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Abstract

Functionals of spatial point process often satisfy a weak spatial dependence condition

known as stabilization. We prove general Donsker–Varadhan large deviation principles (LDP)

for such functionals and show that the general result can be applied to prove LDPs for various

particular functionals, including those concerned with random packing, nearest neighbor

graphs, and lattice versions of the Voronoi and sphere of influence graphs.
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1. Main results

This paper studies the large deviations of functionals of spatial point processes
indexed by multidimensional cubes. When functionals of spatial point processes are
approximately additive over their index sets and satisfy a weak regularity condition,
then Donsker–Varadhan large deviation principles (LDP) follow [24]. However
many functionals of spatial point processes are not known to be approximately
additive, but instead satisfy a weak spatial dependence property termed stabilization
[4,17–19].
Stabilization, which quantifies the local dependence structure, is a useful unifying

concept which yields general laws of large numbers and central limit theorems for
functionals in geometric probability. Stabilization helps describe the large scale limit
behavior of random functionals and random measures in terms of the underlying
density of points [3,4,15,16,18,19].
The purpose of this paper is to show that stabilization also yields general

Donsker–Varadhan large deviation principles for functionals of spatial point
processes (Theorem 1.1) as well as for the measures induced by such functionals
(Theorem 1.2). The general LDPs are then applied to deduce large deviation
principles for functionals of spatial point processes which do not have an obvious
subadditive or additive structure. This includes functionals concerned with random
sequential packing, nearest neighbor graphs, and lattice versions of the Voronoi and
sphere of influence graphs. In this way we obtain the LDP counterparts for some
functionals known to satisfy laws of large numbers and central limit theorems
[4,16–19].
A key simplifying idea involves the approximation of stabilizing functionals by a

finite range correction, namely by a functional whose value at a point depends only
on points within a finite deterministic distance. By considering stabilizing functionals
admitting a finite range correction approximation, we effectively study a process
which is nearly additive over its index set, allowing us to draw on the general LDP
results of [24].

1.1. Stabilizing functionals

To fix our ideas, throughout we will consider a translation-invariant non-negative
function xðx;XÞ defined for all pairs ðx;XÞ; where X is a locally finite subset of Rd

containing x. We will write xðx;XÞ:¼xðx;X [ fxgÞ if xeX. Define

HxðXÞ:¼
X
x2X

xðx;XÞ

and for Borel D � Rd put

HxðX;DÞ:¼
X

x2X\D

xðx;XÞ.

Fix t40 and let Pt denote an intensity t homogeneous Poisson point process in
Rd . We will assume that x is stabilizing at intensity t, that is for each x 2 Rd there
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exists an a.s. finite random variable RðxÞ:¼Rxðx;PtÞ (a radius of stabilization)
such that

xðx; ðPt \ BRðxÞðxÞÞ [AÞ ¼ xðx;Pt \ BRðxÞðxÞÞ

for all locally finite A � RdnBRðxÞðxÞ: Here and elsewhere for all r40 and x 2 Rd ;
BrðxÞ denotes the ball of radius r centered at x. More generally, for a finite point
configuration X � Rd we consider the stabilization radius RðxÞ:¼Rxðx;XÞ of x at x

defined so that xðx; ðX \ BRðxÞðxÞÞ [AÞ takes the same value for all locally finite
A � RdnBRðxÞðxÞ: To shorten the notation, we put

Hx
l:¼Hx

l;t:¼HxðPt \ Ql;QlÞ,

where Ql:¼½0; l�d ; l40. Letting dx denote the Dirac point mass at x, for l40 we
define the (re-scaled) weighted measure on ½0; 1�d

mxl:¼mxl;t:¼
X

x2Pt \Ql

xðx;Pt \ QlÞdx=l,

so that in particular Hx
l ¼ mxlð½0; 1�

d Þ: We keep the intensity t fixed and make no
explicit reference to the dependence on t as long as it does not lead to confusion.
We will writeMþð½0; 1�d Þ for the space of non-negative Borel measures on ½0; 1�d ;

endowed with the usual weak topology and we fix on Mþð½0; 1�dÞ a metric R
compatible with this topology. Throughout all random variables are defined on a
fixed probability space ðO;F;PÞ.

1.2. Finite range corrections

By their definition, stabilizing functionals involve asymptotic decoupling of the
behavior exhibited by the process in distant regions. A natural idea, to be exploited
below in the context of large deviations, is to approximate the original stabilizing
functional x by its finite range correction constructed so as to stabilize within
deterministic finite distances. It turns out that quite natural regularity conditions on
the process Hx

l, required for the large deviation principle to hold, can be then
formulated in terms of the quality of such finite range approximations.
To put these ideas in formal terms, for r40 we say that a non-negative functional

x½r� is an r-stabilizing finite range correction of x if the following conditions are
satisfied for all locally finite subsets X in Rd :
(C1)
 x½r�ðx;XÞ ¼ xðx;XÞ whenever Rxðx;XÞor; with Rxðx;XÞ standing for the
stabilization radius of x at x for the configuration X; and
(C2)
 x½r� is stabilizing at intensity t with a stabilization radius bounded a.s. by r.
In applications, we will often put

x½r�ðx;XÞ:¼
xðx;XÞ if Rxðx;XÞor;

0 otherwise,

(
(1.1)
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but we note that alternative definitions fulfilling (C1) and (C2) can be considered on
equal rights provided that the upcoming conditions (L1) and (L2) are satisfied. In general
we only assume the existence of a deterministic procedure constructing x½r� out of x.
Given a finite range correction x½r� satisfying (C1) and (C2) we construct in the

obvious way the empirical measure mx
½r�

l as well as the total mass functional
Hx½r�

l :¼mx
½r�

l ð½0; 1�d Þ. Further, we define also the (possibly signed) difference measure

dx
½r�

l :¼mxl � mx
½r�

l . However, defining x½r� as in (1.1), the difference measure is non-

negative and its total variation kdx
½r�

l kTV; coinciding in this case with the total mass,
decreases in r for fixed l: It should be emphasized that Theorems 1.1. and 1.2 below
hold for general finite range corrections not necessarily given by (1.1).
1.3. Large deviation principles: main results

We assume that the finite range correction x½r� satisfies:
(L1)
 For each r40 there exists MðrÞo1 such that for all x and all locally finite
point configurations X 3 x;

x½r�ðx;XÞpMðrÞ.
(L2)
 For arbitrarily small �40 and for arbitrarily large C40 there exists rð�;CÞ such
that for each r4rð�;CÞ we have for l large enough

P½kdx
½r�

l kTV4�ld
�p expð�Cld

Þ.
In view of the boundedness condition (L1), stabilization of x½r� yields for all r 2

ð0;1Þ [19] a constant gx
½r�

such that

gx
½r�

¼ lim
l!1

1

ld
EHx½r�

l . (1.2)

By condition (L2) there is a constant gx, referred to as the spatial constant for x, such
that

gx ¼ lim
l!1

1

ld
EHx

l. (1.3)

The following results are Donsker–Varadhan-style large deviation principles and
constitute the main results of this paper. As in Section 1.2 in [7], we say that a family
of random elements ðYlÞl40 taking values in a general topological space Y satisfies
a large deviation principle on Y with a good rate function I and with speed sðlÞ
iff the level sets fIðyÞpMg; Mo1, are compact (thus, in particular, I is lower
semicontinuous) and

lim sup
l!1

1

sðlÞ
logP½Yl 2 F �p� inf

x2F
IðxÞ
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for all closed sets F � Y and

lim inf
l!1

1

sðlÞ
logP½Yl 2 O�X� inf

x2O
IðxÞ

for all open sets O � Y.

Theorem 1.1 (scalar LDP). With conditions (L1) and (L2), there exists a

convex good rate function I : R ! Rþ [ fþ1g such that the family ðl�dHx
lÞl

satisfies the full large deviation principle with speed ld and rate function I . Moreover,
the limit

LðsÞ:¼ lim
l!1

1

ld
log E expðsHx

lÞ (1.4)

exists and is finite for all s 2 R and

IðtÞ ¼ sup
s2R

ðts � LðsÞÞ. (1.5)

Furthermore,

lim
t!þ1

IðtÞ=t ¼ þ1 (1.6)

and IðtÞ40 for tagx.

