There are two difficulties. First, when noninvariant Gibbs states
exist, many Gibbs states exist. The set of stationary distributions must
be large, even in one and two dimensions where the only stationary distri-
butions are Gibbs states, and there is no hope of knowing where the
process goes. However, the existence of noninvariant Gibbs states is a
bit delicate. Certainly the hypothesis of Theorem 6.3 must fail. For 2 x
2 games, if & = 0, this requires a = 0. If b < 0, this requires that |a| be
sufficiently small. But even when there is a unique Gibbs state, a second
problem arises. The arguments that prove ergodicity rely on translation
invariance in a fundamental way (except in the case of a one-dimensional
lattice). We are up against a constraint of technique. Even so, Fact (10)
is informative. Theorem 6.3 and the next theorem demonstrate how order
can arise from an initial disordered state. Fact (10) says that, when these
conditions fail to hold, it is still true that disorder does not arise out of
order. Moreover, in dimensions [ and 2 where every stationary distribution
is Gibbs, whenever there is a unique Gibbs state, time averages of the
expectation of any continuous function of configurations, given the initial
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configuration, converge to the expectation of the function with respect to
the Gibbs state.

6.3. Coordination Games and Perturbed Best-Response
Strategy Revision

The analysis of coordination games with two strategies is exactly that
of the attractive stochastic Ising models. The analysis of coordination
games with an arbitrary finite number of strategies proceeds by coupling
a many-state system to a two-state system. The results on coordination
games are not restricted only to games with a potential. The theorem
states a generalization of the Harsanyi-Selten risk-dominance criterion
for two-by-two games, which is sufficient for asymptotic equilibrium selec-
tion in log-linear strategy revision processes.

DeFINITION 6.4. A symmetric two-person game with payoff matrix G
is a coordination game if, for all pure strategies v and w, g, > g...

In coordination games, each diagonal element is a Nash equilibrium
outcome, and there are no pure strategy Nash equilibrium outcomes other
than the diagonal elements.

THEOREM 6.4. Suppose that G describes a two-person coordination
game and that min., (G — Gio) > maxi., (G — Gg). Then for both
log-linear strategy revision and perturbed best-response strategy revision,

lim lim ianr% (dfs)=0)=1
/3——)::; [~

Jor each initial configuration ¢y and site s.

There will be games to which Theorem 6.3 applies that fail to satisfy the
condition of Theorem 6.4. The importance of Theorem 6.4 lies in the fact
that it addresses payoff matrices that do not have potentials.

The existence of a potential is not robust to the elimination of V-
dominated strategies, but the results of Section 3 imply that their presence
should not matter for determining large-B8 asymptotics. The following
theorem is a straighforward application of the coupling technique dis-
cussed in Appendix 3. It states that mere best-response equivalence (rather
than strong best-response equivalence) to a potential game suffices to
characterize asymptotic behavior in terms of the potential.

THEOREM 6.5. Suppose that payoff matrix G is best-response equiva-
lent to matrix G', which has a potential. Let D denote an event that
depends upon the configuration of only a finite number of players, and
consider both log-linear and perturbed best-response strategy revision.
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For an initial distribution v, if

limlim Pr, (¢, € D) =1

ﬁ—-»x I~
for the process with matrix G', then for the process with matrix G,

lim lim inf Pr, (¢, € D) = 1.

ﬁ-«) x —>x

7. CONCLUSION

With respect to the emergence of equilibrium in coordination games,
my work is similar in spirit to Kandori ef al. (1993) and Ellison (1932).
Kandori et al. consider stochastic perturbations of a discrete-time deter-
ministic population dynamic in two-strategy games that has the **‘Darwin-
ian property,’” satisfied by best-response, that the frequency of a strategy
in the population increases at date ¢+ + 1 if and only if it is the unique
best-response to the current distribution of play. I motivate my model
without appealing to a matching story, but if built on a finite lattice, the
“‘global interaction’’ version of my perturbed best-response process is
exactly a continuous-time version of the Kandori et al. model with best-
response strategy revision with the one difference that, in my processes,
players have randomly arriving revision opportunities.

