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A Coupling Argument for the Random

Transposition Walk

Olena Blumberg

Abstract

This paper explores the mixing time of the random transposition walk

on the symmetric group Sn. While it has long been known that this walk

mixes in O(n log n) time, this result has not previously been attained using

coupling. A coupling argument showing the correct order mixing time is

presented. This is accomplished by first projecting to conjugacy classes,

and then using the Bubley-Dyer path coupling construction. In order to

obtain appropriate bounds on the time it takes the path coupling to meet,

ideas from Schramm’s paper “Compositions of Random Transpositions”

are used.

1 Introduction

This paper studies the random transposition walk on the symmetric group Sn

– in card shuffling terms, the possible permutations of a deck of n cards. Here’s
a description of the random walk: lay n cards out in a row, and pick one card
uniformly with your right hand, and another card independently uniformly with
your left hand (note that you may have picked the same card.) Then, swap the
cards – this is an extremely simple shuffling scheme for n cards.

Below, we study the mixing time of the above random walk: that is, the
number of shuffles that it takes to thoroughly mix up the deck (see Section 2 for
a precise definition.) To be more specific, a coupling argument demonstrating
that the mixing time of the random transposition walk is O(n log n) is presented.
Coupling is an intuitive probabilistic technique that bounds mixing time in the
following way: define a process (Xt, Yt)t≥0 such that both (Xt)t≥0 and (Yt)t≥0

are Markov chains with the same transition matrix, but with Xt starting at x
and Yt starting at y. As will be described more precisely in Section 2 below, the
goal is to have the two chains meet: by the time that this has happened with high
probability for every choice of x and y, it can be shown that the Markov chain has
mixed. This technique is usually traced back to Doeblin [9]; two good reference
books which illustrate its many uses are Lindvall’s “Lectures on the coupling
method” [15] and Thorisson’s “Coupling, stationarity, and regeneration” [20].

The existence of a coupling argument showing an O(n logn) mixing time is
a long-standing open problem. Due to its simplicity and symmetry, the random
transposition walk was one of the first ones considered in burgeoning field of
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Markov chains mixing times. As noted in [8], the mixing time of this walk was
first bounded by Aldous in 1980, who showed that it must be between order n
and n2 and conjectured that it must be of order n logn. This was proved in 1981
in “Generating a random permutation with random transpositions” by Diaconis
and Shahshahani [8]. This paper uses Fourier analysis to show that the walk
experiences a cut-off, mixing in a window of order n around time 1

2n logn.
The beautiful proof in [8] uses the tools of representation theory and Fourier

analysis, and hence is non-probabilistic. While a purely probabilistic strong
stationary time proof for an O(n log n) mixing time was discovered by Broder
in 1985 [3], a coupling argument proved to be more elusive. The main difficulty
is due to the fact that a Markovian coupling cannot succeed; indeed, Lemma 8
below shows that such an approach can never prove a bound of order better than
n2. It has been shown by Griffeath [10] and then Pitman [18] that a maximal
coupling must exist, but it evidently has to be non-Markovian. There has been
continued interest in finding such a coupling – for example, Peres named it as
an interesting open problem in [17]. This paper resolves this problem. (Another
approach for finding such a non-Markovian coupling can be seen in the preprint
“Mixing times via super-fast coupling” [13].)

This question is approached here by first projecting the random transposition
walk to conjugacy classes. T his projection is also a Markov chain, called a split-
merge random walk [19]. Using the fact that the random transposition walk
started from the identity is constant on conjugacy classes, it suffices to find the
mixing time of the split-merge random walk. The path coupling technique of
Bubley and Dyer [4] is used to examine the split-merge random walk. However,
this is not straightforward, since in the worst case scenario, the split-merge
random walk contracts by only 1− 1

n2 .
It is shown here that on average, the split-merge random walk does indeed

contract by 1− 1
n , enabling the use of path coupling to conclude that the walk

mixes in O(n logn) time. This argument does not, however, show cut-off: in-
deed, as noted in Remark 37 below, the constant in front of the n logn is very
large. To show that the contraction coefficient is of the right order, the tech-
niques of Schramm from his paper “Compositions of random transpositions”
[19] are used. He shows that large cycles in the random transposition walk
emerge after time n

2 , and then proves the law for the scaled cycles. Methods
from “Compositions of random transpositions” have given rise to the wonderful
paper “Mixing times for random k-cycles and coalescence-fragmentation chains”
by Berestycki, Schramm, and Zeitouni [2], which uses probabilistic techniques
to get the right answer for a generalization of the random transposition walk.

2 Background and Definitions

Before stating the main result of this paper, a number of definitions are nec-
essary. If µ and ν are two probability distributions on a finite state space Ω,
then the total variation distance between µ and ν is defined to be ‖µ− ν‖TV =
1
2

∑

x∈Ω |µ(x)− ν(x)|. For a Markov chain with transition probabilities Q(x, y)
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and stationary distribution π, the total variation distance at time t is defined
to be d(t) = ‖Qt(x, ·)− π‖TV and the mixing time is

τmix(ǫ) = min {t | d(t) ≤ ǫ}

Conventionally, τmix is defined to be τmix(1/4).
A coupling of a pair of Markov chains both with transition matrix Q is a

process (Xt, Yt)t≥0 such that both (Xt)t≥0 and (Yt)t≥0 are Markov chains with
transition matrix Q, but which might have different starting distributions. The
coupling inequality (Corollary 5.3 in [14]) states that if (Xt, Yt) is a coupling of
a pair of Markov chains such that X0 = x and Y0 = y, and Tx,y is a random
time at which the chains have met, then

d(t) ≤ max
x,y

P {Tx,y > t}

The above inequality allows coupling to be used to bound mixing times. It is
now possible to state the main result of this paper:

Theorem 1. There exists a coupling argument that shows that the random
transposition walk on Sn mixes in time of order n logn: that is, it demonstrates
that there exists a constant C such that

τmix ≤ Cn logn

Before launching into the proof, it is instructive to consider the many ways
an O(n logn) mixing time has been obtained for this walk, as well as the uses
of the result. This bound was first obtained by Diaconis and Shahshahani in
[8]. This result is beautiful and extremely precise; however, the scope of the
technique is limited as it requires fully diagonalizing the random walk. While
this is possible for a number of walks, including walks that are not random
walks on groups, this is a drawback to the method. This result is also extremely
useful for comparison theory. As shown by Diaconis and Saloff-Coste in [7], the
Dirichlet form can be used to compare all the eigenvalues of the chain, resulting
in good bounds for a variety of walks. For example, Jonasson uses this result
in [12] to show that the overlapping cycle shuffle mixes in O(n3 logn) time.

As noted above, the first probabilistic proof of the result was by Broder [3]
and used strong stationary times: stopping times T such that the conditional
distribution of XT given T is stationary. Since the stationary distribution for
the random transposition walk is uniform, this is equivalent to stating that for
all σ ∈ Sn and all positive integers k,

P(XT = σ | T = k) =
1

n!

The following is Broder’s strong stationary time argument, as summarized in
Chapter 9 of [14]. Let Rt and Lt be the cards chosen by the right and left hand,
respectively. Start the process with no marked cards, and use the following
marking scheme: at each step, mark a card Rt if Rt is unmarked, and either (a)
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Lt is marked or (b) Rt = Lt. Define the stopping time T to be the first time all
n cards are marked. It is easy to show that this is indeed a strong stationary
time, and that T is around 2n logn. This argument provides an O(n log n)
mixing time, but not the correct constant. It was improved by Matthews [16] in
1988 by creating a more complicated rule for marking the cards. This argument
showed a cut-off for the walk at time 1

2n logn. These arguments are probabilistic
and intuitive, and elucidate the reasons for the mixing time in a way that Fourier
analysis does not. However, they are heavily reliant on the symmetry of the
random transposition walk and as such are difficult to generalize.

The recent paper by Berestycki, Schramm and Zeitouni [2] uses a different
approach. Their technique provides the correct answer for the following gen-
eralization of the Markov chain: instead of using a uniformly chosen random
transposition at each step, a random k-cycle is used. This paper obtains the
correct 1

kn logn answer for any fixed k. Like this paper, they begin by project-
ing the walk to conjugacy classes and then make use of the results of Schramm
in [19]. The tools of both this result and Schramm’s original paper are graph
theoretic: for example, a transposition is considered to be an edge in a ran-
dom graph process on n vertices. Unfortunately, this exciting method again
requires considerable symmetry, since the projection to conjugacy classes has to
be a Markov chain. This is also a drawback of the coupling approach which is
presented here.

Another intriguing technique explored by Burton and Kovchegov [13] uses
non-Markovian coupling. While I have found the ideas in this paper difficult,
the approximate approach is that the standard coupling argument by Aldous
which results in O(n2) bound can be improved by ‘looking into the future.’ A
non-Markovian argument with a somewhat similar flavor has previously been
implemented for the coloring chain by Hayes and Vigoda [11]. Here’s a very
approximate sketch of the idea for random transpositions: say that a pair (σ, τ)
in Sn currently differs in the cards labeled i and j. The standard coupling for
this pair transposes the cards with the same labels in both σ and τ , unless the
next transposition is (i, j). However, it is possible to do something different:
if the next step transposes cards labeled i and k in σ, the next step in τ can
transpose either cards labeled i and k or cards labeled j and k. If the coupling
is Markovian, then the choice makes no difference; however, ‘looking into the
future’ can substantially improve the bounds. In work stemming from an unre-
lated project, I hope to show this for a number of different walks in an upcoming
paper.

The argument in this paper proceeds by projecting the walk to conjugacy
classes. It is a well-known result that the conjugacy classes of Sn are indexed
by partitions of n. Recall that a partition of n is an m-tuple (a1, a2, . . . , am)
of positive integers that sum to n, where m can be any integer, and a1 ≥ a2 ≥
· · · ≥ am. Let Pn be the set of partitions of n. The projection of the random
transposition walk on Sn to conjugacy classes is also a Markov chain, called a
split-merge random walk. It is often referred to as a coagulation-fragmentation
chain, and it has been extensively studied – see [6] for some references.
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Definition 2. Assume the random walk is currently at partition (a1, . . . , am).
Then, there are three possibilities for the next move: either merge a pair of parts,
split a part into two pieces, or stay in place. (All of these moves are followed by
rearranging the new parts to be in non-decreasing order.)

• Split: A pair ai can be replaced by the pair (r, ai− r). For each r between
1 and ai − 1, the probability of this particular split is ai

n2 .

Note that this phrasing takes the order into account: here, a more conve-
nient phrasing is the following: for each r < ai

2 , split ai into {r, ai − r}

with probability 2ai

n2 . If ai is even and r = ai

2 , split ai into {r, ai − r} with
probability ai

n2 .

• Merge: Replace the parts ai and aj by ai + aj. This is done with proba-

bility
2aiaj

n2 .

• Stay in Place: Stay at the partition (a1, a2, . . . , am) with probability 1
n .

Example 3. Here is an example of the split-merge random walk. Let n = 5,
and assume the walk is currently at (4, 1). Then, the next step X1 is distributed
as follows:

X1 =



















(5) with probability 8
25

(4, 1) with probability 1
5

(3, 1, 1) with probability 8
25

(2, 2, 1) with probability 4
25

The primary walk under consideration is the split-merge random walk, but
for some of the proofs, the original transposition walk is needed. With that in
mind, make the following two definitions:

Definition 4. For α ∈ Sn, define Cyc(α) to be the partition corresponding to
the cycle type of α. For σ ∈ Pn, let

Perm(σ) = {α ∈ Sn | Cyc(α) = σ}

be the set of all permutations with cycle type σ.

Definition 5. Let (Xt)t≥0 denote the split-merge random walk, and let (X̄t)t≥0

denote the random transposition walk, so that for all t,

Xt = Cyc(X̄t)

Furthermore, let P and π be the transition matrix and stationary distribution
for (Xt)t≥0, respectively, and define P̄ and π̄ analogously for (X̄t)t≥0.