The next result extends Theorem 1.1 and describes the asymptotic behavior of the
measures ðl�dmxlÞl instead of their total masses.

Theorem 1.2 (measure LDP). With conditions (L1) and (L2), the family of random

measures ðl�dmxlÞl satisfies on Mþð½0; 1�dÞ the full large deviation principle with speed

ld and rate function

JðyÞ:¼

R
½0;1�d I

dy
dl

� �
dl if y5l;

þ1 otherwise:

8<
: (1.7)

Remarks. (i) General laws of large numbers and central limit theorems for
stabilizing functionals of point processes are established in [4,16–19], respectively;
unlike Theorems 1.1 and 1.2 such results do not require existence of exponential
approximations of the original process by its finite range corrections as in (L2).
Under conditions (L1) and (L2), Theorems 1.1 and 1.2 thus add to the existing limit
theory for stabilizing functionals.
(ii) Theorems 1.1 and 1.2 extend to random functionals and random measures

defined by marked Poisson point processes as follows. Let ðM;F; nÞ be a probability
space of marks and Pt�n a homogeneous Poisson point process on Rd �M with
intensity t� n. Then x is stabilizing at intensity t if for each x 2 Rd there exists
an a.s. finite random variable RðxÞ:¼Rxðx;Pt�nÞ such that for all finite A �

ðRdnBRðxÞðxÞÞ �M we have

xðx; ðPt�n \ BRðxÞðxÞÞ [AÞ ¼ xðx; ðPt�n \ BRðxÞðxÞÞ.
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In this setting if fðX i; tiÞgi is a realization of Pt�n then put

mxl:¼mxl;t:¼
X

x2fX ig\Ql

xðx; fðX i; tiÞgiÞdx=l

and Hx
l:¼mxlð½0; 1�

dÞ. With these small modifications, Theorems 1.1 and 1.2 hold for
the marked functionals ðHx

lÞl and measures ðm
x
lÞl. We shall use this modification in

applications to random sequential packing (Sections 2.1 and 2.2).
(iii) The non-negativity assumption on x is not essential to the proof of Theorem 1.1.

However, the non-negativity of x is crucial to ensure that the empirical measures
belong to the space of positive measures Mþð½0; 1�dÞ, which is topologically better
behaved than the space of signed measures.
(iv) We are unable to establish analogues of Theorems 1.1 and 1.2 under binomial

sampling, that is for measures induced by i.i.d. random variables X 1;X 2; . . . ;X dtle

on Ql instead of by the realization of the Poisson point set Pt \ Ql.

2. Applications

We provide applications of the general LDPs given by Theorems 1.1. and 1.2 to
functionals of random sequential packing models and functionals of graphs in
computational geometry. The following examples have been considered in detail in
the context of central limit theorems [4,17,20], thermodynamic limits [19], and
moderate deviation principles [1].

2.1. Random sequential packing

We recall a prototypical random sequential packing model used in diverse
disciplines, including physical, chemical, and biological processes. See [18] for a
discussion of the many applications, the many references, and also a discussion of
previous results in the scientific literature. In one dimension, this model is often
referred to as the Rényi car parking model. With PoðldtÞ standing for a Poisson
random variable with parameter ldt, let B1;B2; . . . ;BPoðldtÞ be a sequence of d-
dimensional unit radius balls whose centers are i.i.d. random d-vectors X 1; . . . ;
XPoðldtÞ; independent of Poðl

dtÞ; with a uniform probability density function on
Ql:¼½0; l�d ; dX1. Without loss of generality, assume that the balls are sequenced in
the order determined by i.i.d. uniformly distributed marks (time coordinates) in ½0; t�.
Let the first ball B1 be packed, and recursively for i ¼ 2; 3; . . ., let the ith ball Bi be
packed iff Bi does not overlap any ball in B1; . . . ;Bi�1 which has already been
packed. If not packed, the ith ball is discarded. This procedure is known as random
sequential adsorption (RSA).
Observe that the centers of all incoming balls form a homogeneous intensity t

Poisson point process Pt on Ql. When re-scaled onto ½0; 1�
d ; the collection of centers

of accepted balls induces a point measure on ½0; 1�d , denoted ml;t. We call this the
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random sequential packing measure induced by unit balls with centers arising
from Pt.
For any finite point set X � Rd ; dX1, assume the points x 2 X have time

coordinates which are independent and uniformly distributed over the interval ½0; t�.
Assume unit balls centered at the points of X arrive sequentially in an order
determined by the time coordinates, and assume as before that each ball is packed or
discarded according to whether or not it overlaps a previously packed ball. Let
xðx;XÞ be either 1 or 0 depending on whether the ball centered at x is packed or
discarded. It is known that x is stabilizing at intensity t and that Rxðx;PtÞ has
exponentially decaying tails for all t40 [18]. For x 2 ½0; 1�d and X � ½0; 1�d let
xlðx;XÞ:¼xðlx; lXÞ, where lx denotes scalar multiplication of x and not the mark
associated with x. The total number of balls packed with centers in X is given by the
packing functional HxðXÞ:¼

P
x2Xxðx;XÞ. The random measure

mxl:¼
X

x2Pt\Ql

xðx;Pt \ QlÞdx=l

coincides with the packing measure ml;t.
The following provides an LDP for the random packing functionals and measures.

Corollary 2.1 (LDP). The family of packing functionals ðl�dHx
lÞl and the family

of packing measures ðl�dmxlÞl satisfy the LDP as in Theorems 1.1 and 1.2, respectively.

Remarks. (i) The family of functionals ðHx
lÞl and measures ðm

x
lÞl satisfy weak laws of

large numbers [19], central limit theorems [2,4,18], and moderate deviation principles
[1]. In d ¼ 1 the analysis is somewhat simpler and has roots in Rényi [22] and
Dvoretzky and Robbins [10], with later work by Coffman et al. [6]. Corollary 2.1
shows that the Poissonized packing functionals and measures satisfy an LDP as well.
(ii) Corollary 2.1 provides an LDP for the total number of balls accepted in the

packing model with finite input, i.e., where the time coordinates are uniformly
bounded. Finite input is crucial to controlling the long range interactions in packing
models. In the setting of infinite input in dX2 (i.e., where the time coordinates arise
as the realization of a homogeneous Poisson point process over ½0;1Þ), we are
unable to control the long range interactions and thus are unable to establish an
LDP in the infinite input setting. Central limit theorems in this context are not
known either (cf. Theorem 1.2 of [18]).

Proof of Corollary 2.1. We consider the finite range correction x½r� of the packing
functional x, given by (1.1). Clearly, only condition (L2) requires verification, since
(L1) holds with MðrÞ ¼ 1. Our argument below is based on the graphical
representation of the packing process built upon a particular space-time epidemic-
spreading oriented percolation model coupled with the original model, as introduced
in [18].
Denote the realization of the Poisson point process Pt by ðX ÞX2Pt

. Assume that
each X carries a mark MX which is uniformly distributed on ½0; t�. Thus the points
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ðX ;MX ÞX2Pt
form a unit intensity Poisson point process P on Rd � ½0; t�. As in [18],

we make P into the vertex set of an oriented graph by including an edge from the
point ðX ;TÞ to ðY ;UÞ whenever ðX ;TÞ and ðY ;UÞ are points of P satisfying TpU

and jX � Y jp2.
It is useful to think of the induced graph on P as representing the spread of an

epidemic in which new points born in the unit radius neighborhood of existing
infected points are themselves instantly (and permanently) infected. A collection of
points ðX i;MX i

Þ in P which satisfies jX i � X iþ1jo2 andMX i
pMX iþ1

will be called a
path of infected points or a causal chain. It is crucial to observe that the
packing status of a given point ðX ;MX Þ 2 P cannot be affected by the points of P
which fall outside the union of all causal chains containing ðX ;MX Þ (Section 4
of [18]).
To proceed, partition the large cube Ql into translates QL=2þr0

½1�, QL=2þr0
½2�; . . .