In two-by-two coordination games I find the same selection principle
at work that these authors do—selection for the risk-dominant equilibria.
Section 6 contains some extensions to # X n games that are easily accessi-
ble with my analytical apparatus. My focus on local rather than global
interactions is similar to Ellison’s, and my analytical apparatus gives
information on convergence rates. Ellison (1992) has shown that, in the
Kandori er al. model with best-response strategy revision, rates of conver-
gence for local interaction exceed those for global interaction. Further-
more, rates of convergence shrink as the radius of interaction grows. In the
models presented here, the same phenomenon arises in a more dramatic
fashion. 1 have computed some examples showing that in two-strategy
coordination games with a unique risk-dominant Nash equilibrium and
perturbed best-response strategy revision, where switch rates depend
upon the average behavior of the population, the strategy revision process
can fajl to be ergodic. Both equilibria are possible limits, and limit behavior
is completely determined by the initial distribution of configurations. This
behavior difference is quite striking. It suggests that the global equilibrium
selection results of Kandori et al. have an unsuspected delicacy. However,
the general comparison of local versus global interaction in strategy revi-
sion processes is still an open question.
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The research presented here raises other interesting questions. One is
the study of best-response strategy revision. For the strategy revision
process of Example 5.1 with x = 4, log-linear strategy revision is ergodic
for all B, and both perturbed best-response and log-linear strategy revision
select the equilibrium in which all players choose up as 8 gets large. On
the other hand, simulation of the simple best-response strategy revision
process shows that the outcome depends strongly on the initial conditions
of the process. If the initial frequency of down is sufficiently high, the
process converges to all players choosing down. Although this behavior
is very plausible, as yet there is no theoretical explanation for it.

Another question has to do with the specifics of the strategic interaction.
I have assumed that the value of an alternative to any player is the sum
of the values of the simultaneous interactions with each of his neighbors.
The matching models so popular in much of evolutionary game theory do
not work this way; there the value of an alternative depends upon the
current match. It seems likely that the behavior of strategy revision pro-
cesses is very sensitive to the interaction technology. Different interaction
technologies lead to different kinds of infinite particle systems. This is
good news, since the stochastic Ising models and their generalizations
that have driven much of the analysis in this paper are particularly hard
to work with. Other appealing matching technologies lead to percolation
processes and processes akin to the voter model, which are easier to
grasp.

Game theorists have already recognized that evolutionary forces govern
population behavior. The next step is to move from a broad description
of evolutionary outcomes to a more specific understanding of the mechan-
ics of how the evolutionary forces work. In all likelihood, this will require
a micro-level examination of the processes of strategic interaction similar,
at least in spirit, to Ellison’s model and the models presented here.

APPENDIX 1: PROOFsS

A stochastic strategy revision process is a continuous-time Markov process of strategic
choices of the players as described in Section 2. Formally, the state space for the process
is the space of configurations of the population, X = [1,c,« W,, where W, has the discrete
topology, and X the product topology and its associated Borel o-field.

A Markov strategy revision process describes a Markov semigroup S(1): C(X) — C(X},
where C(X) denote the space of continuous functions on X (with the sup-norm topology).
They are characterized by their semigroup, which is in turn characterized by its infinitesimal
generator. Let Cp(X) denote the subset of C(X) containing those functions whose values
depend on only finitely many coordinates: fis in Ce(X ) if there is a finite set T of sites such
that, if ¢(T) = o(T). then f(d) = f(n). The set Cp(X) is dense in C*(X). Let Q: Cp(X) —
Cy(X) be the linear map given by

Qfm) =2 > (fg) = fghp,w | p(V). (A.1)

SES weW
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Straightforward calculations show that 10, the closure of Q) in C(X), is a generator of S{r).
Thus, for every initial distribution u of configurations, there exists a Markov process corre-
sponding to S(7) with initial distribution u and sample paths that are right-continuous with
left limits and that has the strong Markov property with respect to the usual filtration (Eithier
and Kurtz, 1986, Theorem 4.2.7).