The next argument shows it suffices to consider the split-merge random walk.
The following proof take a little bit of space to write down, but is actually very
simple – the key idea is that the random transposition walk started at the
identity is always uniformly distributed over each conjugacy class. (This also
follows from a more general result – see Chapter 3F of [5].)
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Lemma 6. Let P, P̄ , π and π̄ be defined as in Definition 5 above. Then,

max
α∈Sn

∥

∥P̄ t(α, ·)− π̄
∥

∥

TV
≤ max

σ∈Pn

∥

∥P t(σ, ·) − π
∥

∥

TV

Proof: Since the random transposition walk is a random walk on a group, it’s
vertex transitive. Therefore, for all α ∈ Sn,

∥

∥P̄ t(α, ·)− π̄
∥

∥

TV
=
∥

∥P̄ t(id, ·)− π̄
∥

∥

TV

where id is the identity permutation. Thus, it suffices to show that
∥

∥P̄ t(id, ·)− π̄
∥

∥

TV
≤ max

σ∈Pn

∥

∥P t(σ, ·) − π
∥

∥

TV

Now, let σ0 = Cyc(id) = (1, 1, . . . , 1). It suffices to show that
∥

∥P̄ t(id, ·)− π̄
∥

∥

TV
=
∥

∥P t(σ0, ·)− π
∥

∥

TV
(2.1)

Since the split-merge random walk is a projection of the random transposi-
tion walk, for σ ∈ Pn,

π(σ) =
∑

α∈Perm(σ)

π̄(α) =
|Perm(σ)|

n!
(2.2)

since π̄ is the uniform distribution on Sn. Similarly,

P t(σ0, σ) =
∑

α∈Perm(σ)

P̄ t(id, α)

Furthermore, note that both the identity permutation and the the random trans-
position walk are symmetric with respect to {1, 2, . . . , n}. Hence for any α1, α2

with the same cycle structure, P̄ t(id, α1) = P̄ t(id, α2) for all t. Combining this
with the equation above shows that for α ∈ Perm(σ),

P t(σ0, σ) = |Perm(σ)| P̄ t(id, α) (2.3)

Using Equations (2.2) and (2.3),

∑

α∈Perm(σ)

∣

∣

∣

∣

P̄ t(id, α)−
1

n!

∣

∣

∣

∣

=
∣

∣P t(σ0, σ)− π(σ)
∣

∣

Finally, putting all this together,

2
∥

∥P̄ t(id, ·)− π̄
∥

∥

TV
=
∑

α∈Sn

∣

∣

∣

∣

P̄ t(id, α)−
1

n!

∣

∣

∣

∣

=
∑

σ∈Pn

∑

α∈Perm(σ)

∣

∣

∣

∣

P̄ t(id, α)−
1

n!

∣

∣

∣

∣

=
∑

σ∈Pn

∣

∣P t(σ0, σ)− π(σ)
∣

∣ = 2
∥

∥P t(σ0, ·)− π
∥

∥

TV

which proves Equation (2.1), as desired.
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Remark 7. Although it is not needed, it is very easy to use the triangle in-
equality to prove the opposite inequality to the one in Lemma 2.1. Hence, the
two quantities are actually equal.

Before proceeding to sketch the upcoming proof, it is shown that a Markovian
coupling for the random transposition walk cannot hope to give an O(n log n)
mixing time.

Lemma 8. A Markovian coupling (X̄t, Ȳt) of the random transposition walk
takes at least Ω(n2) time to meet.

Proof: It easy to check that wherever the two random transposition walks
currently are, if X̄t 6= Ȳt, then

P
(

X̄t+1 = Ȳt+1

)

≤
6

n2

To verify this, note that if X̄t and Ȳt differ only in the transposition (i, j), then
the only way to meet is to transpose i and j in one of them, and to stay in place
in the other one; similar arguments hold if X̄t and Ȳt are two transpositions
apart, and in all other cases, the probability of meeting at the next step is 0.
Combining the above inequality with the Markov property leads to the desired
result.

Turn next to an explanation of the idea behind the coupling. The argument
uses path coupling – that is, coupling a pair of split-merge random walks started
at a neighboring pair of elements. This technique was invented by Bubley and
Dyer in [4]; a good reference is Chapter 14 of [14]. To be precise, endow the
state space Ω with a connected graph structure: that is, select a set of edges E′

between elements of Ω, such that for any u, v ∈ Ω, there exists a path between u
and v only using the edges in E′. It is then only necessary to define a coupling
for (x, y) ∈ E′.

Assign lengths l(x, y) ≥ 1 to each edge (x, y) ∈ E′, and define a path metric
ρ on Ω by

ρ(z, w) = min

{

n−1
∑

i=0

l(xi, xi+1) | x0 = z, xn = w, (xi, xi+1) ∈ E′ for all i

}

Furthermore, define the diameter of the set Ω in the usual way as diam(Ω) =
maxu,v∈Ω ρ(u, v) The following theorem is the basic path coupling bound.

Theorem 9. Let (Xt)t≥0 be a Markov chain on a set Ω, and let E′, l and
ρ be defined as above. Let (X1, Y1) be the first step of a coupling started at
(x, y) ∈ E′. Then, if there is a κ < 1 such that for every (x, y) ∈ E′,

E [ρ(X1, Y1)] ≤ κρ(x, y) (2.4)

then for all t ≥ 1,
d(t) ≤ diam(S)κt
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Returning to the random walk under consideration, define neighboring pairs
of partitions to be precisely the pairs which are one step away in the split-merge
random walk. Then, define a coupled process (Xt, Yt) such that X0 = σ and
Y0 = τ , making sure that the distance between Xt and Yt at each step is at
most 1. Here are some useful definitions.

Definition 10. For σ and τ partitions of n, define ρ(σ, τ) to be the distance
between σ and τ induced by the split-merge random walk; that is, ρ(σ, τ) is the
number of split-merge steps it takes to get from σ to τ .

The next definition is useful for finding a lower bound on the probability of
coupling at each step given the current location of the two walks.

Definition 11. Let σ and τ be partitions of n such that ρ(σ, τ) = 1. Then
σ and τ are exactly one merge away, so rearranging parts appropriately and
without loss of generality letting σ be the partition with more parts,

σ = (a1, a2, . . . , am, b, c)

τ = (a1, a2, . . . , am, b+ c)
(2.5)

where b ≤ c. Then, define

s(τ, σ) = s(σ, τ) = b and m(τ, σ) = m(σ, τ) = c (2.6)

That is, since σ and τ differ in the parts b, c and b + c, s(σ, τ) is the smallest
part in which they differ, and m(σ, τ) is the medium part in which they differ.

For later use, define m(σ, σ) = n and s(σ, σ) = n
2 .

In the next section, the coupling is given along with the following lemma:

Lemma 12. Assume that (Xt, Yt) = (σ, τ), for σ and τ such that ρ(σ, τ) = 1.
Then, ρ(Xt+1, Yt+1) ≤ 1, and

P(Xt+1 = Yt+1) ≥
4s(σ, τ)

n2

That is, the chain stays at most distance 1 apart, and gives the above lower
bound for the probability of coupling.

After proving the above lemma, it is shown below that after order n steps,
s(Xt, Yt) is on average of order n. The lemma then implies that the probability
of coupling at each step is of order 1

n , which will show that there is a high
probability of coupling after order n steps. Using the fact that the diameter of
the set of partitions is no greater than n, Theorem 9 shows that the random
transposition walk mixes in O(n log n) time.

3 The Coupling

This section defines the coupling for neighboring pairs for the split-merge ran-
dom walk, and proves Lemma 12. The coupling is defined in such a way that
the distance between Xt and Yt at each step is at most 1 for all t. As usual,
once the two chains meet, they are run together.
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Definition 13. Consider the next step (X1, Y1) of a coupling which is currently
at (X0, Y0) = (σ, τ), where ρ(σ, τ) = 1 and

σ = (a1, a2, . . . , am, b, c)

τ = (a1, a2, . . . , am, b+ c)

where b ≤ c. There are a number of cases, considered in the following order: go
through the possible moves in σ, then provide corresponding moves in τ .

• Operations only using the ai: If ai and aj are merged in σ for any i
and j, perform the same operation in τ . Similarly, if ai is split in σ into
{r, ai − r}, do the same for ai in τ . Then,

X1 = (a′1, . . . , a
′
k, b, c)

Y1 = (a′1, . . . , a
′
k, b+ c)

for the appropriate {a′1, a
′
2, . . . , a

′
k}.

• Merging b or c and ai: If b and ai are merged in σ, merge b+ c and ai
in τ . If c and ai are merged in σ, also merge b + c and ai in τ . In the
first case,

X1 = (a′1, . . . , a
′
m−1, b+ ai, c)

Y1 = (a′1, . . . , a
′
m−1, b+ c+ ai)

where {a′1, a
′
2, . . . , a

′
m−1} = {a1, a2, . . . , am}/{ai}. The case where c and

ai are merged in σ is analogous.

• Splitting b or c: If b is split in σ into {r, b− r} where r ≤ b
2 , then split

b + c in τ into {r, b + c − r}. Similarly, if c is split in σ into {r, c − r}
where r ≤ c

2 , then split b+ c in τ into {r, b+ c− r}. The first case results
in

X1 = (a1, . . . , am, r, b− r, c)

Y1 = (a1, . . . , am, r, b+ c− r)

The second case, where c is split into {r, c− r}, is analogous.

• Staying in place: If the walk stays in place in σ, it is coupled with
either staying in place in τ or with splitting b + c in τ into {b, c}. Since
splitting b+c into {b, c} may have already been coupled with splitting c into
{b, c − b}, let p be the remaining probability of splitting b + c into {b, c}.
Then, couple staying in place in σ with splitting b+ c into {b, c} in τ with
probability min

(

p, 1
n

)

. This results in

X1 = (a1, . . . , am, b, c)

Y1 = (a1, . . . , am, b, c)

That is, the chains will couple.

Couple staying in place in σ to staying in place in τ the rest of the time –
that is, with probability 1

n −min
(

p, 1
n

)

.
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• Merging b and c: Couple merging b and c in σ to any remaining pos-
sibilities in τ . It is easy to check that these are either staying in place or
splitting b + c into {r, b + c − r}. The first leads to the chains coupling;
the second leads to

X1 = (a1, . . . , am, b+ c)

Y1 = (a1, . . . , am, r, b+ c− r)

for some r.

Example 14. As this coupling looks fairly complicated, here are a couple of
examples. The possible pairs for (X1, Y1) are listed, as well as the probability
of each pair.

1. Let (X0, Y0) = (σ, τ) = ((2, 3), (5)). Here, there are no ai, b = 2, c = 3,
and b + c = 5. A description is provided for each pair of moves: the first
move corresponds to σ, the second to τ .

(X1, Y1) :







































((1, 1, 3), (1, 4)), p = 2
25 split 2 as {1, 1}, split 5 as {1, 4}

((1, 2, 2), (1, 4)), p = 6
25 split 3 as {1, 2}, split 5 as {1, 4}

((2, 3), (2, 3)), p = 5
25 stay at σ, split 5 as {2, 3}

((5), (1, 4)), p = 2
25 merge 2 and 3, split 5 as {1, 4}

((5), (2, 3)), p = 5
25 merge 2 and 3, split 5 as {2, 3}

((5), (5)), p = 5
25 merge 2 and 3, stay at τ

2. Let (X0, Y0) = (σ, τ) = ((2, 1, 3), (2, 4)), written with the above convention
that the parts σ and τ disagree on are written last. Here, a1 = 2, b = 1,
c = 3, and b+ c = 4, and the first move again corresponds to σ, while the
second corresponds to τ .