of QL=2þr0
with L and r0 to be specified below, but always chosen such that L42r0

and L=2þ r0 divides l: Let QLþ2r0
½1�;QLþ2r0

½2�; . . . stand for all possible translates
of QLþ2r0

which can be obtained as unions of QL=2þr0
½i�; i ¼ 1; 2; . . . Note that each

QLþ2r0
½j� has non-trivial intersection with at most 3d � 1 other such cubes

(‘neighbors’). Rather than labelling these cubes with a sequence of natural numbers,
it is convenient to consider QLþ2r0

½�� indexed by a subset of the integer lattice Zd ;
namely by the subset B½nðl;L; r0Þ�:¼f1; . . . ; nðl;L; r0Þ:¼l=ðL=2þ r0Þg

d , with the
neighborhood relation i�j given by whether QLþ2r0

½i� overlaps with QLþ2r0
½j�; which

is easily seen to be equivalent to jji � jjj1:¼maxðji1 � j1j; . . . ; jid � jd jÞ ¼ 1. Further
subdivide the cube QLþ2r0

½i� into a centrally located translate QL½i� of QL surrounded
by a corridor (moat) CL;r0 ½i�:¼QLþ2r0

½i�nQL½i� of width r0: For a fixed �40, we choose
L:¼Lð�Þ so that the maximum overall volume of packed balls with their centers inS

iCL;r0 ½i� cannot exceed
�
2
ld .

We declare a cube QLþ2r0
½i� bad if it contains a causal chain (path of infected

points) with a diameter larger than r0 � 2. Observe that in view of the exponential
decay of the diameter of a single causal chain, as established in [18], the probability
of a given cube QLþ2r0

½i�; i 2 B½nðl;L; r0Þ�; being bad can be made arbitrarily small
uniformly in the configuration over the non-overlapping cubes QLþ2r0

½j�; jfi; by an
appropriate choice of L and r0: Indeed, inside the cube QLþ2r0

½i� we observe
PoðtVolðQLþ2r0

½i�ÞÞ ¼ PoðtðL þ 2r0Þ
d
Þ points of the process Pt \ QLþ2r0

½i�: Each of
these points belongs to a causal chain whose diameter exhibits exponential tail decay.
In particular, assigning to each point x 2 Pt \ QLþ2r0

½i� the random variable R½x; r0�

equal to the largest possible diameter R of a causal chain containing x and contained
in QLþ2r0

provided R4r0 � 2 and 0 otherwise, we see that the expectation
E
P

x2Pt\Ql
R½x; r0� is of order OððL þ 2r0Þ

d expð�cr0ÞÞ for some c40: However, this
expectation is an upper bound for the probability that there is at least one causal
chain of diameter larger than r0 � 2 within QLþ2r0

½i�: Clearly, this argument is valid
regardless of the configurations over the cubes QLþ2r0

½j�; ifj; i.e. those which do not
overlap with QLþ2r0

½i�.
We use now Theorem 0.0 in [12] to conclude that the random process, assigning to

each site i 2 B½nðl;L; r0Þ� the value 1 if QLþ2r0
½i� is bad and 0 otherwise, can be

stochastically dominated by an i.i.d. site percolation process P on B½nðl;L; r0Þ�;
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where the probability pðL; r0Þ:¼P½P½i� ¼ 1� can be made arbitrarily small by
adjusting L and r0. In accordance with the terminology introduced above, we shall
call a site i 2 B½nðl;L; r0Þ� bad whenever P½i� ¼ 1 and good otherwise (note that
when declaring a site in B½nðl;L; r0Þ� bad or good we refer to the dominating i.i.d.
process P rather to the original dependent process induced on B½nðl;L; r0Þ� by the
continuum graphical construction).
It is a simple yet crucial consequence of the graphical construction that kdx

½r�

l kTV is
bounded above by the overall number Dðl; rÞ of packed (accepted) balls in Pt \ Ql
falling into causal chains of diameter larger than r, i.e.,

kdx
½r�

l kTVpDðl; rÞ. (2.1)

Now in order that a causal chain covers a Euclidean distance larger than r, observe
that it is necessary that there exist a path of bad cubes of length (cardinality of the
number of constituent cubes QLþ2r0

) larger than Kr=L for some constant K40
depending only on the dimension d: LetW ½L þ 2r0� stand for the maximum possible
number of unit balls which can be packed in QLþ2r0

. In particular, the overall
number Dðl; rÞ of balls belonging to causal chains having a diameter larger
than r is stochastically dominated by the product of W ½L þ 2r0� and the number
Dðl;L; r0; rÞ of bad sites i 2 B½nðl;L; r0Þ� for P; falling into bad clusters of size
(length) larger than Kr=L; connected with respect to the neighborhood relation �;
plus the number of balls packed in the moats

S
iCL;r0 ½i�:Note that we have to add the

balls in the moats to take into account that even in good cubes some balls, whose
distance to the boundary of the cube is smaller than r0; may belong to causal chains
passing across the boundary. Clearly, this cannot happen if the distance between a
ball contained in a good cube and the boundary of the cube exceeds r0: Indeed, by
the definition of a good cube no causal chain containing this ball can reach the
boundary of the cube.
To proceed, observe that since the size of the corridors was chosen so that the

maximum number of balls packed there is a negligible fraction of the overall volume
volðQlÞ ¼ ld ; to complete the proof of (L2) it is enough to show that for each z40
and C40 there exists rðz;CÞ40 such that for all r4rðz;CÞ and all l large

P½W ½L þ 2r0�Dðl;L; r0; rÞ4zld
�p expð�Cld

Þ. (2.2)

To this end, assume that L and r0 are chosen so that pðL; r0Þ is subcritical for the
i.i.d. site percolation on Zd with the neighborhood relation �. Denote by Cl½i�

the connected cluster of bad boxes at i 2 B½nðl;L; r0Þ�: We order the points of
B½nðl;L; r0Þ� in some arbitrary way as i1; i2; . . . and define Z1 ¼ Zi1

:¼ cardCl½i1� and
Zkþ1 ¼ Zikþ1

:¼ cardCl½ikþ1� if Cl½ikþ1� does not coincide with any of the previous
clusters Cl½i�; ipk; put Zkþ1 :¼ 0 otherwise. It follows by the exponential decay
of the cluster size in the subcritical regime (Sections 5.2 and 6.3 in [11]) that
P½cardCl½i�4s�p expð�sRðL; r0ÞÞ for some RðL; r0Þ40 for all i 2 B½nðl;L; r0Þ�.
Consequently

P½Z14s1; Z24s2; . . .�p expð�RðL; r0Þ½s1 þ s2 þ � � ��Þ.
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This means that the sequence Z1; Z2; . . . is stochastically dominated by an i.i.d.
sequence Ẑ1; Ẑ2; . . . of exponential random variables with parameter RðL; r0Þ: Clearly,

Dðl;L; r0; rÞp
X

i2B½nðl;L;r0Þ�

Zi1fZi4Kr=Lg.

In particular, Dðl;L; r0; rÞ is stochastically bounded by the sumP
i2B½nðl;L;r0Þ�Ẑi1fẐi4Kr=Lg. As discussed above, by adjusting L and r0 we can make

pðL; r0Þ arbitrarily small, and hence RðL; r0Þ arbitrarily large. Using Markov’s
inequality we get for each R0oRðL; r0Þ and �40

P
X

i2B½nðl;L;r0Þ�

Ẑi1fẐi4Kr=Lg4�ld

 !
p

E expðR0Ẑ11fẐ14Kr=LgÞ
 �nðl;L;r0Þd

expðR0�ld
Þ

.