The analysis of stochastic strategy revision processes depends on an additional concept,
that of reversible distributions. A distribution u on the state space of a Markov process is
said to be reversible if the sample paths of the two processes {X(r), — = <t < =} and {X(—1),
—o < 1 < w} have the same distribution. The semigroup characterization of reversibility is
that for all f, g € C(X), [ fS()g du = [ g8(t) f du. From this characterization it is clear
that if the distribution u is reversible, then it is also stationary. In terms of the generator
Q of the semigroup, uis reversibleifand only if [ fQ g du = [ gQfdu. Reversible distributions
are used to prove Theorems 6.1 and 6.2.

Proof of Theorem 4.1. Let 1%(n) denote the function that takes on the value | when
7n(S) = &(S) and 0 otherwise. These indicator functions are continuous and span the space
of continuous functions with finite support, so | 0, 18(n) du(n) = 0 for all such functions if
and only if w is stationary. Computing, this condition is

[ 3 PrMin. ) = ¢(5). ns) # ¢(s). n5-; = bs)
J
— Pr(M(n, 5) # &(s), n(s)) = dls3), ns_; = ®s) du(n) = 0.

This and algebraic manipulation of the statement
Pr(ns = ¢g) = Pr, (M(n, 5)) = &(s)). n5 = ¢y5) + Pr, (M{n, 5) # $(s)), ng = ds)
give
; Pr,(ns = ¢5) — Pr(M(n, s) = $(s), 75 = b5 =0,
which is Eq. (4.1), and conversely. ®

The analysis of this and the next appendix uses the following lemma:

LEMMA A.1. The following statements are equivalent for a stochastic-choice strategy
revision process.
1. w on X is a reversible distribution;
2. forall p € X,

win i (s = &(s) [ n(1) = (1) for t # s} = p {P(s) | H(V )} (A.2)

3. for all f € D(X) and for each site s € Z¢,

L 3, () — femlptw | n(V.} dum) = 0. (A3)
weE

Condition 2 and Theorem 5.1 imply that the reversible distributions are the Gibbs states.
Condition 3 is sometimes known as detailed balance. The proof of this Lemma follows
along the lines of Liggett (1985, Proposition 1V.2.7) and so is not presented here.
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Proofof Thearems 5.2 and6.2. Theorem 5.2 follows from Theorem 6.2 since all symmetric
two-person games have a potential. To prove Theorem 6.2, consider first best-response
strategy revision. If ¢ is a Nash configuration, a check of the definition shows that the point
mass 8, is a reversible distribution. It follows from the detailed balance condition that if u
is reversible, then for all players s € §,

[ [ > Gow, (1) ~ G(¢<s),¢<r))]pr<w|¢m<d¢)=0.

1€V LwesMd.s)

(Recall that M (¢, s) is the set of best responses to configure ¢ by player s.) Each term
inside the square brackets is nonnegative. For the left-hand side to equal 0, each term on
the right must be 0 almost surely, and so we have that almost surely ¢(s) € M(g, s). Since
Z4is countable,

uld: d(s) EMip,s) forallseZ)=1. =m

Thus the reversible distributions for best-response strategy revision are precisely those that
put all their mass on the set of Nash configurations.

It is not hard to show that for log-linear strategy revision, the correspondence that maps
parameters (8, G) to reversible distributions is upper hemicontinuous. Lemma A.1 states
that the reversible distributions are the Gibbs states, which proves the first statement of
the theorem. Conversely, if N = ¢, then for large 8, Gibbs states do not exist. This means
that the consistency conditions (6.2) fail. But these conditions are independent of 8, so for
no B do Gibbs states exist. B

APPENDIX 2: EXISTENCE OF GIBBS STATES

In this appendix, | discuss the existence of Gibbs states for log-linear strategy revision
when [W| > 2. Not every game has Gibbs states. Section 5 notes that the Eq. (6.2) is
necessary for the existence of Gibbs states, In this appendix, I show that this ‘‘path indepen-
dence’" condition is sufficient as well.

THEOREM A.l.: Let {p,} denote a system of choice probabilities for a log-linear strategy
revision process such that for all w € W and each player s and configuration ¢, p, (w | ¢)
> 0. Then a Gibbs state exists for { p,} if and only if for all players s and t, any four actions
u, v, w, x € Wand any configuration ¢ € X, Equation (6.2) holds.