(X1, Y1) :



























































((1, 1, 1, 3), (1, 1, 4)), p = 2
36 split 2 as {1, 1} in both

((3, 3), (6)), p = 4
36 merge 2 and 1, merge 2 and 4

((1, 5), (6)), p = 12
36 merge 2 and 3, merge 2 and 4

((2, 1, 1, 2), (2, 1, 3)), p = 6
36 split 3 as {1, 2}, 4 as {1, 3}

((2, 1, 3), (2, 1, 3)), p = 2
36 stay at σ, split 4 as {1, 3}

((2, 4), (2, 2, 2)), p = 4
36 merge 1 and 3, split 4 as {2, 2}

((2, 4), (2, 4)), p = 2
36 merge 1 and 3, stay at τ

((2, 1, 3), (2, 4)), p = 4
36 stay at σ and τ

Going back to the general case, here is a check that the above definition
provides the correct marginal distribution for Y1. Note that given the way that
the coupling was defined, it clearly provides the correct distribution for X1.

Lemma 15. The coupling in Definition 13 has the correct marginal distribution
for Y1.
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Proof: Since σ and τ share the parts ai, the operations only using the ai are
distributed identically in both and hence pose no problem. Furthermore,

P(Merge b and ai in σ) + P(Merge c and ai in σ) =
2bai
n2

+
2cai
n2

=
2(b+ c)ai

n2

= P(Merge b+ c and ai in τ )

Thus, all the operations involving any ai work properly.
Consider next operations that only involve b and c in σ. Splitting b into

{r, b− r} where r ≤ b
2 in σ is coupled with splitting b + c into {r, b+ c− r} in

τ , and similarly for c. It needs to be checked that this is possible – that is, that
the probability of splitting b + c into {r, b + c − r} in τ is sufficiently large to
accommodate all these moves in σ.

There are a number of possibilities. First of all, if r ≤ b
2 , then clearly

r < b+c
2 , and hence according to Definition 2,

P(Split b+ c into {r, b+ c− r} in τ ) =
2(b+ c)

n2
=

2b

n2
+

2c

n2

≥ P(Split b into {r, b− r} in σ)+

P(Split c into {r, c− r} in σ)

In this case, the probability of splitting b+ c into {r, b+ c− r} in τ is sufficiently
large.

x
Now, if b

2 < r ≤ c
2 , the procedure couples splitting b + c into {r, b + c − r}

with splitting c into {r, c− r}. Thus, since in this case r is still less than b+c
2 ,

P(Split b + c into {r, b+ c− r} in τ ) =
2(b+ c)

n2
≥

2c

n2

≥ P(Split c into {r, c− r} in σ)

which again works.
Finally, if r > c

2 , splitting b+ c into {r, b+ c− r} is not coupled to splitting
either b or c in σ, which obviously does not pose a problem. None of the other
moves considered in Definition 13 could be an issue, and hence the marginal
distribution of Y1 under this definition is correct.

The next step proves Lemma 12. This states that the coupled chains stay
at most one step apart, and that

P(Xt+1 = Yt+1) ≥
4s(Xt, Yt)

n2

Proof of Lemma 12: It should be clear from Definition 13 that the coupling
stays at most one step apart for all t. To show that if (Xt, Yt) = (σ, τ), where
ρ(σ, τ) = 1, then

P(Xt+1 = Yt+1) ≥
4s(σ, τ)

n2

11



let

σ = (a1, . . . , am, b, c)

τ = (a1, . . . , am, b+ c)

where b ≤ c. Then by Definition 11, s(σ, τ) = b.
From Definition 13, the chains can couple either if σ stays in place, or if b

and c are merged in σ. Consider those two cases separately.

Staying in place in σ: The chains will couple if σ stays in place and b+ c is
split in τ into {b, c}. As noted in the definition, these are coupled together with
probability min

(

p, 1
n

)

, where p is the remaining probability of splitting b + c
into {b, c} in τ – the probability that this split hasn’t already been coupled to
something else. To find a lower bound on p, first note that splitting b + c into
{b, c} in τ couldn’t have been coupled with any splits of b in σ. However, it
might have been coupled with a split of c in σ. Consider two cases: c < 2b and
c ≥ 2b.

If c < 2b, then splitting c into {c− b, b} in σ is coupled to splitting b+ c into
{c− b, 2b} in τ since c− b < b. This means that nothing is coupled to splitting
b+ c into {b, c}, and therefore

p = P(Splitting b+ c into {b, c} in τ ) ≥
b+ c

n2
≥

2b

n2
(3.1)

If c ≥ 2b, then splitting b+ c into {b, c} in τ is indeed coupled with splitting
c into {b, c− b} in σ. In this case, clearly b 6= c, and hence

P(Splitting b+ c into {b, c} in τ) =
2(b+ c)

n2

Therefore,

p ≥ P(Splitting b+ c into {b, c} in τ )− P(Splitting c into {b, c− b} in σ)

≥
2(b+ c)

n2
−

2c

n2
=

2b

n2
(3.2)

Equations (3.1) and (3.2) give p ≥ 2b
n2 . Furthermore, note that b ≤ c, and

b+ c ≤ n, and hence b ≤ n
2 . Therefore,

min

(

p,
1

n

)

≥ min

(

2b

n2
,
1

n

)

≥
2b

n2
(3.3)

Hence,

P(Coupling if staying in place in σ) = min

(

p,
1

n

)

≥
2b

n2
(3.4)

12



Merging b and c in σ: Next, consider the probability of coupling if b and c
are merged in σ. Clearly, this would need to be coupled with staying in place
in τ . The only other thing that staying in place in τ could have been coupled
with so far is staying in place in σ. As noted in Definition 13,

P(Both σ and τ stay in place) =
1

n
−min

(

p,
1

n

)

for the same p used above. Thus,

P(Coupling if merging b and c in σ) = P(b and c merged in σ, τ stayed)

=
1

n
− P(Both σ and τ stayed)

= min

(

p,
1

n

)

≥
2b

n2

(3.5)

using Equation (3.3) above.
Finally, combining Equations (3.4) and (3.5),

P(Xt+1 = Yt+1) ≥
4b

n2
=

4s(σ, τ)

n2
=

4s(Xt, Yt)

n2

as required.

Continuing with the proof, as sketched out earlier, the rest of this paper will
be concerned with showing that s(Xt, Yt) is of order n after O(n) time. The
next section shows how that proves Theorem 1, and provides a summary of the
proof.

4 Proof of Main Theorem Using E [s(Xt, Yt)]

As described above, one of the main tools of this paper is the following theorem:

Theorem 16. There exist constants α and β such that for all t ≥ αn,

E [s(Xt, Yt)] ≥ βn

This section uses the above result to prove Theorem 1. To start, prove the
following easy lemma:

Lemma 17. Let (Xt, Yt) be defined as in Definition 13, where as usual ρ(X0, Y0)
is equal to 1. Let α and β be the constants in Theorem 16 above. Then,

P
(

Xαn+n
2
= Yαn+n

2

)

≥ β

Proof: Since by Lemma 12, P(Xt = Yt) is non-decreasing, if P(Xt = Yt) ≥ β
for any t ≤ αn+ n

2 , the argument is complete. Thus, assume that

P(Xt = Yt) ≤ β (4.1)

13



for all t ≤ αn+ n
2 .

Clearly,

P(Xt+1 = Yt+1) = P(Xt = Yt) + P(Xt+1 = Yt+1 | Xt 6= Yt)P(Xt 6= Yt)

Rearranging, and using Lemma 12,

P(Xt+1 = Yt+1)− P(Xt = Yt) ≥ E

[

4s(Xt, Yt)

n2

∣

∣

∣Xt 6= Yt

]

P(Xt 6= Yt)

=
4

n2
E

[

s(Xt, Yt)
∣

∣

∣
Xt 6= Yt

]

P(Xt 6= Yt)

A lower bound is now needed for the right-hand side. Assume that t ≥ αn, and
hence that E [s(Xt, Yt)] ≥ βn by Lemma 16. Then,

E

[

s(Xt, Yt)
∣

∣

∣Xt 6= Yt

]

P(Xt 6= Yt) = E [s(Xt, Yt)]−

E

[

s(Xt, Yt)
∣

∣

∣Xt = Yt

]

P(Xt = Yt)

≥ βn−
n

2
P (Xt = Yt)

since if Xt = Yt, s(Xt, Yt) =
n
2 . Furthermore, using Equation (4.1),

E

[

s(Xt, Yt)
∣

∣

∣Xt 6= Yt

]

P(Xt 6= Yt) ≥
βn

2

Combining this with Equation (4.2),

P(Xt+1 = Yt+1)− P(Xt = Yt) ≥
2β

n

for all αn ≤ t ≤ αn+ n
2 . Adding up these inequalities for all t in [αn, αn+ n

2 ],

P
(

Xαn+n
2
= Yαn+n

2

)

≥ β

as required.

For path coupling, a lemma about the diameter of Pn under the split-merge
random walk is needed.

Lemma 18. The diameter of Pn under the split-merge random walk is at most
n.

Proof: Proceed by induction on n. This statement is clearly true for n = 1.
Now, assume it’s true for all m ≤ n− 1, and show it for n. Let σ = (a1, . . . , ak)
and τ = (b1, . . . , bl) be two partitions of n. Without loss of generality, assume
that a1 ≥ b1.

If a1 = b1, create a path from σ to τ by just changing the parts (a2, . . . , ak)
to (b2, . . . , bl). Since (a2, . . . , ak) is a partition of n − a1, by the inductive
hypothesis,

ρ(σ, τ) ≤ n− a1 ≤ n− 1.

14



so this case follows.
Otherwise, a1 > b1. Let σ1 be σ with a1 split into (b1, a1 − b1). Then, σ1

and τ match on the part b1, and hence by the argument above,

ρ(σ1, τ) ≤ n− 1

Since σ is a neighbor of σ1, this implies that ρ(σ, τ) ≤ n, completing the proof.

Theorem 1 is now proved using path coupling. It shows an O(n log n) bound
on the split-merge random walk, and hence on the random transposition walk.

Proof of Theorem 1. Let t1 = αn + n
2 . Consider the walk (X̃k)k≥1, where

each step consists of making t1 steps of the split-merge random walk. Let
(X̃k, Ỹk) be the coupling on this new walk induced by the current coupling
(Xt, Yt). Now, Proposition 17 shows that if (X̃0, Ỹ0) = (σ, τ), where ρ(σ, τ) = 1,
then

E

[

ρ(X̃1, Ỹ1)
]

= E [ρ(Xt1 , Yt1)] = P(Xt1 6= Yt1)

≤ (1 − β)ρ(σ, τ)

using the fact that ρ(Xt, Yt) is always either 0 or 1. Therefore, if d̃(k) is defined
to be the distance from stationarity of (X̃k, Ỹk), then from Theorem 9,

d̃(k) ≤ diam(Pn) (1− β)k

Since neighboring pairs are pairs that are one step apart in the split-merge
random walk, Proposition 18 implies that diam(Pn) ≤ n. Also using the fact
that 1− x ≤ e−x,

d̃(k) ≤ ne−βk

Thus, if k = logn
2β , then d̃(k) ≤ e−2 < 1

4 . But it’s clear from the definition of the
new walk that

d(kt1) = d̃(k)

Thus,

d

((

α

2β
+

1

4β

)

n logn

)

= d(kt1) <
1

4

which means that the walk has mixed by time
(

α
2β + 1

4β

)

n logn, completing

the proof.

5 Proving E [s(Xt, Yt)] is large

Let us now summarize the rest of the proof. The remainder of this paper will be
devoted to proving Theorem 16, which states that after O(n) time, the expected
value of s(Xt, Yt) is of order n.
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The proof will be structured as follows: it is shown that in O(n) time,
s(Xt, Yt) will have a high probability of being at least order n1/3. Then it is
shown that it takes another o(n) time for s(Xt, Yt) to have a high probability
of being of order n. This will clearly suffice to show that that after O(n) time,
E [s(Xt, Yt)] is of order n. Section 6 below will be concerned with growing
s(Xt, Yt) to order n1/3, while Section 7 will be concerned with growing it to
order n.