Thus, choosing r large so that E expðR0Ẑ11fẐ14Kr=LgÞo1 we can ensure that (2.2)
holds. This completes the proof of (L2) and hence also that of Corollary 2.1. &

2.2. Related packing models

There are several variants of the basic RSA packing model which can be viewed as
marked processes admitting a graphical representation similar to that of RSA
packing. In this way, by following the proof of Corollary 2.1, we obtain
Donsker–Varadhan LDPs for spatial birth growth models and ballistic deposition
models.
(i) Spatial birth-growth models. Consider the following spatial birth-growth model

in Rd . Fix 0oto1. Seeds are born at random locations X i 2 Rd at times Ti;
i ¼ 1; 2; . . . according to a unit intensity homogeneous spatial temporal Poisson
point process C:¼fðX i;TiÞ 2 Rd � ½0; t�g: When a seed is born, it forms a cell by
growing radially in all directions with a constant speed vX0. Whenever one growing
cell touches another, it stops growing in that direction. Initially the seed takes the
form of a ball of radius riX0 centered at X i. If a seed appears at X i and if the ball
centered at X i with radius ri overlaps any of the existing cells then the seed is
discarded.
We assume that the ri; i ¼ 1; 2; . . . are i.i.d., independent of fðX i;TiÞg, and satisfy

ripr for some ro1. In the special case when the growth rate v ¼ 0 and ri is
constant, this model reduces to the RSA packing model. In the case where all initial
radii are zero a.s., the model is known as the Johnson–Mehl model.
Define the random packing measure

mxl:¼
X

X i2fX jg
1
j¼1\Ql

xðX i; fX jg
1
j¼1 \ QlÞdX i=l,

where xðX i; fX jg
1
j¼1 \ QlÞ is either 1 or 0 depending on whether the ball centered at

X i is packed or discarded. Note that the total mass of m
x
l (i.e., Hx

l:¼mxlð½0; 1�
dÞ) is the

number of seeds accepted by time t. Since to1 and ro1 there is a finite range of
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interaction between two particles and in fact no particle excludes any other particle
appearing at a distance D:¼2r þ 2vt from it.
The point set fX igðX i ;TiÞ2C in R

d is an example of a marked point set where each X i

carries a random mark MX i
2 ½0; t� � ½0; r� representing the arrival time and particle

radius.
As in the proof of Corollary 2.1 we make fX i;Tig into the vertex set of an oriented

graph by including an edge from ðX ;TÞ to ðY ;UÞ whenever ðX ;TÞ and ðY ;UÞ are
points satisfying TpU and jX � Y jpD. Thus the graph is constructed exactly as in
Section 2.1 by considering only the time component of the marks MX i

(and ignoring
the radius component).
By following the set-up in the proof of Corollary 2.1 we may deduce an LDP for

the measures mxl as well as the total mass functionals m
x
lð½0; 1�

dÞ: This adds to the
central limit theorems given in [4,5,18].
(ii) Monolayer ballistic deposition with a rolling mechanism. Incoming particles

(balls of radius r) have a downward vertical motion as in the basic packing process.
Particles arrive sequentially and if a particle hits the substrate Rd (and not another
adsorbed particle) then it is adsorbed and irreversibly fixed. If, on the other hand, a
particle hits an already adsorbed particle, then it rolls, following the path of steepest
descent until it reaches a stable position. The particle is discarded if it fails to reach
the substrate surface. The rolling process does not modify the positions of previously
deposited particles.
If the rolling process puts the particle on the substrate Rd then the particle is

adsorbed, otherwise it is rejected from the system. The next sequenced particles are
considered similarly. The result is a deposition process on Rd consisting of a single
‘layer’.
Assuming that the rolling process maintains contact between the rolling particle

and already deposited particles, it follows that there is a uniform bound D1 on the
lateral displacement of incoming balls. (This is trivial in d ¼ 1 and proved in [14] for
d ¼ 2.) Therefore the interaction range for this process is finite.
Let C:¼fðX i;TiÞ 2 Rd � ½0;T �g be the spatial temporal Poisson point process as

defined above for spatial birth growth models. Let xðX i; fX jg
1
j¼1 \ QlÞ be either 1 or 0

depending on whether the particle centered at X i is accepted or discarded according
to the ballistic deposition process with rolling. Consider the random measure

mxl:¼
X

X i2fX jg
1
j¼1\Ql

xðX i; fX jg
1
j¼1 \ QlÞdX i=l.

Exactly as in the previous examples we observe that no particle excludes any other
particle appearing at a distance D:¼2r þ 2D1 from it and we make fðX i;TiÞg into the
vertex set of an oriented graph by including an edge from ðX ;TÞ to ðY ;UÞ whenever
ðX ;TÞ and ðY ;UÞ are points satisfying TpU and jX � Y jpD: Via the proof of
Corollary 2.1 we deduce an LDP for ðmxlÞl as well as the functionals ðm

x
lð½0; 1�

dÞÞl,
adding to the central limit theorems of [4,18].
(iii) Multilayer ballistic deposition. Incoming particles arrive as in monolayer

ballistic deposition, but now a particle may attach itself to previously adsorbed
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particles instead of to the substrate. In the simplest form of continuum multilayer
ballistic deposition, each particle falls vertically towards the substrate and as soon as
it encounters either the substrate or another particle, it sticks (and remains in that
place forever). If a particle is deposited higher than at some fixed distance from the
substrate, it is rejected. The interaction range for this process is bounded by a finite
number, say D2. Expressing the total number of accepted particles (in cases where
particles are not all accepted) as a sum of stabilizing functionals and by following the
methods outlined above (with D2 replacing D), yields an LDP for the total number
of accepted particles. This adds to the CLTs of [4,18].

2.3. k-nearest neighbors graphs

Let X be a locally finite subset of Rd and G:¼GðXÞ a graph on X. Given a vertex
x 2 X, let Eðx;GðXÞÞ be the set of edges in G incident to x and let jej denote the
length of an edge e.
Given f : Rþ ! Rþ, consider functionals of the type

xðx;XÞ:¼xG
f ðx;XÞ:¼

X
e2Eðx;GðXÞÞ

fðjejÞ.

Such functionals could represent e.g. the total length of f-weighted edges in G

incident to x, the number of edges in G incident to x, or the number of edges in G less
than some specified length. These functionals induce functionals on X

HxðXÞ:¼
X
x2X

X
e2Eðx;GðXÞÞ

fðjejÞ.

As before, let Pt be the homogeneous Poisson point process in Rd of intensity t.
Write

Hx
l:¼Hx

l;t:¼HxðPt \ Ql;QlÞ:¼
X

x2Pt\Ql

X
e2Eðx;GðPt\QlÞÞ

fðjejÞ (2.3)

and

mxl:¼mxl;t:¼mxðPt \ Ql;QlÞ:¼
X

x2Pt\Ql

X
e2Eðx;GðPt\QlÞÞ

fðjejÞdx=l. (2.4)

Let k be a positive integer. The k-nearest neighbors (undirected) graph on X,
denoted NGðXÞ, is the graph with vertex set X obtained by including fx; yg as an
edge whenever y is one of the k nearest neighbors of x and/or x is one of the k nearest
neighbors of y. The k-nearest neighbors (directed) graph on X, denoted NG0ðXÞ, is
the graph with vertex set X obtained by placing a directed edge between each point
and its k nearest neighbors. Define the induced Poisson point measures mxl as in (2.4).
The next result gives an LDP for the total edge length of NGðPt \ QlÞ; a similar
result holds for the total edge length of NG0ðPt \ QlÞ.

Corollary 2.2. Let fðxÞ ¼ x and let G be the undirected k nearest neighbors graph. The

family of functionals ðl�dHx
lÞl and the family of measures ðl�dmxlÞl satisfy the LDP of

Theorems 1.1 and 1.2, respectively.
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Remark. Corollary 2.2 adds to the existing laws of large numbers and central limit
theorems for the total edge length of the undirected and directed k nearest neighbors
graph [4,17–19].