This condition is basically Kolmogorov's condition for the reversibility of a Markov chain.

Choice probabilities are invariant to the addition of a column-specific term to each element
of the matrix G: If G'(v, w) = G(v, w) + h(w), then G and G’ give rise to identical choice
behavior in Eq. (2.3). Thus with no loss of generality we can assume in the following theorem
that the column sums of G are 0: £, G(v, w) = 0 forallv € W,

THEOREM A.2. The matrix G admits a reversible distribution with linear f if and only
if the mairix H(v, w) given by

H.w) = 6. ) - & 5 G, w')
wEW

is symmetric.
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The proofs of these theorems (and that of Theorem 6.1) rely heavily on the symmetry of
the neighborhood structure-—that the neighborhood relation is symmetric. When externalities
are directed in some way, upstream players can affect downstream players, but the converse
is false. Effectively, each player has only upstream neighbors. It will be evident from the
proof of Theorem A.1 that in such a case no reversible measures can exist.

Proof of Thearem A.1. Let B(n) = [—n, nl? denote the cube of side-length 2n + 1
centered at the origin of Z¢, and fix a configuration n(B(n)) off of B,.

DEFINITION A.l. A collection p{- | -}; W x X[B(n)UaB(m)] — [0, 1] of conditional
probabilities is consistent on B(n) if for each configuration n(B(n)") of sites not in B(n) there
is a probability distribution w, {-} on X[B(n)] such that for all ¢ € X(B(n)), s in B(n)
and v € W,

[.L,,{(b(s) =v I d)(B(”)/{S})} = p{U l (d)(f))yey"'ns(n)‘ (Tl(l))revxﬂas(")}-

According to Lemma A.1, a probability distribution x on configurations is reversible if and
only if, at any site s, the conditional probability distribution on the actions at s given the
configuration of s is equal to the selection probability distribution p{¢(s) | $(V,)}. This implies
that the system of conditional probabilities described by p is consistent on each B(n).
Conversely, according to Preston (1973, Theorem 5.3), if the conditional probabilities are
consistent on each B(n), then there is probability distribution ¢ on X that satisfies Eq. (A.2)
and so, from Lemma A.1, is reversible. Thus the existence problem for reversible probability
distributions is equivalent to the consistency of the conditional probabilities p on each E(n).

It is easy to see that the collection of conditional probabilities p given n(dB(n)) describes
the conditional probabilities from some distribution w, on B(n) if, and only if,

log w1t} ~ log wdei} = log p{u | &(V, N B()), n(V, N aB(m)}} (A.4)
—log p{w | $(V, N B(n)), n(V, N aB(n))}.

By chaining together configurations that differ at only one site, we define odds ratios from
which we can construct a distribution.

LEMMA A.2. Let X be a finite set, and suppose that for every pair of elements x, y €
X a number l(x, y) is given. Suppose that l(x, y) = —l(y, x), and suppose that for all x, y
and z, Kx, y) + y, 2) = Kx, z). Then and only then does there exist a probability distribution
p on X such that for all x and y, x, ¥) is the log-odds ratio log p(x) — log p(u).

Proof. This is a simple computation. B

DEFINITION A.2. Let ¢ and ¢ denote two configurations of B(n). A path from y tc ¢
is a finite sequence of configurations ¥y, . . . , Y such that
Ly = ¢ and Yx = &;
2. ¢y and s, _; differ only at a single site ¢, € B(n).
A circuit is a path such that ¢ = iy = Y.

LEMMA A.3. Suppose that for every pair of configurations 8 and { of B(n), which differ
at only one site, a number K8, U) is given. There exists a probability distribution ., on B{n)
such that K9, {) = log u,(8) — log u,(§) if and only if, for any circuit sy, . . . , by, the sum
S Wy, ) = 0.

Proof. This condition is clearly necessary. To check sufficiency, suppose that the condli-
tion is true. Then if ¢ and ¢ are any two configurations connected by the path y,, . . .,
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¥y . define K, @) to be the sum ZL.| log w(,) — log u(Yy_,) = 0. This sum is independent
of the path chosen, for otherwise, by traversing from ¢ to ¢ along one path and back along
another for which the sum differs, we would have constructed a circuit for which the sum
is not 0. Now it is easy to check that the odds ratios satisfy the conditions of Lemma A.2. W

Next is a characterization of path independence.