Before stating the theorems and sketching their proofs, a number of useful
definitions are needed. Note that some of these definitions are asymmetrical:
they are defined in terms of X̄t and not Ȳt. This is an arbitrary choice; since
the pair (Xt, Yt) is only a step apart, it doesn’t make any difference.

Definition 19. For v ∈ {1, 2, . . . , n}, define Ct(v) to be the cycle of X̄t con-
taining v. Furthermore, for a number x, define

Vt(x) = {v ∈ {1, 2, . . . , n} | |Ct(v)| ≥ x}

Thus, Vt(x) is the union of all cycles of size at least x.

Remark 20. Note that if Xt = (a1, a2, . . . , am), then

|Vt(x)| =
∑

ai≥x

ai

Thus, the size of Vt(x) is a function of Xt.

The first proposition that grows s(Xt, Yt) to order n1/3 is now stated.

Proposition 21. Let (Xt, Yt) be the usual coupling started at (X0, Y0) = (σ, τ),
where ρ(σ, τ) ≤ 1. Then, for n sufficiently large and t ≥ 9n,

P

{

s(Xt, Yt) ≥ n1/3,
∣

∣

∣Vt

(

n1/3
)∣

∣

∣ ≥
n

2

}

≥
1

2

Remark 22. Here, the choice of n1/3 is in some sense arbitrary – any nα, where
α < 1

2 , would have done just as well.

A few other definitions which are needed for the statement of the theorem
growing s(Xt, Yt) from order n1/3 to order n. Indeed, a more general theorem
is proved. Fix constants ǫ and δ: then, if s(Xt, Yt) starts by being of size 2j+1

(where j can be a function of n), after a certain amount of time q, s(Xt+q, Yt+q)
has a high probability of being least ǫδn. The following definition introduces
some notation necessary for stating the theorem; it currently looks completely
inexplicable, but will be justified in Section 7.

Definition 23. Assume ǫ and δ are fixed constants, and j is a number (possibly
a function of n). Then, define

K = ⌈log2(ǫδn)⌉ (5.1)
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Furthermore, for r between j and K define

ar = ⌈2δ−12−rn(log2 n− r)⌉ and τr =

r−1
∑

i=j

ai (5.2)

where as usual, ⌈·⌉ stands for the ceiling function.

The following proposition proves that s(Xt, Yt) grows to order n.

Proposition 24. Let (Xt, Yt) be the usual coupling started at (X0, Y0) = (σ, τ),
where ρ(σ, τ) ≤ 1. Let j be a number and let δ ∈ (0, 1] be a constant such that
∣

∣V0(2
j+1)

∣

∣ ≥ δn and s(σ, τ) ≥ 2j+1. If K and τK are defined as in Definition
23 and ǫ ∈ (0, 1/32), then

P{s(XτK , YτK ) < ǫδn} ≤ O(1)δ−1ǫ |log(ǫδ)| (5.3)

where the constant implied in the O(1) notation is universal.

Proof of Theorem 16. Propositions 21 and 24 can be used to prove Theorem
16: let t1 ≥ 9n, and condition on (Xt1 , Yt1) ∈ Qt1 , where

Qt1 =
{

(Xt1 , Yt1) such that s(Xt1 , Yt1) ≥ n1/3,
∣

∣

∣V π
t1

(

n1/3
)∣

∣

∣ ≥
n

2

}

(5.4)

Letting 2j+1 = n1/3 and δ = 1
2 , if (Xt1 , Yt1) ∈ Qt1 , then

s(Xt1 , Yt1) ≥ 2j+1 and
∣

∣Vt1(2
j+1)

∣

∣ ≥ δn

Since ρ(Xt1 , Yt1) ≤ 1, Proposition 24 applies to pairs (Xt1 , Yt1) in Qt1 . There-
fore, averaging over (Xt1 , Yt1) ∈ Qt1 ,

P {s(Xt1+τK , Yt1+τK ) < ǫδn | (Xt1 , Yt1) ∈ Qt1} ≤ O(1)δ−1ǫ |log(ǫδ)|

for any ǫ ∈ (0, 1/32). Now, pick ǫ such that the right hand side of the above
inequality is at most 1/2. Then,

P {s(Xt1+τK , Yt1+τK ) ≥ ǫδn | (Xt1 , Yt1) ∈ Qt1} ≥
1

2

and therefore, for sufficiently large n,

P {s(Xt1+τK , Yt1+τK ) ≥ ǫδn} ≥
P(Qt1)

2
≥

1

4

using Lemma 21. Therefore,

E [s(Xt1+τK , Yt1+τK )] ≥
ǫδn

4
(5.5)
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It now just remains to show that is that t1 + τK can be of order n. Since δ = 1
2

and 2j+1 = n1/3, by Equation (5.2)

τK =

K−1
∑

i=j

⌈2δ−12−in(log2 n− i)⌉ = O



n logn

K−1
∑

r=j

2−i





= O
(

n logn · 2−j+1
)

= O(n2/3 logn)

Since t1 ≥ 9n is arbitrary and τK is o(n), Equation (5.5) implies that

E [s(Xt, Yt)] ≥
ǫδn

4

for all t ≥ 10n, which is precisely what is needed.

Before the next two sections, in which Propositions 21 and 24 are proved,
some technical results are needed. These are proved in Section 8 below, and are
instrumental for controlling the probabilities in the next two sections.

Lemma 25. Let σ be in Sn, and let (X̄t)t≥1 be the random transposition walk
starting at σ. Then, the expected number of v such that |C1(v)| < |C0(v)| and

|C1(v)| < x is no greater than x2

n .

For the next four lemmas, let (Xt, Yt) be the usual coupling starting at (σ, τ),
where ρ(σ, τ) = 1, s(σ, τ) = b and m(σ, τ) = c.

Lemma 26. If x ≤ c, then

P {m(X1, Y1) < x} ≤
2x2

n2
.

Lemma 27. If x ≤ c, and if |V0(y)| ≥ R, then

P{m(X1, Y1) ≥ x+ y} ≥
2c(R− 2c)

n2

Lemma 28. If x ≤ b, then

P{s(X1, Y1) < x} ≤
4x2

n2

Lemma 29. If x and y satisfy x ≤ b < x+ y ≤ c, and |V0(y)| ≥ R, then

P{s(X1, Y1) ≥ x+ y} ≥
2b(R− 3x− 3y)

n2
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6 Growing to Θ
(

n1/3
)

This section proves Proposition 21. It makes a lot of use of the results of
Schramm in “Compositions of random transpositions” [19]. A number of defini-
tions are needed to state his main result.

Definition 30. If (X̄t)t≥0 is the random transposition walk, define Gt to be the
graph on {1, 2, . . . , n} such that {u, v} is an edge in Gt if and only if the random
transposition (u, v) has appeared in the first t steps of our walk. Furthermore,
let Wt denote the set of vertices of the largest component of Gt.

Note that the behavior of the Wt defined above is well-understood; indeed,by
an Erdős-Rényi theorem (see for example [1]), if t = cn, then

|Wt|

n
→ z(2c) (6.1)

in probability as n → ∞, where z(s) is the positive solution of 1− z = e−zs.

Definition 31. The Poisson-Dirichlet (PD(1)) distribution is a probability
measure on the infinite dimensional simplex Ω = {(x1, x2, . . . ) |

∑∞
i=0 xi = 1}.

Sample from this simplex as follows: let U1, U2, . . . be an i.i.d sequence of ran-
dom variables uniform on [0, 1]. Then, set x1 = U1, and recursively,

xj = Uj

(

1−

j−1
∑

i=1

xi

)

Let (yi) be the (xi) sorted in nonincreasing order; then, the PD(1) distribution
is defined as the law of (yi).

The main theorem (Theorem 1.1) of Schramm’s paper [19] can now be stated.
This remarkable result was proved using the tools of graph theory and coupling.
A clever lemma showing that vertices that start in ‘sufficiently large’ cycles are
likely to end up in cycles of order n also played a pivotal role (Lemma 35 below
is an almost exact reproduction of the result.) The full strength of the result
is not needed: while Schramm determines the law of the large parts of Xt, the
only fact necessary here is that after a sufficiently long time, these cycles are
of order n. For this theorem, treat Xt as an infinite vector by adding infinitely
many 0s at the end of it.

Theorem 32 (Schramm). Let c > 1/2, and take t = cn. As n → ∞, the law
of Xt

|Wt|
converges weakly to the PD(1) distribution; that is, for every ǫ > 0, if

n is sufficiently large and t ≥ cn, then there is a coupling of Xt and a PD(1)
sample Y such that

P

{∥

∥

∥

∥

Y −
Xt

|Wt|

∥

∥

∥

∥

∞

< ǫ

}

> 1− ǫ (6.2)

where ‖·‖∞ is the standard l∞ distance.

19



The proof that follows uses Theorem 32 to show that at time t = n, more
than half the vertices are in cycles of order n with high probability. This
is used to ‘grow’ m(Xt, Yt) to order n1/3, after which the same is done for
s(Xt, Yt). The results for m(Xt, Yt) are needed before the results for s(Xt, Yt):
since s(Xt, Yt) ≤ m(Xt, Yt), m(Xt, Yt) constrains the growth of s(Xt, Yt) from
above. Good control on m is needed before tackling s.

Lemma 33. Let k be a natural number not dependent on n. For sufficiently
large n, that is, for n > N = N(k),

P {|Vn (n/k)| > n/2} ≥ 1−
6

k

Proof: For convenience of notation, let X = (x1, x2, . . . ) be Xn, let Q =
(q1, q2, . . . ) be Xn

|Wn|
, and let Y = (y1, y2, . . . ) be a PD(1) sample which is

coupled with Q to satisfy Theorem 32 above. With current notation,

|Vn (n/k)| =
∑

xi≥
n
k

xi (6.3)

For the rest of the proof, fix ǫ = 1
9k . First note that Equation (6.1) implies that

|Wn|

n
→ z(2) ≈ 0.797

in probability, which means that limn→∞ P {|Wn|/n < 3/4} = 0. Since Q =
Xn/|Wn|, for sufficiently large n,

P

{

xi ≥
3n

4
qi for all i

}

> 1− ǫ

Furthermore, Theorem 32 implies that for sufficiently large n,

P {qi ≥ yi − ǫ for all i} > 1− ǫ

Combining the above two equations,

P

{

xi ≥
3n

4
(yi − ǫ) for all i

}

> 1− 2ǫ (6.4)

for sufficiently large n.
Thus, to estimate |Vn(n/k)| it suffices to consider the large parts of the

PD(1) sample Y . To that end, define the random variable

GY (x) =
∑

yi≥x

yi

It is easy to check that E [GY (x)] = 1 − x, and therefore E [1−GY (x)] = x.
Thus, Markov’s inequality implies that

P{GY (x) ≤ 3/4} = P{1−GY (x) ≥ 1/4} ≤ 4x
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Recall that ǫ = 1
9k . Then, combining the above with Equation (6.4),

P

{

xi ≥
3n

4
(yi − ǫ) for all i, GY

(

13

9k

)

≥
3

4

}

≥ 1−
6

k
(6.5)

Finally, assume that xi ≥
3n
4 (yi − ǫ) for each i, and that GY

(

13
9k

)

≥ 3
4 . Then,

Equation (6.3) implies that

|Vn (n/k)| ≥
∑

3n
4
(yi−ǫ)≥n

k

3n

4
(yi − ǫ) =

3n

4





∑

yi≥13/9k

yi −
∑

yi≥13/9k

1

9k





≥
3n

4

(

GY

(

13

9k

)

−
1

13

)

≥
n

2
(6.6)

using the fact that there can be at most 9k
13 values of yi that are greater than

13
9k , since the yi are positive and sum to 1. Therefore, using Equation (6.5), for
sufficiently large n

P

{

|Vn(n/k)| ≥
n

2

}

≥ 1−
6

k

as required.

The above lemma is now applied to find a t of order n such that the prob-
ability of having m(Xt, Yt) ≥ n1/3 is sufficiently high. Lemmas 26 and 27 give
control of m(Xt, Yt).