Proof. It is clear that xðx;PtÞ:¼
P

e2Eðx;GðPtÞÞ
jej is stabilizing from the analysis in

[17,4]. With x½r� defined as in (1.1), condition (L1) is easily verified for MðrÞ ¼ kr. It

remains to show that the total variation of the disagreement process dx
½r�

l satisfies

condition (L2). Assume that r41: It is clear that

kdx
½r�

l kTVp
X

r0i,

where r0i are the lengths of the k-nearest neighbors edges in GðPtÞ which exceed the
cut-off r. However, with probability 1X

r0ip sup½r
0
1 þ � � � þ r0m�, (2.5)

where the sup ranges over all r01; . . . ; r
0
m; r0iXr, such that ðr0d1 þ � � � þ r0dmÞodp

Cðd; kÞvolQl, where od is the volume of the unit radius ball in Rd while Cðd; kÞ is a
constant depending on k and d: Indeed, even though the balls with the radii joining
points of Pt to their k-nearest neighbors are in general not disjoint, it is clear that
only a finite number Cðd; kÞ of such balls can meet at a given point in Rd . Now, it is
easily seen that the right-hand side in (2.5) is maximized under the imposed
constraint when all r0i are identical and equal to some LXr (with L ¼ r iff odrd

divides VolðQlÞ ¼ ld ). Consequently, the right-hand side in (2.5) is bounded by
Cðd;kÞLld

od Ld pCðd ;kÞld

od Ld�1 o�ld if r is large, thus showing (L2) as desired. &

Further applications of Theorems 1.1 and 1.2 go as follows. Fix t40. Let ftðjejÞ be
either 1 or 0 depending on whether the length jej of the edge e in the graph NGðXÞ is
bounded by t or not. With the finite range corrections x½r� given as in (1.1) conditions
(L1) and (L2) are easily verified since x corresponding to such ft stabilizes within
radius t and hence coincides with x½r�; r4t: Then Theorem 1.1 gives an LDP for the
empirical distribution function of the re-scaled lengths of the edges in the k-nearest
neighbors (undirected) graph on Pt \ Ql. When k ¼ 1, this gives an LDP for the
number of pairs of re-scaled points distant at most t from each other. We summarize
the discussion as follows. A similar result holds for the k-nearest neighbors (directed)
graph on Pt \ Ql.

Corollary 2.3. Let f:¼ft be as above, tX0, and let G be the undirected nearest

neighbors graph. The family of functionals ðl�dHx
lÞl and the family of measures

ðl�dmxlÞl satisfy the LDP of Theorems 1.1 and 1.2, respectively.

2.4. Lattice graph models

Below we consider versions of some classical graph models restricted to the
discretized lattice setting. In this subsection Pt will stand for the point process
in Zd ; with each lattice site x 2 Zd empty with probability expð�tÞ and occupied
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(i.e. containing a single point) with probability 1� expð�tÞ; independently of each
other. In spite of minor formal differences, it can be shown from our method of
proof that the general theory and results developed in Section 1 are valid for this
lattice setting.

2.4.1. Voronoi and Delaunay graphs

We assume that d ¼ 2 in this example. Given a locally finite setX � Z2 and x 2 X,
the locus of points in R2 closer to x than to any other point in X is called the Voronoi

cell centered at x. The graph on the vertex set X in which each pair of adjacent cell
centers is connected by an edge is called the Delaunay graph on X while the planar
dual graph consisting of all boundaries of Voronoi cells is called the Voronoi graph

generated by X. Edges of the Voronoi graph can be finite or infinite. Let VORðx;XÞ

denote the Voronoi cell of x generated by X and let Eðx;VORðXÞÞ be the collection
of the finite edges of VORðx;XÞ: Consider a real-valued function f : Rþ ! Rþ such
that

lim
r!1

fðrÞ=r ¼ 0; fðrÞpKr for some K40, (2.6)

and put

xðx;XÞ:¼
X

e2Eðx;VORðXÞÞ

fðjejÞ.

A representative example of such f is fðrÞ ¼ rp; po1. When p ¼ 0, that is when
f � 1; then xðx; �Þ counts edges of the Voronoi cells centered at x; which amounts to
counting the Delaunay edges incident to x. We have

Corollary 2.4. With the notation of this paragraph, the family of functionals ðl�dHx
lÞl

and the family of measures ðl�dmxlÞl satisfy the LDP of Theorems 1.1 and 1.2,
respectively.

Remark. Corollary 2.4 adds to existing laws of large numbers [19] and central limit
theorems [17,4] for functionals of Voronoi graphs in the continuum.

Proof. Corollary 2.4 will follow as a direct conclusion of Theorems 1.1 and 1.2 as
soon as we verify the conditions (L1) and (L2). We define x½r� as in (1.1). Clearly, if
the radius of stabilization Rxðx;PtÞor; the Voronoi cell centered at x is contained
in Br=2ðxÞ and hence (L1) holds with MðrÞ:¼Kpr with K as in (2.6). To check that
(L2) holds as well, observe that only centers x 2 Z2 of Voronoi cells with
diamðVORðx;PtÞÞXr=2 may contribute to dx

½r�

l . It is easily seen that the area
VolðVORðx;XÞÞ of each such cell exceeds r=2, an estimate which may not necessarily
hold in the continuum setting. In view of (2.6), we have xðx;XÞ ¼ oðVolðVORðx;XÞÞÞ

as r ! 1, and so each x with Rxðx;PtÞXr, can contribute at most
oðVolðVORðx;XÞÞÞ to dx

½r�

l . Since the Voronoi cells centered at different points are
disjoint, combining the above conclusions yields a.s.

kdx
½r�

l kTV ¼ oðVolðQlÞÞ ¼ oðl
2
Þ as r ! 1,

which completes the verification of (L2) and hence also the proof of Corollary 2.4. &
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2.4.2. Sphere of influence graphs

Given a locally finite set X � Zd , the sphere of influence graph SIGðXÞ is a graph
with vertex set X, constructed as follows: for each x 2 X let BðxÞ be a ball around x

with radius equal to miny2Xnfxgfjy � xjg. Then BðxÞ is called the sphere of influence of
x. Draw an edge between x and y iff the balls BðxÞ and BðyÞ overlap. The collection
of such edges is the sphere of influence graph (SIG) on X and is denoted by SIGðXÞ.
We also write SIGðx;XÞ for the collection of all edges in SIGðx;XÞ incident to x.
Consider a real-valued function f as in (2.6) above and put

xðx;XÞ:¼
X

e2SIGðx;XÞ

fðjejÞ. (2.7)

Once again, a representative example is f � 1; in which case xðx; �Þ counts the edges
incident to x: We obtain

Corollary 2.5. With the notation of this paragraph, the family of functionals ðl�dHx
lÞl

and the family of measures ðl�dmxlÞl satisfy the LDP of Theorems 1.1 and 1.2,
respectively.

Remark. When f � 1, laws of large numbers and limit theorems for ðHx
lÞl are

established in Theorem 2.6 of [19] and Theorem 7.1 of [17], respectively.

Proof. For the purpose of this proof, rather than using (1.1) we introduce a
particular finite range correction of the functional x. To this end, for each sample
point x 2 X set B½r=2�ðxÞ to be the sphere of influence BðxÞ if the radius of BðxÞ does
not exceed r=2 and let B½r=2�ðxÞ be the ball of radius r=2 around x otherwise.
Construct the r-corrected graph SIGrðXÞ by drawing an edge between x and y iff
B½r=2�ðxÞ and B½r=2�ðyÞ overlap. Note that this construction is monotone in that
SIGrðXÞ � SIGr0 ðXÞ � SIGðXÞ for r04r:Write SIGrðx;XÞ for the collection of edges
in SIGrðXÞ incident with x and put

x½r�ðx;XÞ:¼
X

e2SIGrðx;XÞ

fðjejÞ. (2.8)

It is clear that so defined x½r� satisfies (C1) and (C2). Moreover, by the above
monotonicity the difference measure dx

½r�

is always non-negative.
To conclude Corollary 2.5 from Theorems 1.1 and 1.2 it suffices to verify

conditions (L1) and (L2). Observe that for x 2 Pt � Zd the edges in SIGrðx;Pt \

QlÞ have their lengths bounded by r. Since we place ourselves in the lattice setting,
we conclude that the total number of such edges is of the surface order Oðrd�1Þ and,
consequently, in view of (2.6) the value of x½r� as given by (2.8) is of order oðrdÞ, which
yields (L1). Note that we would not attain this conclusion in the continuum setting.
To proceed with the proof of (L2) note that

kdx
½r�

l kTV ¼ 2
X

e2SIGðPt\QlÞnSIGrðPt\QlÞ

fðjejÞ. (2.9)



ARTICLE IN PRESS

T. Schreiber, J.E. Yukich / Stochastic Processes and their Applications 115 (2005) 1332–1356 1347
Say that x is the principal endpoint of an edge e:¼fx; yg 2 SIGðPt \ QlÞ iff the radius
of the sphere of influence BðxÞ is larger than that of BðyÞ. If the radii of BðxÞ and BðyÞ

coincide, we break the tie arbitrarily so that e has exactly one principal endpoint. As
easily seen, our lattice setting guarantees that a given point x can be the principal
endpoint of at most Oðrd�1

x Þ edges, each of length at most rx; where rx is the radius of
the sphere of influence BðxÞ. Thus, with Pr½x� standing for the collection of edges in
SIGðPt \ QlÞ whose principal endpoint is x; we easily conclude from (2.6) thatX

e2Pr½x�

fðjejÞ ¼ oðrd
xÞ ¼ oðVolðBðxÞÞÞ. (2.10)

Note also thatX
e2SIGðPt\QlÞnSIGrðPt\QlÞ

fðjejÞp
X

rx4r=2
x2Pt\Ql

X
e2Pr½x�

fðjejÞ.