LEMMA A 4. Suppose that for every pair of configurations 6 and { of B(n), which differ
at only one site, a number K8, {) is given. The sum L, (¢, ¥,_)) = 0 along any circuit
if and only if, for any configuration 0, sites s and t, and choices v,, w,, v,, and w,, such
that 8(s) = v, and 6(1) = v,

HOYs, 8) + 107y, 07) = U6, 6) + 1(05y™7, 6}).
Theorem A.1 follows from Eq. (A .4) and Lemmas A.3 and A.4. Suppose that the collection
pi-| ) W x X[B(m) U aB(m)}— [0, 1]

of conditional probabilities is consistent on B(n). Then for configurations 8 and {, which are
identical except at one site, the log-odds (8, {) must be given by Eq. (A.4), and the conditions
of the theorem now follow from Lemmas A.3 and A.4. Conversely, suppose that the log
differences

log p{v | &(V, N B(n)), n(V, N aB(n))} — log p{w | $(V, N B(m)), n(V, N 8B(n))}

satisfy the hypotheses of the theorem. For 6 and {, which are identical except perhaps at
site s, define

16, 2) = log plo(s) | LV, 0 Bn)), n(V, N aB)} — log p{Lls) | LV, N B (n)), n(V, N aB(n))}.

Then the numbers 8, {}) satisfy the condition of Lemma A.4, so the sum along any circuit
is 0, and the result follows from Lemma A.3.

The proof of Lemma A.4 is too long to include here, but the idea is very simple. Consider
a circuit Y, .. ., Y . and suppose that the condition of Lemma A.4 is satisfied. If a loop
like that described by the lemma’s condition is added or subtracted, the sum of the terms
(., ¥, ;) remains unchanged. By making such modifications, the circuit can be retracted
to a constant circuit Y5, = ¥, = ---. The sum along the constant circuit is 0, so the sum along
the original circuit must be 0 too.

Proof of Theorem A.2. Define the matrix A = G — H. Then A, is the average of the
elements of the vth row of G. Since the columns of G sum to 0, so too do the columns of
H and A. Since the elements of H are deviations from the row averages, the row sums of
H are all 0. The conditions of Theorem A.l gives. in this case,

(Gw, V') —Gu, v')} + (Gw', w) — G’ w)) = (Gw', v)
— G, v) + (Glw, w') — G(v, w'))
forall v, w, v, and w' in Wand r — s € V;;. Thus

(Hiw,v') — Hv, v')) + (H(w', w) ~ HU', w)) = (H(w', v}
- H(v', v)) + (H(w, w') ~ H(u, w')).
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(Note that the A terms cancel out.) Summing over w and dividing by K gives
—H{v, V') = (H(w'v) — H@', v)) — H(v, w').
Summing over w’ and dividing by K gives
H(v, 0"y = HQU', v),

which proves the theorem. ®

Proof of Theorems 5.1 and 6.1. These Theorems follow immediately from the identifica-
tion of Gibbs states with reversible distributions. Condition 2 of Lemma A.l establishes
that a distribution is reversible if and only if the conditional probabilities for behavior by
any single player are those given by the potential from Eq. (6.1). Thus any Gibbs state is
reversible. For any reversible distribution, these one-player conditional distributions
uniquely determine the conditional distributions on all finite-player sets through the consis-
tency conditions, and a calculation shows that these are exactly those given by Eq. (6.1). &

APPENDIX 3: COUPLING

This appendix details the coupling methods used to prove Theorems 3.2, 5.4, and 6.4.
Coupling is a method of building two stochastic processes on the same probability space
so as to compare their sample-path behavior.