Lemma 34. If n is sufficiently large and t ≥ 5n, then

P

{

m(Xt, Yt) ≥ n1/3,
∣

∣

∣Vt

(

n1/3
)∣

∣

∣ ≥
n

2

}

≥
4

5

Proof: From Lemma 33, at time t = n,

P

{

|Vt(n/k)| ≥
n

2

}

≥ 1−
6

k
(6.7)

Average over the possible values of Xt−n to conclude that Equation (6.7) also
holds for any time t ≥ n. Now, for convenience of notation, define

St =
{

(Xt, Yt) s.t.
∣

∣

∣Vt

(

n1/3
)∣

∣

∣ ≥
n

2

}

(6.8)

For sufficiently large n, n1/3 ≤ n
k for any fixed value of k. Fix ǫ > 0. Then,

for t ≥ n and sufficiently large n, Equation (6.7) implies that P(St) ≥ 1 − ǫ.
Furthermore, define

At =
{

(Xt, Yt) | m(Xt, Yt) ≥ n1/3
}

(6.9)

To find a lower bound for P(At ∩ St) for t ≥ 10n, note that

P(At ∩ St) ≥ P(At)− P(Sc
t ) ≥ P(At)− ǫ (6.10)
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and hence it suffices to bound P(At). This is done using a recursive argu-
ment: at each step t, calculate the probability that m(Xt, Yt) was too small,
but m(Xt+1, Yt+1) is large enough, and vice versa. The probability of At is
shown to grow sufficiently quickly with t.

Start by bounding the probability that m(Xt+1, Yt+1) < n1/3 if m(Xt, Yt) ≥
n1/3. By Lemma 26 with x = n1/3,

P{(Xt+1, Yt+1) /∈ At+1 | (Xt, Yt) ∈ At} ≤
2x2

n2
=

2

n4/3

and therefore

P{(Xt+1, Yt+1) /∈ At+1, (Xt, Yt) ∈ At} ≤
2

n4/3
P(At) (6.11)

Now bound the probability that m(Xt, Yt) < n1/3, while m(Xt+1, Yt+1) ≥ n1/3.
In order to bound this in a satisfactory way, enough parts of size n1/3are needed;
accordingly, work with (Xt, Yt) ∈ Ac

t ∩St. If m(Xt, Yt) < n1/3 and
∣

∣Vt

(

n1/3
)∣

∣ ≥
n
2 , then using Lemma 27 with x = 0, y = n1/3, and R = n

2 ,

P{(Xt+1, Yt+1) ∈ At+1 | (Xt, Yt) ∈ Ac
t ∩ St} ≥

2
(

n/2− 2n1/3
)

n2
≥

1− ǫ

n

for sufficiently large n. Thus, for t ≥ n, using the fact that P(St) ≥ 1− ǫ,

P{(Xt+1, Yt+1) ∈ At+1, (Xt, Yt) /∈ At} ≥

(

1− ǫ

n

)

P(Ac
t ∩ St)

≥

(

1− ǫ

n

)

(1− P(At)− ǫ)

(6.12)

for sufficiently large n. Combining Equations (6.11) and (6.12),

P(At+1)− P(At) ≥ −
2

n4/3
P(At) +

(

1− ǫ

n

)

(1− P(At)− ǫ)

≥
1− P(At)− 3ǫ

n

for sufficiently large n and t ≥ n. Rearranging the above,

(1− 3ǫ− P(At+1)) ≤

(

1−
1

n

)

(1− 3ǫ− P(At)) (6.13)

and hence using recursion and the lower bound in Equation (6.10),

(1− 3ǫ− P(At)) ≤

(

1−
1

n

)t−n

≤ e−(t−n)/n

⇒ P(At ∩ St) ≥ 1− 4ǫ− e−(t−n)/n

Thus, for t ≥ 5n, P(At ∩ St) ≥ 1 − 4ǫ − e−4 ≈ 1 − 4ǫ − 0.018, and picking ǫ
appropriately completes the proof.
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Proposition 21 (Restatement). For sufficiently large n, and t ≥ 9n,

P

{

s(Xt, Yt) ≥ n1/3,
∣

∣

∣Vt

(

n1/3
)∣

∣

∣ ≥
n

2

}

≥
1

2

Proof: This proof is very similar to the one above. Let t ≥ 5n, and define

Rt =
{

m(Xt, Yt) ≥ n1/3,
∣

∣

∣Vt

(

n1/3
)∣

∣

∣ ≥
n

2

}

From the above lemma, P(Rt) ≥
4
5 . Now, define

Ct =
{

(Xt, Yt) | s(Xt, Yt) ≥ n1/3
}

It is shown below that P(Ct ∩Rt) ≥
1
2 , which will clearly suffice. Note that for

t ≥ 5n,

P(Ct ∩Rt) ≥ P(Ct)−
1

5
(6.14)

and hence it suffices to find a lower bound on P(Ct). As above, this is done by
finding recursive bounds on the probability of Ct+1 given the probability of Ct.
By Lemma 28 with x = n1/3,

P{(Xt+1, Yt+1) /∈ Ct+1 | (Xt, Yt) ∈ Ct} ≤
4x2

n2
=

4

n4/3

and therefore

P{(Xt+1, Yt+1) /∈ Ct+1, (Xt, Yt) ∈ Ct} ≤
4

n4/3
P(Ct) (6.15)

Now, assume that (Xt, Yt) ∈ Cc
t ∩ Rt. Then m(Xt, Yt) ≥ n1/3 > s(Xt, Yt)

and Vt

(

n1/3
)

≥ n
2 . Therefore, using Lemma 29 with x = 0, y = n1/3, and

R = n
2 ,

P{(Xt+1, Yt+1) ∈ Ct+1 | (Xt, Yt) ∈ Cc
t ∩Rt} ≥

2
(

n/2− 3n1/3
)

n2
=

1

n
−

6

n5/3

Thus, for t ≥ 5n, using the fact that P(Rt) ≥
4
5 ,

P{(Xt+1, Yt+1) ∈ Ct+1, (Xt, Yt) /∈ Ct} ≥

(

1

n
−

6

n5/3

)

P(Cc
t ∩Rt)

≥

(

1

n
−

6

n5/3

)(

4

5
− P(Ct)

) (6.16)

for sufficiently large n. Therefore, combining Equations (6.15) and (6.16) and
picking n sufficiently large,

P(Ct+1)− P(Ct) ≥ −
2

n4/3
P(Ct) +

(

1

n
−

6

n5/3

)(

4

5
− P(Ct)

)

≥
3/4− P(Ct)

n

(6.17)
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for t ≥ 5n. Rearranging analogously to Equation (6.13),

(

3

4
− P(Ct+1)

)

≤

(

1−
1

n

)(

3

4
− P(Ct)

)

As before, for t ≥ 9n, P(Ct) ≥
7
10 . Combining this with Equation (6.14),

P(Ct ∩Rt) ≥
1

2

for t ≥ 9n and n sufficiently large, as required.

7 Growing to Θ(n)

This section proves Proposition 24, which shows that s(Xt, Yt) can be grown
to order n. This section is structured similarly to the previous one: proving
a lemma about overall cycle sizes, then a lemma about m(Xt, Yt), and then
finally Proposition 24. Again, use is made of the technical results in Lemmas
25 through 29.

The idea behind the proof is largely based on Lemma 2.3 from “Compositions
of random transpositions” [19]. Let ǫ, δ and j be chosen as in Proposition 24.
Recall that Definition 23 defines K = ⌈log2(ǫδn)⌉ and

ar = ⌈2δ−12−rn(log2 n− r)⌉ and τr =

r−1
∑

i=j

ai

for r between j and K, with τj = 0. Then, define

Ir = [τr, τr+1 − 1] (7.1)

and for convenience of notation, define IK = {τK}.
As should be clear from the statement of Proposition 24, the argument

starts with s(π, σ) ≥ 2j+1 and V0(2
j+1) ≥ δn, and shows that at time τK , the

probability that s(XτK , YτK ) is less than ǫδn is appropriately bounded above.
In fact, something stronger is shown: for the intervals Ir as defined above, one
‘expects’ to have

Vt(2
r+1) ≥

δn

2
, s(X ,

tYt) ≥ 2r, and m(Xt, Yt) ≥ 2r+1

for all r between j and K. This would clearly suffice to prove the result.
The first lemma is almost identical to Lemma 2.3 from [19] – it is reproven

here for completeness, and to illustrate the technique. This lemma starts with
σ ∈ Sn, and

∣

∣V0(2
j+1)

∣

∣ ≥ δn. It gives an upper bound for the expected number
of vertices that start in cycles of size at least 2j+1, and that are not in cycles of
size ǫδn at time τK . This shows that ‘most’ vertices that start in cycles of size
2j+1 are in cycles of order n at time τK .
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Lemma 35. Let σ ∈ Sn. Let δ ∈ (0, 1) be a constant such that
∣

∣V0(2
j+1)

∣

∣ ≥
δn, and let K and τK be defined as they are above and in Definition 23. Fix
ǫ ∈ (0, 1/32). For the random transposition walk

(

X̄t

)

t≥0
,

E
∣

∣V0(2
j+1) \ VτK (2ǫδn)

∣

∣ ≤ O(1)δ−1ǫ |log(ǫδ)| n (7.2)

where the constant implied in the O(1) notation is universal.

Proof: Before beginning the proof, consider what is being shown. Starting
with a σ such that

∣

∣V0(2
j+1)

∣

∣ > δn means that at least δn of the vertices in
σ are in cycles of size at least 2j+1. An upper bound on the expected size of
V0(2

j+1)\VτK (2ǫδn) is needed: that is, an upper bound on the expected number
of vertices that started off in cycles of size at least 2j+1 in σ, and ended up in
cycles of size less than 2ǫδn at time τK .

Something stronger is shown: conditioned on v ∈ V0(2
j+1),

E
∣

∣

{

v s.t. Ct(v) < 2r+1 for any t ∈ Ir, for r ∈ [j,K]
}∣

∣ ≤

O(1)δ−1ǫ |log(ǫδ)|n
(7.3)

This requires an upper bound on the expected number of vertices that for any
time t ∈ Ir are ‘too small’ for Ir: they are of size less than 2r+1. Note that the
above set includes all vertices such that CτK (v) < 2ǫδn ≤ 2K+1, and hence the
above bound would suffice.

Three different possibilities are considered. First of all, an upper bound is
needed on the expected number of vertices v such that at any point, the cycle
containing v is split, and becomes too small. Secondly, all vertices that appear
in permutations with an insufficient number of large parts are rejected. And
thirdly, it is necessary to bound the possibility that the cycle containing v does
not grow sufficiently during Ir . Call the vertices that fall into any of these
undesirable categories ‘failed.’

In the next three sections, condition on v ∈ V0(2
j+1): that is, assume that

v is in a cycle of size 2j+1 in σ. This means that v has not failed at time 0.