Consequently, using (2.9) and (2.10) we obtain

kdx
½r�

l kTV ¼ o
X

rx4r=2
x2Pt\Ql

BðxÞ

0
BB@

1
CCA. (2.11)

Even though the balls BðxÞ for x 2 Pt \ Ql; rx4r=2; showing up in (2.11) are in
general not disjoint, it is clear that a given lattice point can belong to at most a
certain dimension-dependent number bd of them. Putting together the above
considerations and (2.11) gives us a.s.

kdx
½r�

l kTV ¼ oðVolðQlÞÞ ¼ oðl
d
Þ as r ! 1,

which immediately yields the required condition (L2). &

3. Proof of Theorem 1.1

Using general results in [24] for functionals having a ‘near additivity property’, we
establish in Lemma 3.2 below an LDP for the total masses of the r-corrected
functionals Hx½r�

l :¼mx
½r�

l ð½0; 1�dÞ:We then conclude the LDP for Hx
l:¼mxlð½0; 1�

dÞ. This is
done using the condition (L2) and applying the Inverse Bryc Lemma, see e.g.
Theorems 4.4.2 and 4.4.10 in [7]. Even though we do not assume explicitly the
finiteness of the Laplace transforms of Hx

l, we get for all s 2 R

lim sup
l40

1

ld
log E½expðsHx

lÞ�o1. (3.1)

Indeed, this follows directly from (L1) and (L2) in view of the inequality [25, p. 485]

P½PoðaÞ4t�p exp �
t

4
log

t

2a

� �� �
; tX16a, (3.2)

with PoðaÞ standing for a mean a Poisson random variable.
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3.1. Auxiliary lemmas

We first recall the general results, definitions, and terminology of [24]. Let X ¼

fX ðnÞg be a real-valued process indexed by the positive integers.

Definition 3.1 (near additivity). We say that the process fX ðnÞg is nearly additive
if on ðO;F;PÞ there are i.i.d. processes fX iðnÞg

1
i¼1 and random variables Rðn;mÞ,

for all positive integers n and m, with these properties: X iðnÞ ¼
D

X ðnÞ for all i and n,
the inequalities

X ðnmd Þ �
Xmd

i¼1

X iðnÞ

�����
�����pRðn;mÞ (3.3)

hold for all m and n, and the error Rðn;mÞ is such that for all �40 and C40 there
exists a finite n0 ¼ n0ðC; �Þ such that

P½Rðn;mÞX�nmd �p expð�Cnmd Þ

for all nXn0 and for all positive integers m.

Definition 3.2 (regularity). We say that fX ðnÞg is regular if for each fixed k, the
following property holds: If m ¼ mðnÞ is defined by the requirement kmdpno
kðm þ 1Þd for all n, then for all �40 and C40 there exists a finite n1 ¼ n1ðC; �; kÞ
such that

P½jX ðnÞ � X ðkmd
ÞjXn�Þp expð�CnÞ (3.4)

for all nXn1.

It is straightforward to check that if fX ðnÞg is a regular nearly additive process and
if X ðnÞ is integrable for all nX1, then such a process satisfies a strong law of large
numbers, i.e.,

lim
n!1

X ðnÞ

n
¼ lim

n!1

E½X ðnÞ�

n
¼ gX a:s:;

where gX is a constant depending upon the process fX ðnÞg, referred to as the spatial

constant of fX ðnÞg in the sequel.
In order to obtain a general LDP for fX ðnÞg, we make a uniform boundedness

assumption on its logarithmic moment generating function:

AðtÞ:¼ sup
n
fn�1 logE½expðtX ðnÞÞ�go1 for all t 2 R. (3.5)

The following is Theorem 2.1 of [24].

Lemma 3.1. Let X :¼fX ðnÞg be a regular nearly additive process satisfying (3.5). Then

the limit

LX ðsÞ ¼ lim
n!1

n�1 log E expðsX ðnÞÞ
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exists for all s 2 R; the Legendre– Fenchel transform of LX

½LX ��ðtÞ:¼ sup
s2R

ðts � LX ðsÞÞ

has compact level sets, ½LX ��ðxÞ ¼ 0 iff x ¼ gX and fX ðnÞg satisfies a full large

deviation principle with rate function ½LX �� and speed n.

We will use Lemma 3.1 to establish a LDP for the total mass of the r-corrected
version Hx½r�

l .

Lemma 3.2. The family ðl�dHx½r�

l Þl40 satisfies on R the full large deviation principle

with speed ld and a good, convex rate function I ½r�. Moreover, I ½r�ðtÞa0 unless t ¼ gx
½r�

.

Proof of Lemma 3.2. Fix r40 and choose some large L40 to be specified below. We
partition the cube Ql into translates QLþ2r½1�;QLþ2r½2�; . . . ;QLþ2r½kðl;L; rÞ� of QLþ2r.
To avoid unnecessary technicalities we assume without loss of generality that, for
given l40; L:¼LðlÞ is chosen so as to make Ql split into an integer number of such
subcubes and, moreover, that ðL þ rÞd is an integer. Each QLþ2r½i� can be further
subdivided into the central cube QL½i� separated from the boundary qQLþ2r½i� by
moats of constant width r. Write

H
½r�
i :¼Hx½r� ðPt;QL½i�Þ

and observe that, a.s.

H
½r�
i ¼ Hx½r� ðPt \ QLþ2r½i�;QL½i�Þ (3.6)

by the definition of the corrected functional x½r�. Consequently, since the subcubes
QLþ2r½�� are disjoint by (3.6), the random variables H

½r�
i ; 1pipkðl;L; rÞ are i.i.d. By

(L1) we can assume that the probability space ðO;F;PÞ carries i.i.d. copies Ĥ
½r�

i of

Hx½r� ðPt \ QLþ2r½i�;QLþ2r½i�Þ such that for all 1pipkðl;L; rÞ

jH
½r�
i � Ĥ

½r�

i jpMðrÞZi, (3.7)

where Zi are i.i.d. Poisson random variables with mean ðL þ 2rÞd � Ld :
We will use (3.7) and Lemma 3.1 to show near additivity of Hx½r� ðPt \ Ql;QlÞ. To

this end, define X :¼fX ðnÞg a real-valued process indexed by the positive integers. Put
n:¼ðL þ 2rÞd and m:¼l=ðL þ 2rÞ so that md ¼ kðl;L; rÞ coincides with the number of
partitioning cubes QLþ2r½i�: Further, set X ðnmdÞ:¼Hx½r� ðPt \ Ql;QlÞ and X iðnÞ:¼Ĥ

½r�

i .

By construction, X iðnÞ coincides in distribution with X ðnÞ ¼ Hx½r� ðPt \ QLþ2r;QLþ2rÞ.

With (3.7) we easily obtain a.s.

X ðnmd Þ �
Xmd

j¼1

X iðnÞ

�����
�����pMðrÞ

Xmd

i¼1

Zi ¼ MðrÞẐ, (3.8)
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where Ẑ is a Poisson random variable with mean ld
½ððL þ 2rÞd � Ld Þ=ðL þ 2rÞd �.