A.3.1. The Construction

Given choice probabilities p!(- | -), p2(:|') and **alarm clock’* rates A,(-) and A,(-), let
Aiw]m, ) = min{A(npliw | 7), MQpiiw | D}

For each s, let D, C W. Define the sets

A=SBUC,
where
B={s:m(s). Us) E D}
C={s:m(s), {s) € D,}.
Define

Qfn. 0 = S S nmpltw | M FmY, D) — fn, D)

SEA w

+ 2 2 AP O, 8 - . 0)

+ 3 T pwln 0U@rL ) ~ f0.0) (A.5)

SEBUC w
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+ 3 T mplee [ m) = plw |0 INF@E D) — £, D)
SEBUC w

+ 3 2 OLPIW (L) ~ pw{m, ). L) ~ f. ).

SEBUC w

Define n =D { if 9(s) € D, implies [(s) € D,. Let Ky = {{(n, {) : n =D [}.

THEOREM A.3. Suppose that whenever n = D {,

MOPAw [ = Nmplw([m)  forw & D, m(s), L(s) € D,

MOPAW D = M @piis|m)  forw € D, n(s), Ls) EZ/ D,.
Then forall (v, {) € Kpandt = 0

Pr((n,, §) € Kpl (o, L EKp) = 1.
Proof. The proof of this theorem follows the proof of Ligget (1985, Theorem III.1.5). =

Let M, denote the set of all monotone continuous real-valued functions on X; that is,
[ € My iff n =D { implies f(n) = .

DerFINITION A.3. If u; and u, are probability measures on X, then u; =D pu, iff Ir
du) = [ fdu, < forall f€ M.

COROLLARY A.l. Under the assumptions of Theorem A.3, if u, and u; are probability
measures on X such that p) =D p,, then u,S,(t) =D p,5,(0).

COROLLARY A.2. [Ifthe process with semigroup S, is ergodic with stationary distribution
u, then for any f € M and distribution v, f fdu = lim inf,_,,, sz(r)f dv.

A.3.2. Applications

The coupling just discussed has several applications: Coordination games, iteratively V-
undominated strategies, and stochastic perturbations of best-response strategy revision.

A.3.2.1. Proof of Theorem 6.4. First I prove the theorem for log-linear strategy revision.
Rescale the payoff matrix. For all i let

G, ifj =0,
Hl' = e
G;+ Gy —G; ifj>0.

The matrix H has the same selection probabilities as does G, Hy = Gy, H; = G, for
ji>0.

Take D, = {0}, let {p?} denote the selection probabilities derived from the stochastic
strategy revision process with parameter 8 and payoff matrix H, and let {p!} denote the
selection probabilities derived from the stochastic strategy revision process with parameter
B and payoff matrix H, where

Hy ifi=j=0
H max. Hy ifi=1,j=0,
P \ming, Hy  ifi=0j=1,

H, ifi,j=1.
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Computations show that this is a successful coupling in that Theorem A.3 applies. Conse-
quently,

lim inf Pri(¢,(s) = 0) < lim inf Pr?(¢,(s) = 0)

trx tax

for all 8. The point of this coupling is that the process with selection probabilities ! pl} is
essentially a stochastic Ising model, because the probability of selecting strategy 0 depends
only on the fraction on neighbors that are 0 and neighbors that are not. Consider this process,
and define the new process {¢,} as follows. The state space is the space of all configurations
¢: 24— {0, 1}. Let ¢(s) = 0 iff n(s) = 0. The {¢,} process is a stochastic Ising model. A
computation shows that the potential is given by Eq. (5.2), where

N

. 2
a = %(mm{gm - g} — max{gy — gu} + 5oy log (W] — l))
k=] k=1 BIV\I /
b=} (r?j]n{gm = gt + TaIX{g“ - Hm})

For all coordination games, & > 0. By hypothesis, a > 0 for large 8. As 8 grows large,
the set of Gibbs states converges to those (for corresponding 8) of the stochastic Ising model
with potential ' = b and o’ = (1) (ming= {goo — £r0} — Maxgzi{gn — gu})- By Fact (8), the
{d,-process is ergodic, and its limit distribution converges to point mass on the configuration
&(s) = 0 as 8 grows large. The events {¢(s), = 0} and {n(s), = 0} are identical for all 1, so
for each site s,

im lim Pr{n(s), = 0} = 1.