The cycle containing v becomes too small Let r ∈ [j,K − 1], and let
t ∈ Ir + 1 = [τr + 1, τr+1]. For Ct(v) to be of size 2r+2 by time τr+1, calculate
the probability that for any t ∈ Ir + 1, the cycle containing v is split, and v is
then contained in a cycle of size less than 2r+2. To be precise, define Ft to be the
set of vertices at time t such that |Ct(v)| < |Ct−1(v)| and |Ct(v)| < 2r+2. Find
the expected size of Ft: by definition, this is the expected number of vertices v,
whose cycle is split from time t− 1 to time t, and which are in cycles of size less
than 2r+2 at time t. By Lemma 25,

E |Ft| ≤
2
(

2r+2
)2

n
=

22r+5

n

Now, define the cumulative set F̃t =
⋃t

x=1 Fx. This is the set of all vertices
up to time t, whose cycles have at any time x ≤ t been split into ones that are
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‘too small.’ Clearly,

E

∣

∣

∣F̃τK

∣

∣

∣ ≤
τK
∑

x=1

E |Fx| ≤
K−1
∑

r=j

ar
22r+5

n

≤
K−1
∑

r=j

⌈2δ−12−rn(log2 n− r)⌉
22r+5

n

≤
K−1
∑

r=j

(

2δ−12−rn(log2 n− r) + 1
) 22r+5

n

≤
K−1
∑

r=j

26δ−12r(log2 n− r) +

K−1
∑

r=j

22r+5

n

(7.4)

Now,

K−1
∑

r=j

r2r = (K − 2)2K − (j − 2)2j

K−1
∑

r=j

2r = 2K − 2j

shows that
E

∣

∣

∣F̃τK

∣

∣

∣ ≤ 28 |log2(ǫδ)| ǫn (7.5)

Permutations with insufficiently many large parts It is also necessary
to rule out vertices in permutations for which the union of the ‘large parts’
isn’t sufficiently high. This will be useful for the next part of the proof. To
be more precise, let t ∈ Ir: if

∣

∣Vt(2
r+1)

∣

∣ < δn/2, and this is the first t for
which the inequality holds, then consider all vertices in Xt to have failed, and
set Ht = {1, . . . , n}. Otherwise, set Ht = ∅.

Again, define the cumulative set H̃t =
⋃t

x=0Hx. This is the union of all
vertices that up to time t have been in a permutation with insufficiently many
large parts, by the above definition. It is clear that this set is either empty,
or contains all the vertices. There is no current available upper bound on the
expectation for H̃t; one will be derived after the next section of the proof.

The cycle containing v doesn’t grow sufficiently Next, consider how a
vertex v might fail at time t, if it does not fall into F̃t or H̃t−1. Assume t
is the minimal time for which v fails: since failed vertices include all vertices
contained in cycles that are ‘too small’, if s < t and s ∈ Ik then |Cs(v)| ≥ 2k+1.
Now, assume that t, the first time at which v fails, is in Ir : thus, t − 1 is
either in Ir−1 or in Ir . Either way, since it was assumed that v is not in Fπ

t ,
it can’t be that |Ct(v)| < |Ct−1(v)| and |Ct(v)| < 2r+1. Since the vertex v
fails at time t, Ct(v) must contain fewer than 2r+1 vertices. Combine this with
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the preceding statement to conclude that Ct−1(v) also contains fewer than 2r+1

vertices. However, by definition the vertex v did not fail at time t − 1. This
implies t− 1 must have been in Ir−1. Thus, the only remaining times at which
vertices could fail are t = τr, for r ∈ {j, j + 1, . . . ,K}. Having conditioned on
v ∈ V0(2

j+1), it may be concluded that v can’t fail at time τj = 0.

Now, define Br to be the set of vertices at time τr that are not in F̃ τr∪H̃τr−1,
such that |Cτr (v)| < 2r+1, and that have not failed previously. As before, define
B̃r =

⋃r
x=j Bx and estimate the expected size of Br.

Condition on v /∈ F̃τr ∪ H̃τr−1 and calculate the probability that v fails at
τr, given that it has not failed up to that time. First, for t ∈ Ir−1, |Ct(v)| ≥ 2r.
Furthermore, since v /∈ F̃τr , there was no time between τr−1 and τr at which
the cycle containing v was split to contain fewer than 2r+1 vertices. This means
that if v failed at time τr, then Ct(v) must have been of size less than 2r+1 for
all t ∈ [τr−1, τr − 1]. Therefore, for t ∈ Ir−1,

2r ≤ |Ct(v)| < 2r+1 (7.6)

Furthermore, since v is not in H̃t for any t ∈ Ir−1, for every t ∈ Ir−1,
|Vt(2

r)| ≥ δn/2. Consider the probability that from time t to time t + 1, the
cycle containing v is merged with a cycle of size at least 2r. By (7.6) above,
the size of Ct(v) is at least 2r, so such a merge would result in Ct+1(v) ≥ 2r+1.
Using the above reasoning implies that |Cτr (v)| ≥ 2r+1, and therefore v does
not fail at time τr. Now, again by (7.6), the cycle containing v is of size at
most 2r+1. Since |Vt(2

r)| ≥ δn/2, this means the union of the cycles disjoint
from Ct(v) of size at least 2r contains at least δn/2− 2r+1 vertices. Now, since
r ≤ K = ⌈log2(ǫδn)⌉, 2

r+1 ≤ 2K+1 ≤ 4ǫδn, and since ǫ < 1/32,

δn

2
− 2r+1 ≥

δn

4

Thus, the union of the cycles of size at least 2r disjoint from Ct(v) is of size at
least δn/4, and therefore

P{Ct(v) merges with a cycle of size ≥ 2r} ≥ 2 · 2r
δn/4

n2
= 2r−1δn−1

Clearly, for v to be in Br, it cannot be that Ct(v) merges with a cycle of size
≥ 2r for any t ∈ Ir−1. Therefore,

P{v ∈ Br} ≤
(

1− 2r−1δn−1
)ar−1

(7.7)

≤ exp(−2r−1δn−1ar−1)

and since ar−1 ≥ 2δ−12−r+1n(log2 n− r + 1),

P{v ∈ Br} ≤ e2(r−1−log
2
n)

Now, r − 1 ≤ K − 1 ≤ log2(ǫδn), and therefore, log2 n− r + 1 ≤ 0. Thus,

P{v ∈ Br} ≤ e2(log2
n−r+1) ≤ 2log2 n−r+1 =

2r−1

n
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This yields
E |Br| ≤ nP{v ∈ Br} = 2r−1

and therefore,

E

∣

∣

∣B̃K

∣

∣

∣ ≤
K
∑

r=j

E |Br| ≤
K
∑

r=j

2r−1

≤ 2K ≤ ǫδn+ 1 (7.8)

Finally, bound the expected size of Ht, the set of vertices in permutations
with insufficiently many large parts. Recall that for t ∈ Ir, if

∣

∣Vt(2
r+1)

∣

∣ < δn/2
and t was the first time this inequality held, Ht was defined to be the set of all
vertices, and it was otherwise defined to be the empty set. If Ht is non-empty,
then the set of vertices in Xt that are in cycles of size less than 2r+1 has size
at least n− δn/2 ≥ δn/2. Now, consider v in Ht such that |Ct(v)| < 2r+1. By
definition, v has failed by time t, and v is not in Hs for any s < t. Therefore,
each such vertex is in F̃t ∪ B̃r. Thus,

E

∣

∣

∣H̃τK

∣

∣

∣ ≤ nP
{∣

∣

∣F̃τK ∪ B̃K

∣

∣

∣ ≥ δn/2
}

≤ 2δ−1
E

∣

∣

∣F̃τK ∪ B̃K

∣

∣

∣

so using (7.5) and (7.8) above,

E

∣

∣

∣H̃τK

∣

∣

∣ ≤ 2δ−1(ǫδn+ 1 + 28 |log(ǫδ)| ǫn)

≤ (29 + 1)ǫδ−1 |log2(ǫδ)|n
(7.9)

as desired. Finally, adding up the expectations for HτK , BK and FτK in (7.9),
(7.8) and (7.5) completes the proof.

The next lemma is similar. It shows that m(Xt, Yt) becomes sufficiently
large at time τK . The proof is almost entirely analogous; the only substantial
difference is in the bound for the probability of Xt having insufficiently many
‘large parts.’ For this bound, Equation (7.9) above has to be used. Lemmas 26
and 27 will also be used.

Lemma 36. Assume ρ(σ, τ) = 1. Let j be a natural number such that m(σ, τ) ≥
2j+1, and let δ ∈ (0, 1] be a constant such that

∣

∣V0(2
j+1)

∣

∣ ≥ δn and m(π, σ) ≥
2j+1. Let K and τK be defined as above, and let ǫ ∈ (0, 1/16). Then,

P{m(XτK , YτK ) < 2ǫδn} ≤ O(1)δ−1ǫ |log(ǫδ)| (7.10)

where the constant implied in the O(1) notation is universal.

Proof: This proof is almost exactly analogous to the previous one, except
that instead of keeping track of failed vertices, failed pairs of partitions will
be tracked. Something stronger is shown:

P{m(Xt, Yt) < 2r+1 for any t ∈ Ir, for j ∈ [j,K]} ≤ O(1)δ−1ǫ |log(ǫδ)| (7.11)
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Again, the argument requires upper bounds on three different cases: the one
where m(Xt, Yt) shrinks to become too small at time t, the one where Xt doesn’t
have sufficiently many large parts, and the one where m(Xt, Yt) fails to grow
sufficiently during Ir. The only major difference in the proof is use of the bound
from Lemma 35 to bound the probability of Xt having insufficiently many large
parts.

Since the quantities specified are precisely analogous, use the names Ft,Bt

and Ht.

Probability m(Xt, Yt) gets too small during Ir For t ∈ Ir + 1, define
Ft to be the set of pairs (Xt, Yt) such that m(Xt, Yt) < m(Xt−1, Xt−1) and
m(Xt, Yt) < 2r+2. Apply Lemma 26 above. Let x = min(2r+2,m(Xt−1, Yt−1)).
Then, x ≤ m(Xt−1, Yt−1), and therefore from Lemma 26, the probability that

m(Xt, Yt) is less than x is bounded above by 2x2

n2 . By definition of Ft, this
means that

P{Ft} ≤
2x2

n2
≤ 2

(

2r+2
)2

n2
=

22r+5

n2

Define the cumulative set F̃t =
⋃t

x=1 Fx. Therefore,

P{F̃τK} ≤
τK
∑

x=1

P{Fx} ≤
K−1
∑

r=j

ar
22r+5

n2

and doing a calculation almost identical to (7.5),

P{F̃τK} ≤ 28ǫ |log2(ǫδ)| (7.12)

Note that the only difference in the calculation was an extra factor of n in the
denominator.

Probability Xt doesn’t have enough large parts Define Ht almost ex-
actly as Ht in the last lemma, except that instead of making it a set of vertices,
let it be a set of pairs (Xt, Yt). (Xt, Yt) is included in Ht precisely when Xt

doesn’t have enough large parts: that is, if t ∈ Ir, then (Xt, Yt) is in Ht if
∣

∣Vt(2
r+1)

∣

∣ < δn/2, and t is the first time for which this inequality holds. Define

H̃t as usual to be the cumulative set.
Clearly, if (Xt, Yt) ∈ Ht, then Ht contains n vertices, and otherwise Ht is

empty. Since
∣

∣V0(2
j+1)

∣

∣ ≥ δn, the results derived in Lemma 35 can be used.
Therefore,

P{Ht} =
1

n
E |Ht|

and thus, from (7.9) above,

P{Ht} ≤ (29 + 1)ǫδ−1 |log2(ǫδ)| (7.13)
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Probability m(Xt, Yt) doesn’t grow sufficiently during Ir As before,
the only remaining times that (Xt, Yt) can fail is at times τr. Accordingly,
define Br to be those pairs (Xτr , Yτr ) that are not in F̃τr or H̃τr−1, such that
m(Xτr , Yτr) < 2r+1 and that have not failed previously. As before, if (Xτr , Yτr )
is in Br, then it had not failed in Ir−1, and therefore, for t ∈ Ir−1, m(Xt, Yt) ≥
2r. Furthermore, since (Xτr , Yτr) is not in F̃τr , it must be that m(Xt, Yt) is less
than 2r+1 for t ∈ Ir−1. Thus, for t ∈ Ir−1,

2r ≤ m(Xt, Yt) < 2r+1 (7.14)

Furthermore, since Br is disjoint from Hτr−1, for every t ∈ Ir−1, |Vt(2
r)| ≥ δn/2.