Near additivity (3.3) now follows. Indeed, notice by inequality (3.2) that

P½MðrÞẐX�nmd � ¼ P ẐX
�nmd

MðrÞ

� �

p exp �
�nmd

4MðrÞ
log

� �nmd

2MðrÞ

ðLþ2rÞd�Ld

ðLþ2rÞd

0
@

1
A

0
@

1
Ap expð�CnmdÞ,

where the last inequality follows because we can make the ratio r=L arbitrarily small
by an appropriate choice of L.
The required regularity (3.4) follows from (L1) and (3.2) in an analogous way.

Finally, condition (3.5) ensuring appropriate behavior of the Laplace transforms of
X ðnÞ; coincides with (3.1). Consequently, we can apply Lemma 3.1 to obtain the
required LDP, thus completing the proof of Lemma 3.2. &

3.2. Conclusion of the proof of Theorem 1.1

The proof of Theorem 1.1 goes much along the same lines as the proof of
Lemma 3.1 (Theorem 2.1 in [24]). We therefore shorten the technical details,
providing only the necessary steps. The first step roughly corresponds to Proposition
3.1 in [24] and involves showing that for all bounded Lipschitz functions F : R ! R

the limit

GðF Þ:¼ lim
l!1

GlðF Þ (3.9)

exists with

GlðF Þ:¼
1

ld
log E expðldF ðl�dHx

lÞÞ.

In view of exponential tightness of l�dHx
l; as implied by (3.1), relation (3.9)

combined with the Bryc Inverse Varadhan Lemma (Theorem 4.4.10 in [7]) will
imply that GðF Þ exists for all F 2 CbðRÞ; where CbðRÞ denotes the bounded
continuous functions on R; and that l�dHx

l satisfies the LDP with a good rate
function I given by

IðxÞ ¼ sup
F2CbðRÞ

ðF ðxÞ � GðF ÞÞ, (3.10)

see also (3.3) in [24]. However, some further steps will be needed to establish the
required convexity and non-triviality properties for this I , as well as its variational
representation as the Legendre–Fenchel transform of the limit of log-Laplace
transforms.

Step 1: We establish (3.9) as follows. For all r40 and l40, put

D
½r�
l :¼Dx½r�

l :¼dx
½r�

l ð½0; 1�dÞ.
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Fix a bounded Lipschitz function F and let LF denote its Lipschitz constant. Write

G½r�
l ðF Þ:¼

1

ld
log E expðldF ðl�dHx½r�

l ÞÞ

and let

G½r�ðF Þ:¼ lim
l!1

G½r�
l ðF Þ,

with the existence of the above limit guaranteed by Lemma 3.2 and by the Varadhan
Integral Lemma (Theorem 4.3.1 in [7]). We show that for each �40

lim inf
l!1

GlðF ÞX lim sup
r!1

G½r�ðF Þ � �. (3.11)

To this end, choose some large C40 and small d40 to be specified below, and let
r4rðd;CÞ as defined in (L2). Then, in view of (L2), we conclude that for l large
enough

GlðF Þ ¼
1

ld
log½E expðldF ðl�dHx

lÞÞ1fjD½r�

l jpdld
g
þ E expðldF ðl�dHx

lÞÞ1fjD½r�

l j4dld
g
�

X
1

ld
log½E expðldF ðl�dHx

lÞÞ1fjD½r�

l jpdld
g
�. ð3:12Þ

Since log½expAðlÞ � expBðlÞ�XAðlÞ þ oð1Þ if BðlÞoAðlÞ, the above is bounded
below by

1

ld
log½expðld

½G½r�
l ðF Þ � LFd�Þ � expðl

d
jjF jj1ÞP½jD

½r�
l j4dld

��

XG½r�
l ðF Þ � LFd� oð1Þ

provided kFk1 � CoG½r�
l ðF Þ � LFd (note that such a choice of C can always be

made independent of r since G½r�
l ðF Þ4� kFk1 for all r and l). Choosing C as

specified above, taking do�=LF and letting l and r tend to infinity yields the required
relation (3.11).
Likewise, to establish the corresponding upper bound

lim sup
l!1

GlðF Þp lim inf
r!1

G½r�ðF Þ þ � (3.13)

write, using (3.12) and (L2),

GlðF Þp
1

ld
log½expðld

½G½r�
l þ LFd�Þ þ expðl

d
kFk1ÞP½jD

½r�
l j4dld

��

pmaxðG½r�
l þ LFd; kFk1 � CÞ þ oð1Þ

for l large enough, which yields (3.13) by choosing C so that kFk1 � CoG½r�
l þ LFd

(see the discussion above), setting do�=LF and letting l and r tend to infinity as
above. Combining (3.11) and (3.13) shows that the limit in (3.9) exists and is given by

GðF Þ ¼ lim
r!1

G½r�ðF Þ. (3.14)

This completes Step 1.
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Step 2: As a consequence of Step 1, the LDP for ðl�dHx
lÞl holds with the good rate

function Ið�Þ given by (3.10) and the log-Laplace transform Lð�Þ given by the limit
(1.4) is well defined in view of the Varadhan Integral Lemma (see Theorem 4.3.1 in
[7]) combined with (3.1).
Further, we claim that I in (3.10) is convex. In full analogy with the proof of

Proposition 3.2 in [24] this is concluded from the following two auxiliary results:
(a)
 For all x 2 R; IðxÞplim inf r!1I ½r�ðxÞ;

(b)
 The set fIo1g is an interval, and limr!1 I ½r�ðxÞ ¼ IðxÞ for interior points of this
interval.
Both these statements are proven exactly along the same lines as the corresponding
assertions of Proposition 3.2 in [24], the only difference being to use the LDPs for the
r-corrected approximations, as obtained in Lemma 3.2, rather than the Cramér
LDPs for approximating sums of i.i.d. random variables, as in [24]. We demonstrate
this substitution by rewriting from [24] the proof of (a); the statement (b) and the
resulting convexity of Ið�Þ follow by a similar rewriting from [24]. To this end, fix x

and assume that lim inf r!1 I ½r�ðxÞo1; for otherwise part (a) holds trivially. Let
coIðxÞ: By lower semicontinuity there exists �40 such that jy � xjp� implies
IðyÞXc. Let C4lim inf r!1I ½r�ðxÞ þ 1; and let r be large enough so that rXrð�=2;CÞ

(in the notation of the condition (L2)) and so that I ½r�ðxÞ þ �oC: Then we have by
the LDP of Lemma 3.2 for l�dHx½r�

l ,

� cX� inf
y2½x��;xþ��

IðyÞX lim sup
l!1

l�d logPðl�dHx
l 2 ½x � �; x þ ��Þ

X lim sup
l!1

l�d log½Pðl�dHx½r�

l 2 ½x � �=2; x þ �=2�Þ � Pðkdx
½r�

l kTVXld�=2Þ�

X lim sup
l!1

l�d log½expf�ldIx
½r�

ðxÞ � ld�g � expð�Cld
Þ� ¼ �Ix

½r�

ðxÞ � �.

This is true for all large enough l; so we may let r ! 1 along suitable subsequence
to get cplim infl!1Ix

½r�

ðxÞ þ �. We then let c " IðxÞ and � ! 0 to prove the asser-
tion (a).
The convexity of I , combined with (3.1), allows us now to apply Theorem 4.5.10 in

[7] to conclude that I is the Legendre–Fenchel transform of L i.e.

IðxÞ ¼ sup
s2R

ðxs � LðsÞÞ,

as required for (1.5). Consequently, since L is everywhere finite by (3.1), relation
(1.6) follows now by Lemma 2.2.20 in [7]. Step 2 is complete.