I
fox pax

The result follows from Corollary A.2. The result for perturbed best-response strategy
revision follows then from theorem A.3. below. ®

A.3.2.2. Proof of Theorem 3.2. Let the system {p} be given, and let V C W denote the
set of iteratively V -undominated strategies. To prove Theorem 3.2, assume w.l.o.g. that
s = 0. Choose a large cube B C Z¢ around 0 as in the proof of Theorem 3.1, a fixed strategy
v € W, and define the system {g,} as follows:

plwin) ifs€Borw=up,

dwin) = .
4ln 0 otherwise.

Note that g, has an alarm-clock rate that is different from 1 and is »-dependent. The sites
in B behave under {g} just as they do under {p;}. Outside B, the sites freeze once they
reach v. Let 7, = inf{r : n(aB) = v}, and let 7, denote the kth time after 7, that one of
the Poisson alarm clocks inside B rings. The intervals (1, — 7,_,) are independently and
exponentially distributed with mean 1/|B|. The process {, (B)};=, is a Markov chain with
transition matrix Q4. Because each g,(w|7n) > 0, itis irreducible and aperiodic, and therefore
ergodic with stationary distribution ug. Thus the {g,}-process is ergodic with a limit distribu-
tion whose projection onto X(B) is ug.

The system {g,} can be coupled to the system {p,} as in Theorem A.3, where D, = W/
{v} for s & B, D, = V, and D, = W for all remaining sites (taking p! = g and p* = p.) The
indicator function f§(n), which takes on the value 1 if n(0) € V and 0 otherwise, is in .U,
so for any initial distribution » on X, lim inf, [ S(fY () dv = [ £} (n) dpp.
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It remains to see that given € >0, [ fi (n) dug > 1 — & for all 8 sufficiently large. Consider
the matrix Q. Every irreducibie recurrent class has n(0) € V, so for any stationary distribu-
tion, Pr(»(0) € V) = 1. Since the stationary distribution correspondence is u.h.c,
Pr(n(0) € V) > 1 — ¢ for B8 sufficiently large. W

A.3.2.3. Coupling to other Perturbed Best-Response Models. A general specification of
stochastic choice involves stochastically perturbing best-response choice. Let { p,} denote a
system of choice probabilities for best-response dynamics. Let {g,} denote arbitrary selection
probabilities depending on the same neighborhoods V, and such that min, , g{w { 7} > 0.
Suppose that, like { p,}, these selection probabilities are shift invariant. Let {r} denote the
system with

rovim) =0 — eplwln) + eqlw| ).

Let Br,(n) denote the set of best responses to n at site s; the set of w € W for which
pw|m) =1

Suppose that ¢ is sufficiently small that r(v | ) > r{w | n) for all v € Br(n) and w &
Br,(%). Let | pf} denote the system with log-linear stochastic choice, with sensitivity parame-
ter 8. At 8 = 0 all choices are equally probabie, so for all 7,

>] €
rw , for w Br,(n).
(w{n) - pwim)  forw & [ Brm)

Let 3 denote the largest 8 for which this is true for all 5. Clearly, as & goes to 0, B goes
to x.
For B = =, log-linear dynamics correspond to best-response dynamics, so for all 7,

<| . €
rw|n) - piwi|m) for w ¢ Br,(n).

Let B denote the smallest 8 for which this is true for ali n. Again, B goes to = as & goes
to 0.

Application of Theorem A.3 and Corollary A.1 to the systems {r,} and {p?}, where 8
equals B and B, respectively, gives the following result. Let Pr; denote the probability
distribution on sample paths for log-linear choice with parameter 8, and Pr, the corresponding
probability distribution for perturbed best-response choice with parameter €.

THEOREM A 4. Let D= D C W. Iflimg . Pry (mfs) € D) = 1, then lim,_, Pr, (nds) €
D) = 1. If limy_.. Pry Infs) € D) = 0, then lim,_, Pr, (n(s) € D) = 0. In the first instance,
take {p!} = {pP and {p?} = {r). In the second, take { p!} = {r,} and { p}} = {p*}.

Theorems 5.4 and 6.4 are a consequence of Theorem A 4.
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