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Abstract

We give a characterization of a modified edge-reinforced random
walk in terms of certain partially exchangeable sequences. In particu-
lar, we obtain a characterization of edge-reinforced random walk (in-
troduced by Coppersmith and Diaconis) on a 2-edge-connected graph.
Modifying the notion of partial exchangeability introduced by Diaco-
nis and Freedman in [2], we characterize unique mixtures of reversible
Markov chains under a recurrence assumption.

1 Introduction

In the 1920s the Cambridge philosopher W.E. Johnson gave the following
characterization of Polya urns (see [7]): Let X := (Xo, Xy,...) be an ex-
changeable sequence with values in a finite state space of cardinality m > 3.
If the conditional probabilities P(X,+1 = v|Xo, X1,...,X,,) depend only
on v and the number of times state v has been visited up to time n and if
some natural technical conditions hold, then X has the same distribution
as drawings from a Polya urn containing balls of m different colors. John-
son formulated his statement in terms of Dirichlet distributions rather than
Polya urns, but it is well known that the two notions are equivalent (see
e.g. [6], Section 2).

Diaconis [personal communication| conjectured that edge-reinforced ran-
dom walk arises as naturally as Dirichlet distributions. In this article, we
prove his conjecture in the sense that we generalize Johnson’s statement for
a modified edge-reinforced random walk.
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1.1 Result

Let G = (V,E) be a locally finite connected graph with vertex set V' and
edge set . We assume that G has no loops, i.e. each edge has two distinct
endpoints. Parallel edges are allowed; thus two edges may have the same
pair of endpoints. For an edge e we denote the set of its endpoints by e. We
call m# = (vg,€1,V1,... ,€n,0,) an admissible path if v; € V for 0 < i < n,
e; € E and &; = {v;_1,v;} for 1 <i < n. We say that 7 has starting point
vo, endpoint v, and length n. We denote by k(v,7) the number of visits to
vertex v and by k(e, ) the number of traversals of edge e:

k(v,m7) = |{ie{0,1,... ,n}:v;, =0}, (1.1)
k(e,m) = |{ie{l,... ,n}:e;=¢}|; (1.2)

here we write |S| for the cardinality of a set S. We define a sequence
(X,Y) := (Xy, Y1, X1, Y5, Xy,...) of random variables to be a nearest-
neighbor random walk on G if Z,, := (Xo, Y1, X1,...,Y,,X,,) is an admis-
sible path for all n > 0. We abbreviate Z := (X,Y).

We denote by P the set of all transition matrices on V x E. For a
Markovian nearest-neighbor random walk on G with transition matrix p, we
have p(v,e,v',e’) =0 if € # {v,v'} and p(v,e, v, e’) depends only on v’ and
e’ if e = {v,v'}. Therefore we write p(v',¢’) instead of p(v,e,v’,€’) in the
following.

Definition 1.1 We say that a nearest-neighbor random walk Z on G is a
unique mixture of Markov chains if there exists a unique probability measure
poon V- x P such that for any admissible path m = (ug, e1,U1,... ,€n,Up)

n—1
P(Zo=m= [ [T pwisecnn(dun,dp)
vxp =0

The measure u is called the mixing measure. If for p-a.a. (ug,p) the Markov
chain with transition matriz p is reversible, then we say that the process is
a unique mixture of reversible Markov chains.

Diaconis and Freedman [2]| call a nearest-neighbor random walk par-
tially exchangeable if any two admissible paths with the same starting point
and the same number of transition counts for all directed edges have the
same probability. They prove that under a recurrence assumption their
notion of partial exchangeability characterizes unique mixtures of Markov
chains (Theorem (7), [2]). We introduce a more restrictive notion of partial



exchangeability which characterizes unique mixtures of reversible Markov
chains: We define two finite admissible paths 7 and 7’ to be equivalent if
they have the same starting point and k(e,w) = k(e,n’) for all e € E.

Definition 1.2 We call a nearest-neighbor random walk Z partially ex-
changeable if P(Z, = w) = P(Z, = «') for any equivalent paths m and
7' of length n.

Any process which is partially exchangeable in the sense of Definition
1.2 is partially exchangeable in the sense of Diaconis and Freedman. We
prove:

Theorem 1.1 Let Z be a nearest-neighbor random walk on a finite graph
G satisfying

P(X,, = Xy for infinitely many n) = 1 (1.3)
and for all e € E and all u,v € €
P (There exists n > 0 with (X, Yoi1, Xpt1) = (u,e,v)) = 1. (1.4)

Then Z is a unique mizture of reversible Markov chains if and only if Z is
partially exchangeable in the sense of Definition 1.2.

Assumption (1.4) says that every edge is traversed in both directions
with probability 1.