Step 3: In this final step we show that the rate function I is non-zero away from the
spatial constant gx. Assume that there exists t0agx with Iðt0Þ ¼ 0: Fix C40, choose
arbitrarily small �40 and let rð�;CÞ be as in (L2). Recalling that I ½r�ðtÞ40 unless
t ¼ gx

½r�

as shown in Lemma 3.2, we conclude that we must have jt0 � gx
½r�

jo� for
all r4rð�;CÞ:However, for the same reasons we must have jgx � gx

½r�

jo� since IðgxÞ ¼
0: Consequently, we see that jt0 � gxjo2�: Since � was arbitrary, this contradicts our
initial assumption that gxat0: This completes the proof of Theorem 1.1. &
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4. Proof of Theorem 1.2

Next, in Lemma 4.1 we extend the LDP for the total masses of the r-corrected
empirical measures to an LDP for the joint behavior of their masses on finite
partitions of the cube ½0; 1�d into sub-cubes. The same is then done for the original
functional x in Lemma 4.2. The proof of Theorem 1.2 is then completed by
borrowing the argument from the proof of Theorem 1.1 in Schreiber [23], which is
close in spirit to classical projective limit techniques, see Section 4.6 in [7].

Lemma 4.1. Let C:¼fC1; . . . ;Ckg be a finite partition of ½0; 1�d into sub-cubes. Then,

for each r40; the family of random vectors hmx
½r�

l ðC1Þ; . . . ; m
x½r�

l ðCkÞi satisfies on Rk the

full large deviation principle with speed ld and rate function

I
½r�
C ðt1; . . . ; tkÞ:¼

Xk

i¼1

volðCiÞI
½r�ðti=volðCiÞÞ. (4.1)

Proof. The proof is a direct extension of the argument in Lemma 3.2. It relies on
Theorem 2.1 in [24] combined with the observation that the values of the r-corrected
stabilizing functionals are independent over disjoint rectangular solids in ½0; l�d

provided that the solids are separated by moats of width 2r and whose total volume
is negligible in the limit l ! 1. &

The next result follows from Lemma 4.1 by an argument completely analogous to
that used to deduce Theorem 1.1 from Lemma 3.2.

Lemma 4.2. Let C:¼fC1; . . . ;Ckg be as in Lemma 4.1. Then the family of random

vectors hmxlðC1Þ; . . . ; m
x
lðCkÞi satisfies on Rk the full large deviation principle with speed

ld and rate function

ICðt1; . . . ; tkÞ:¼
Xk

i¼1

volðCiÞIðti=volðCiÞÞ. (4.2)

Proof of Theorem 1.2. We observe first that the family of random measures ðl�dmxlÞl
is exponentially tight in Mþð½0; 1�dÞ: Indeed, this follows directly from conditions
(L1) and (L2) combined with the inequality (3.2). We are thus in a position to apply
Theorem 1.3.7 in [9], originally due to O’Brien and Verwaat [13] and Pukhalskii [21],
stating that from an exponentially tight sequence of measures on a Polish space one
can extract a subsequence which satisfies the large deviation principle with a certain
good rate function. Fix an arbitrary sequence ðlnÞ

1
n¼1 and extract from it a

subsequence ðl0nÞ
1
n¼1 such that ðm

x
l0n
Þ
1
n¼1 satisfies on Mþð½0; 1�dÞ the large deviation

principle with a good rate function Ĵ. We will show that

ICðt1; . . . ; tkÞ ¼ inffĴðyÞ j y 2 Mþð½0; 1�dÞ; yðCiÞ ¼ ti; i ¼ 1; . . . ; kg (4.3)

with C ¼ fC1; . . . ;Ckg and IC as in Lemma 4.2. This will imply that Ĵ coincides with
J given in (1.7), and hence complete the proof of Theorem 1.2, in exactly the same
way that Theorem 1.1 in [23] is concluded from Lemma 4.1 there, by the use of
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Lemmas 4–6 in [23]. Note that the argument in [23] makes essential use of the
convexity of I , which is available by Theorem 1.1.
To establish (4.3) we use the Contraction Principle (Lemma 2.1.4 in [8]). Since the

mapping Mþð½0; 1�dÞ 3 y 7! hyðC1Þ; . . . ; yðCkÞi is not continuous in the weak
topology on Mþð½0; 1�dÞ; some work is needed to use this lemma. To this end,
consider for each 1pipk the sequence of continuous functions fðiÞ

m : ½0; 1�d ! ½0; 1�
given by

fðiÞ
m :¼

1; x 2 Ci;

0; distðx;CiÞ41=m;

1� mdistðx;CiÞ otherwise,

8><
>:

so that fðiÞ
m approximates the indicator function 1Ci

: We show first that

lim
m!1

sup
Xk

i¼1

jhfðiÞ
m ; yi � yðCðiÞÞj ; y 2 Mþð½0; 1�dÞ; ĴðyÞpL

( )
¼ 0 (4.4)

for all L 2 ð0;1Þ: Assume the contrary so that there exists L0; �0 and a sequence
ym0 ; m0 ! 1 of measures in Mþð½0; 1�d Þ with Ĵðym0 ÞpL0 and such that

Xk

i¼1

jhfðiÞ
m0 ; ym0 i � ym0 ðCðiÞÞjX�0

for all m0 so that in particular

Xk

i¼1

ym0 ðq1=m0

CðiÞÞX�0 (4.5)

for all m0 with q1=m0

CðiÞ:¼qCðiÞ [ fx 2 ½0; 1�d j 0odistðx;CðiÞp1=m0g. Since Ĵ is a good
rate function, the level set fy j ĴðyÞpL0g is compact inM

þð½0; 1�dÞ and hence we can
assume without loss of generality that ym0 converges in Mþð½0; 1�dÞ to some y1 as
m0 ! 1 and, moreover, Ĵðy1ÞpL0. In view of (4.5) this means that

Xk

i¼1

y1ðqCðiÞÞX�0. (4.6)

However, recalling that Ĵ is the rate function governing the large deviation behavior
of the sequence ðmxl0nÞ

1
n¼1; we use (4.6) combined with Lemma 4.2 to conclude by (1.6)

that Ĵðy1Þ ¼ þ1: Indeed, (4.6) allows us to find a sequence of rectangular boxes
ðKjÞ

1
j¼1 and some d040 with y1ðIntKjÞ4d040 for all j ¼ 1; 2; . . . and with

volðKjÞ ! 0, we observe that Ĵðy1ÞXvolðKjÞIðd0=volðKjÞÞ by Lemma 4.2, and we
use (1.6) to show that volðKjÞIðd0=volðKjÞÞ ! 1: This contradicts our above
observation that Ĵðy1ÞpL0; which now yields (4.4). Our next step is to show that

lim
m!1

lim sup
l!1

1

ld
logP

Xk

i¼1

jhfðiÞ
m ; l�dmxli � l�dmxlðC

ðiÞÞj4d

" #
¼ �1 (4.7)
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for all d40. Of course, since jfðiÞ
m jp1, it is enough to check that

lim
m!1

lim sup
l!1

1

ld
logP

Xk

i¼1

l�dmxlðq
1=mCðiÞÞ4d

" #
¼ �1.

This comes, however, as a direct consequence of the conditions (L1) and (L2)
combined with the use of the inequality (3.2), whence (4.7) is established. Combining
(4.4) and (4.7) we can now apply Lemma 2.1.4 in [8] to obtain (4.3). As argued
above, this completes the proof of Theorem 1.2. &

References

[1] Yu. Baryshnikov, P. Eichelsbacher, T. Schreiber, J.E. Yukich, Moderate deviations and cluster

measures in geometric probability, preprint, (2004), Electronically available via http://

www.lehigh.edu/�jey0/publications.html.

[2] Yu. Baryshnikov, J.E. Yukich, Gaussian fields and random packing, J. Stat. Phys. 111 (2003)

443–463.

[3] Yu. Baryshnikov, J.E. Yukich, Gaussian fields and maximal points, preprint, 2005.

[4] Yu. Baryshnikov, J.E. Yukich, Gaussian limits for randommeasures in geometric probability, Annals

Appl. Prob. 15 (1A) (2005) 213–253 Electronically available via http://www.lehigh.edu/

�jey0/publications.html.

[5] S.N. Chiu, M.P. Quine, Central limit theory for the number of seeds in a growth model in Rd with

inhomogeneous Poisson arrivals, Ann. Appl. Prob. 7 (1997) 802–814.
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