Since m(Xt, Yt) ≥ 2r, Lemma 27 holds with R = δn/2 and x = y = 2r. Let
c = m(Xt, Yt). Thus, for any t ∈ Ir,

P{m(Xt+1, Yt+1) ≥ 2r+1} ≥
2c(δn/2− 2c)

n2
≥

2r+1(δn/2− 2r+2)

n2

and since ǫ < 1
32 , and r ≤ K ≤ log2(ǫδn) + 1, δn/2− 2r+2 ≥ δn/4. Thus,

P{m(Xt+1, Yt+1) ≥ 2r+1} ≥ 2r−1δn−1

Finally, the probability of Br is the probability that m(Xt+1, Yt+1) isn’t at least
2r+1 for any t ∈ Ir, and therefore,

P{Br} ≤
(

1− 2r−1δn−1
)ar−1

and since this is precisely the same inequality as in (7.7),

P{Br} ≤
2r−1

n

and hence

P{B̃K} ≤
K
∑

r=j

P{Br} ≤
K
∑

r=j

2r−1

n
≤ ǫδ +

1

n
(7.15)

Thus, adding (7.12), (7.13), and (7.15),

P{m(Xt, Yt) < 2r+1 for any t ∈ Ir, for r ∈ [j,K]} ≤

(29 + 28 + 1)ǫδ−1 |log2(ǫδ)|
(7.16)

which is what is needed.

The stage is almost set to prove an analogous result for s(Xt, Yt). As above,
the two technical Lemma 28 and 29 are used. As in the previous section,
m(Xt, Yt) must be ‘sufficiently large’ to allow s(Xt, Yt) to grow. This is the
reason for proving the lemma concerning m(Xt, Yt) first.
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Proposition 24 (Restatement). Let (Xt, Yt) be the usual coupling started at
(X0, Y0) = (σ, τ), where ρ(σ, τ) ≤ 1. Let j be a number and let δ ∈ (0, 1] be a
constant such that

∣

∣V0(2
j+1)

∣

∣ ≥ δn and s(σ, τ) ≥ 2j+1. If K and τK are defined
as in Definition 23 and ǫ ∈ (0, 1/32), then

P{s(XτK , YτK ) < ǫδn} ≤ O(1)δ−1ǫ |log(ǫδ)|

where the constant implied in the O(1) notation is universal.

Proof of Lemma 24. This proof is analogous to the proof of Lemma 35 and
36, except that the previous two lemmas are used to bound the probability that
s(Xt, Yt) shrinks or grows. As before, a stronger statement is proved:

P{s(Xt, Yt) < 2r for any t ∈ Ir, for r ∈ [j,K]} ≤ O(1)δ−1ǫ |log(ǫδ)| (7.17)

Again, bounds are needed for a number of different cases: for the probability
that s(Xt, Yt) shrinks to become too small during Ir, the probability that Xt

doesn’t have enough large parts, and that the probability that s(Xt, Yt) doesn’t
grow sufficiently on Ir. Furthermore, note that Lemma 29 requires the assump-
tion that m(σ, τ) ≥ 2x to lower bound on the probability that s(X1, Y1) ≥ 2x.
Since s(Xt, Yt) must grow during Ir to be at least 2r+1 by τr+1, m(Xt, Yt)
must be at least 2r+1 on Ir. Lemma 36 is used to bound the probability that
m(Xt, Yt) is too small.

The quantities are precisely analogous to the ones in the two similar previous
lemmas. Accordingly, name them Ft,Ht, and Bt, using the same letters but
yet another font. The new quantity Mt is added, as discussed above.

Probability s(Xt, Yt) gets too small during Ir For t ∈ Ir+1 = [τr+1, τr+1],
define Ft to be the set of pairs (Xt, Yt) such that s(Xt, Yt) < s(Xt−1, Yt−1) and
s(Xt, Yt) < 2r+1. Apply Lemma 28 above. Define x = min(2r+1, s(Xt−1, Yt−1)).
Then, x ≤ s(Xt−1, Yt−1), and therefore Lemma 28 applies. Plugging it in, the

probability that s(Xt, Yt) is less than x is at most 4x2

n2 . Thus,

P{Ft} ≤
4x2

n2
≤

4(2r+1)2

n2
=

22r+4

n2

Now, define the cumulative set F̃t =
⋃t

x=1 Fx. Then,

P{F̃τK} ≤
τK
∑

x=1

P{Fx} ≤
K−1
∑

r=j

ar
22r+4

n2

Doing a calculation identical to the one in (7.5) and (7.12),

P{F̃τK} ≤ 27ǫ |log2(ǫδ)| (7.18)
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Probability Xt doesn’t have enough large parts For t ∈ Ir, define Ht

very similarly to before, to be the set of (Xt, Yt) such that |Vt(2
r)| < δn/2,

whenever this is the first t for which this inequality holds. Define H̃t to be the
usual cumulative set. Now, from Lemma 36,

Ht = {(Xt, Yt) |
∣

∣Vt(2
r+1)

∣

∣ < δn/2}

Since Vt(2
r) ⊇ Vt(2

r+1), clearly Ht ⊇ Ht, and therefore, using (7.13)

P{H̃t} ≤ P{H̃t} ≤ (29 + 1)ǫδ−1 |log2(ǫδ)| (7.19)

Probability m(Xt, Yt) is too small For t ∈ Ir , define Mt to be the set of all
(Xt, Yt) such that m(Xt, Yt) < 2r+1. As usual, define M̃t to be the cumulative
set. Since at the start s(σ, τ) ≥ 2j+1, m(σ, τ) ≥ 2j+1 is forced. By assumption,
V0(2

j+1) ≥ δn, so any inequalities derived in Lemma 36 are in force. Thus, from
Equation (7.16),

P{m(Xt, Yt) < 2r+1 for any t ∈ Ir, for r ∈ [j,K]} ≤ (29 + 28 + 1)ǫδ−1 |log2(ǫδ)|

and clearly, from the definition of M̃ t,

P{M̃ t} ≤ (29 + 28 + 1)ǫδ−1 |log2(ǫδ)| (7.20)

Probability s(Xt, Yt) doesn’t grow sufficiently during Ir As before, the
only remaining times that s(Xt, Yt) can fail is at time τr. Therefore, define
Br to be the set of (Xτr , Yτr ) that are not in F̃τr , H̃τr−1 or M̃τr , such that
s(Xτr , Yτr) < 2r and that have not failed previously. If (Xτr , Yτr ) is in Br,
then it had not failed in Ir−1, and therefore for t ∈ Ir−1, s(Xt, Yt) ≥ 2r−1.
Furthermore, since (Xτr , Yτr) is not in F̃τr , for t ∈ Ir−1, s(Xt, Yt) < 2r. Thus,
for t ∈ Ir−1,

2r−1 ≤ s(Xt, Yt) < 2r (7.21)

Furthermore, since (Xπ
τr , X

σ
τr) is not in M̃τr , for t ∈ Ir−1

m(Xt, Yt) ≥ 2r

Finally, since Br is disjoint from Hτr−1, for every t ∈ Ir−1,
∣

∣Vt(2
r−1)

∣

∣ ≥ δn/2.
Now apply Lemma 29 with R = δn/2 and x = y = 2r−1. For any t ∈ Ir ,

P{s(Xt+1, Yt+1) ≥ 2r} ≥
2x(R− 3x− 3y)

n2
=

2r(δn/2− 3 · 2r)

n2

Since r ≤ K = ⌈log2(ǫδn)⌉, and since ǫ < 1
32 , 3 · 2r ≤ 6ǫδn ≤ δn

4 . Thus,

P{s(Xt+1, Yt+1) ≥ 2r} ≥ 2r−2δn−1

Finally, the probability of Br is the probability that s(Xt+1, Yt+1) isn’t at least
2r+1 for any t ∈ Ir, and therefore,

P{Br} ≤
(

1− 2r−2δn−1
)ar−1

≤ exp(−2r−2δn−1ar−1)
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Now, since ar−1 = ⌈2δ−12−r+1n(log2 n− r + 1)⌉,

P{Br} ≤ er−1−log
2
n ≤ 2r−1−log

2
n =

2r−1

n

using the fact that r ≤ K ≤ log2 n+1, and hence r− 1− log2 n ≤ 0. Therefore,

P{B̃r} ≤
K
∑

r=j

P{Br} ≤
K
∑

r=j

2r−1

n
≤

2r

n
≤ ǫδ +

1

n
(7.22)

Now, adding (7.18), (7.19), (7.20) and (7.22),

P{s(Xt, Yt) < 2r for any t ∈ Ir, for r ∈ [j,K]} ≤ 211δ−1ǫ |log(ǫδ)| (7.23)

as required.

Remark 37. Assiduously tracking down all the constants in the above argu-
ment shows that the mixing time was bounded above by 225n logn or so. This,
of course, is very far from the correct answer of 1

2n logn. While this argument
can almost certainly be mildly tweaked to give a less intimidating answer such as
10n logn, it is unlikely that it could be manipulated to give the right constant.

8 Technical Lemmas

In this section, the technical results in Lemmas 25 through 29 are proved. For
the convenience of the reader, the results are restated.

Lemma 25 (Restatement). Let σ be in Sn, and let (X̄t)t≥1 be the random
transposition walk starting at σ. Then, the expected number of v such that

|C1(v)| < |C0(v)| and |C1(v)| < x is no greater than x2

n .

Proof: Let σ = (a1, . . . , am). Clearly, the only way that |C1(v)| < |C0(v)| is
if the cycle containing v is split; furthermore, the only way that |C1(v)| < x
is if v winds up in a piece of size less than x. The ‘ordered’ splitting formula
shows that the probability of splitting ai into (r, ai − r) is ai

n2 . Consider the
cases where either r < x or ai − r < x. Thus, summing over the possible ai,

E |{v s.t. |C1(v)| < |C0(v)| , |C1(v)| < x}| ≤

m
∑

i=1

(

x−1
∑

r=1

r ·
ai
n2

+

ai−1
∑

r=ai−x+1

(ai − r) ·
ai
n2

)

It’s clear that

ai−1
∑

r=ai−x+1

(ai − r)
ai
n2

=
x−1
∑

r=1

r ·
ai
n2

=
ai
n2

x−1
∑

c=1

r ≤
aix

2

2n2
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Therefore,

E |{v s.t. |C1(v)| < |C0(v)| , |C1(v)| < x}| ≤
m
∑

i=1

aix
2

n2
=

x2

n2

m
∑

i=1

ai

=
x2

n2
· n =

x2

n

as required.

For the next four lemmas, let (Xt, Yt) be our usual coupling starting at
(σ, τ), where ρ(σ, τ) = 1, s(σ, τ) = b and m(σ, τ) = c. For these proofs, it will
be useful to reference the original definition of the coupling and the possible
pairs (X1, Y1) in Definition 13.

Lemma 26 (Restatement). If x ≤ c, then

P {m(X1, Y1) < x} ≤
2x2

n2
.

Proof: Let us assume without loss of generality that

σ = (a1, . . . , an, b, c) (8.1)

τ = (a1, . . . , an, b+ c)

Consider how m(X1, Y1) could be smaller than c. Note that performing an
operation involving only the ai on σ and τ , then X1 and Y1 will still differ in
b, c and b + c, so m(X1, Y1) = c. Furthermore, merging ai with b in σ and ai
with b + c in τ , then X1 and Y1 will differ in the parts (b + ai, c, b + c + ai),
which are greater, respectively, than (b, c, b+c). This means that m(X1, Y1) ≥ c.
Similar reasoning holds for merging ai with c in σ, and hence these cases do not
contribute to P{m(X1, Y1) < x}.

Also, note that if b is split into {r, b− r} for r ≤ b
2 , then

X1 = (a1, . . . , am, r, b− r, c)

Y1 = (a1, . . . , am, r, b+ c− r)

Clearly, c ≥ b ≥ b− r, and therefore m(X1, Y1) = c. Thus, m cannot decrease if
b is split in σ. This gives cases: splitting c in σ, and merging b and c in σ. The
cases in which the coupling meets can be ignored, since m(α, α) = n ≥ c, and
hence these cases do not contribute to P{m(X1, Y1) < x}.

Splitting c in σ: If c is split into {r, c− r} for r ≤ c
2 , then

X1 = (a1, . . . , am, r, b, c− r)

Y1 = (a1, . . . , am, r, b+ c− r)
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Clearly, m(X1, Y1) ≥ c − r. Thus, to have m(X1, Y1) < x, it must be that
c− r < x, and thus r > c− x. By definition, r ≤ c

2 , and hence

c− x < r ≤
c

2

If 2x < c, this set contains no elements, so assume for now that 2x ≥ c. Then
the number of possible r is at most c

2 − (c−x) = 2x−c
2 . Since the probability of

splitting c into {r, c− r} is at most 2c
n2 for each r,

P (m(X1, Y1) < x, c split in σ) ≤
c(2x− c)

n2
≤

x2

n2
(8.2)

using the AM-GM inequality and the assumption that 2x−c ≥ 0. Furthermore,
the above inequality also holds when 2x < c, since in that case, the left-hand
side is 0.

Merging b and c in σ: If b and c are merged in σ,

X1 = (a1, . . . , am, b+ c)

Y1 = (a1, . . . , am, s, b+ c− s)

for some s ≤ b+c
2 . Hence, m(X1, Y1) = b+ c− r. Again, to have b+ c− r < x, it

must be that s > b + c− x, and the probability of each split is at most 2(b+c)
n2 .

Thus, analogously to above, consider

b+ c− x < r ≤
b+ c

2

and hence the total number of such s is at most 2x−(b+c)
2 if 2x ≥ b + c, and 0

otherwise. Therefore, if 2x ≥ b+ c,

P{m(X1, Y1) < x, b and c merged in π} ≤
(b + c)(2x− (b+ c))

n2
≤

x2

n2
(8.3)

again using AM-GM. This clearly also holds for 2x < b + c.
Finally, adding (8.2) and (8.3),

P{m(X1, Y1) < x} ≤
2x2

n2

as required.

Lemma 27 (Restatement). If x ≤ c, and |V0(y)| ≥ R, then

P{m(X1, Y1) ≥ x+ y} ≥
2c(R− 2c)

n2
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Proof: Consider both the possibilities that

π = (a1, . . . , am, b, c) (8.4)

σ = (a1, . . . , am, b+ c)

and that

π = (a1, . . . , am, b+ c) (8.5)

σ = (a1, . . . , am, b, c)

with b ≤ c, since Vt(y) is defined for Xt and not Yt, and therefore the symmetry
breaks down. Merging c with an ai ≥ y will result in m(X1, Y1) = c+ai ≥ x+y.
To calculate the probability of such a merge, the sum of these ai is needed.

In both cases (8.4) and (8.5), since σ and τ agree on the ai,

∑

ai≥y

ai ≥ |V0(y)| − (b+ c) ≥ R − 2c (8.6)

using Remark 20. For case (8.4), merging c and some ai ≥ y in σ gives

X1 = (a′1, . . . , a
′
m−1, b, c+ ai)

Y1 = (a′1, . . . , a
′
m−1, b+ c+ ai)

where {a′1, . . . , a
′
m−1} = {a1, . . . , am}/{ai}. Clearly, c + ai ≥ b, and therefore

m(X1, Y1) = c+ ai ≥ x + y. The probability of merging c with ai in σ is 2cai

n2 ,
and thus

P{m(Xπ
1 , X

σ
1 ) ≥ x+ y} ≥

∑

ai≥y

2cai
n2

=
2c

n2

∑

ai≥y

ai ≥
2c(R− 2c)

n2

using Equation (8.6) for the last inequality. Thus, in case (8.4) the proof is
finished. Furthermore, since Equation (8.6) is symmetric for the cases (8.4) and
(8.5), the second case is completely analogous.

Lemma 28 (Restatement). If x ≤ b, then

P{s(X1, Y1) < x} ≤
4x2

n2

Proof: For simplicity, assume without loss of generality that π and σ satisfy
(8.1) above. In the same way as in Lemma 26 above, any operations involving ai
cannot make s(X1, Y1) smaller than b. Thus, the operations that might produce
s(X1, Y1) < x involve either splitting b in σ, splitting c in σ, or merging b and
c in σ. Consider these cases separately. In the same way as before, the cases
where the coupling meets can be ignored.
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Splitting b in σ: Recall that if b is split into {r, b− r} for r ≤ b
2 , then

X1 = (a1, . . . , am, r, b− r, c)

Y1 = (a1, . . . , am, r, b+ c− r)

Thus, s(X1, Y1) = min(b − r, c) = b − r. To have s(X1, Y1) < x, b − r < x is
needed. Hence, consider r such that

b− x < r ≤
b

2

If 2x < b, this set contains no elements, so assume 2x ≥ b. Clearly, the above
set is of size at most x − b

2 . The probability of splitting b into (s, b − s) is at

most 2b
n2 for each s ≤ b

2 , and therefore

P{s(X1, Y1) < x, b split in σ} ≤
2b

n2

(

x−
b

2

)

=
b(2x− b)

n2
≤

x2

n2
(8.7)

using AM-GM and the assumption that 2x ≥ b for the last inequality. This
clearly also holds if 2x < b, since in that case the left-hand side is 0.

Splitting c in σ: This calculation is very similar to the above. The probability
that c is split into {r, c−r}, where r ≤ c

2 and c−r < x is needed. Again, consider

c− x < r ≤
c

2

and since the probability of a particular split is at most 2c
n2 , assuming that

2x ≥ c, the total probability of all these cases is at most

P{s(X1, Y1) < x, c split in σ} ≤
c(2x− c)

n2
≤

x2

n2
(8.8)

which again holds trivially when 2x < c.

Merging b and c in σ: Recall that merging b and c in σ is coupled with
splitting b + c into {r, b + c − r} in τ , where each split in τ occurs with the
probability that it has not already been coupled with a split of b or c in σ.
Thus, in this case,

X1 = (a1, . . . , am, b+ c)

Y1 = (a1, . . . , am, r, b+ c− r)

Assuming as usual that r ≤ b+c
2 , s(X1, Y1) = r. Now calculate the probability

that r < x. Define

Pr = P{b and c merge in π, b+ c splits into {r, b+ c− r} in σ}

and bound Pr for various values of r. Consider three different cases:
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• r < b
2 : In this case, splitting b + c into {r, b+ c− r} in τ is coupled with

both spliting b into {r, b− r} in σ and with splitting c into {r, c− r} in σ.
Thus,

Pr =
2(b+ c)

n2
−

2b

n2
−

2c

n2
= 0 (8.9)

• b
2 ≤ r < c

2 : In this case, splitting b + c into {r, b + c− r} in τ is coupled
with splitting c into {r, c− r} in σ. Thus,

Pr ≤
2(b+ c)

n2
−

2c

n2
=

2b

n2

• c
2 ≤ r: In this case, splitting b+ c into {r, b+ c− r} in τ isn’t coupled with
any splits in σ. Hence,

Pr ≤
2(b+ c)

n2

Therefore, the reasoning above shows

Pr ≤











0 r < b
2

2b
n2

b
2 ≤ r < c

2
2b+2c
n2

c
2 ≤ r ≤ b+c

2

=⇒ Pr ≤
4r

n2
(8.10)

where the right-hand inequality uses the fact that b ≤ c. Therefore,

P{s(X1, Y1) < x, b and c merge in σ} =
x−1
∑

r=1

Pr ≤
x−1
∑

r=1

4r

n2
= 4

x(x− 1)

2n2

≤
2x2

n2
(8.11)

Adding Equations (8.7), (8.8) and (8.11) gives

P{s(X1, Y1) < x} ≤
4x2

n2

as required.

Lemma 29 (Restatement). If x and y satisfy x ≤ b < x + y ≤ c, and
|V0(y)| ≥ R,

P{s(X1, Y1) ≥ x+ y} ≥
2b(R− 3x− 3y)

n2

Proof: Just like in Lemma 27, consider the two possibilities that

σ = (a1, . . . , am, b, c) (8.12)

τ = (a1, . . . , am, b+ c)
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and that

σ = (a1, . . . , am, b+ c) (8.13)

τ = (a1, . . . , am, b, c)

since Vt(y) depends on Xt and not on Yt. As in the previous lemma, in both
cases (8.12) and (8.13),

∑

ai≥y

ai ≥ |V0(y)| − (b+ c) ≥ R− (b + c) (8.14)

so case (8.12) may be assumed. Identical arguments will apply for (8.13).
There are two possible ways to have s(X1, Y1) ≥ x + y: either b can merge

with an ai ≥ y in σ, or b and c can merge in σ, while b + c can be split into
{r, b+ c− r} in τ , where r ≥ x+ y. Consider those cases separately.

Merging b and ai ≥ y in σ: Note that if b and ai are merged in σ, then

X1 = (a′1, . . . , a
′
m−1, b+ ai, c)

Y1 = (a′1, . . . , a
′
m−1, b+ ai + c)

where {a′1, . . . , a
′
m−1} = {a1, . . . , am}/{ai}. Therefore, s(X1, Y1) = min(b +

ai, c). Since b ≥ x and ai ≥ y, b + ai ≥ x + y. By assumption, c ≥ x + y, and
so s(X1, Y1) ≥ x+ y.

The probability of b merging with a particular ai is 2bai

n2 , and using the bound
in Equation (8.14),

P{s(X1, Y1) ≥ x+ y, b merges with some ai in σ} =
∑

ai≥y

2bai
n2

=
2b

n2

∑

ai≥y

ai

≥
2b(R− (b+ c))

n2
(8.15)

Merging b and c in σ: If c < 2x+2y, it will later show that the above bound
in Equation (8.15) suffices. Therefore, for this case, assume that c ≥ 2x + 2y.
Consider the probability of merging b and c in σ, while splitting b+ c in τ into
{r, b+ c− r}, where r ≥ x+ y.

Let Pr be defined as in Equation (8.9). Now a lower bound on

∑

r≥x+y

Pr = P{merge b and c in σ}

− P{merge b and c in σ, stay at τ} −
∑

r<x+y

Pr

is needed. The above equality follows because merging b and c in σ is always
either coupled with splitting b+ c into {r, b+ c− r} in τ , or staying at τ . Here
is a lower bound for the right-hand side.
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To start, c ≥ 2x+ 2y > 2b. By Equation (3.5),

P {merge b and c in σ, stay at τ} = min

(

p,
1

n

)

where p = P(b+ c split into {b, c} in τ , staying at σ). Now, since c > 2b,

p = P(b+ c split into {b, c} in τ )− P(c split into {b, c− b} in σ)

=
2(b+ c)

n2
−

2c

n2
=

2b

n2

and hence, since b ≤ n
2 ,

P {merge b and c in σ, stay at τ} = min

(

2b

n2
,
1

n

)

=
2b

n2

Furthermore, since x + y ≤ c
2 , Equation (8.10) above implies that if r < x + y

then Pr ≤ 2b
n2 , and therefore

P{merge b and c in σ, stay at τ}+
∑

r<x+y

Pr ≤
2b(x+ y)

n2

Thus, since the probability of merging b and c is 2bc
n2 ,

P{s(X1, Y1) ≥ x+ y, b and c merge in σ} =
∑

r≥x+y

Pr ≥
2bc

n2
−

2b(x+ y)

n2

=
2b(c− x− y)

n2
(8.16)

Combining all this information, if c < 2x+2y, then Equation (8.15) shows that

P{s(X1, Y1) ≥ x+ y} ≥
2b(R− (b + c))

n2
≥

2b(R− 3x− 3y)

n2

using the fact that b ≤ x + y. Furthermore, if c ≥ 2x + 2y, then combining
Equation (8.15) and (8.16),

P{s(X1, Y1) ≥ x+ y} ≥
2b (R− (b + c))

n2
+

2b (c− x− y)

n2

≥
2b(R− 2x− 2y)

n2

Hence, in either case P{s(X1, Y1) ≥ x + y} ≥ 2b(R−2x−2y)
n2 , completing the

proof.
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