A Markovian nearest-neighbor random walk on G with transition proba-
bilities given by strictly positive weights on the edges is partially exchange-
able in the sense of Definition 1.2 (transitions are made with probabilities
proportional to the edge weights). We call such a Markov chain a non-
reinforced random walk. A more interesting example of a nearest-neighbor
random walk which is partially exchangeable in the sense of Definition 1.2 is
edge-reinforced random walk. The process was introduced by Coppersmith
and Diaconis in 1987 (see [1]) as follows: All edges are given strictly positive
numbers as weights. In each step, the random walker traverses an incident
edge with a probability proportional to its weight. Each time an edge is
traversed, its weight is increased by 1.

Suppose G is 2-edge-connected, i.e. removing an edge does not make GG
disconnected. Let Z be a partially exchangeable nearest-neighbor random
walk on G such that the conditional probabilities to traverse edge e in the
next step depend only on the current location, the edge e, the local time



accumulated at the present vertex, and the number of times e has been
traversed in the past. If Z satisfies in addition some natural technical as-
sumptions, then Z has the same distribution as a non-reinforced random
walk or an edge-reinforced random walk. More precisely, we make the fol-
lowing assumptions on G and Z:

Assumption 1.1 For all v € V degree(v) # 2.
Assumption 1.2 There exists vg € V' with P(Xy = vy) = 1.

Assumption 1.3 For any admissible path © of length n > 1 starting at vg
we have P(Z, =) > 0.

Assumption 1.4 7 is partially exchangeable in the sense of Definition 1.2.

Assumption 1.5 For all v € V and e € E there exists a function f,.
taking values in [0,1] such that for alln >0

P(Yn+1 = e,Xn+1 = U|Zn) = an,e(kn(Xn)akn(e))'
For the last assumption, we need the following definition.

Definition 1.3 We define the domain of definition Def(f, ) of fu.e to be the
set of all (k,ke) such that there exists a path w from vy to v with k(v,7) =k
and k(e,m) = ke. We set Dy (k) := {ke : (k, k) € Def(foe)}.

Assumption 1.6 For all v € V and e € E with v € € there exist real-
valued constants by ¢(2), ¢,(2) such that f,(2,7) = bye(2) + c(2)j for all
J € Dye(2).

We prove:

Theorem 1.2 Suppose G is 2-edge-connected and satisfies Assumption 1.1.
A nearest-neighbor random walk Z on G satisfies Assumptions 1.2-1.6 if and
only if Z is an edge-reinforced random walk or a non-reinforced random walk
starting at vy, except that the conditional probability P(Y1 = e, X1 = v| Xy =
vo) may be different from the corresponding conditional probability for edge-
reinforced/non-reinforced random walk.

Without Assumption 1.1, Theorem 1.2 need not be true. If G is the graph
consisting of two vertices which are connected by two parallel edges, then



Assumption 1.5 is vacuous (because Assumption 1.4 holds) and Theorem
1.2 does not hold (compare Zabell [7]).

A similar characterization for directed-edge-reinforced random walk on a
complete graph has been obtained by Zabell [8]. In a directed-edge-reinforced
random walk directed edges are reinforced; see [5] for the definition of the
process. This model is easier to treat because there is independence between
what happens at different vertices, and the assumption of a complete graph
simplifies the proof considerably.

The remainder of the article is organized as follows: In Section 2, we
describe a generalization of Theorem 1.2 for graphs which are not 2-edge-
connected. Section 3 contains our results on mixtures of reversible Markov
chains. In Section 4, we collect some graph-theoretical lemmas needed in
our proofs. In Section 5 we prove Theorem 1.2 and its generalization from
Section 2.

2 Result for a general graph

In this section, we state a generalization of Theorem 1.2. For v € V we
denote by F, the set of all edges incident to v:

E,:={ee€ E:vee}l (2.1)
For an admissible path w, we set

K(v,m) = Y k(em). (2.2)

eckE,

For a nearest-neighbor random walk Z, v € V, and e € E, we define
kn(v) :=k(v,Z,), kn(e):=k(e,Z,), K,(v):=K(v,2Z,).

Recall that a graph G’ is called 2-edge-connected if removing an edge
does not make G’ disconnected. G’ is 2-edge-connected if and only if for any
two edges e # ¢’ in G’ there exists a cycle containing both e and e’. A bridge
is an edge whose deletion increases the number of connected components.
There is no edge parallel to a bridge. A subgraph B of G is called a block
of G if B is a bridge or a maximal 2-edge-connected subgraph of G. We
denote the edge set of B by E(B). The graph G decomposes into finitely
many blocks By, Bs,... , B, in the sense that the edge set F of G can be
written as disjoint union of the E(B;)’s. We write V, (Es3) for the set of all
vertices (edges) contained in a 2-edge-connected block.

We define modified edge-reinforced random walk as follows:



Definition 2.1 Let V — {0,1},v — d, be constant on any 2-edge-connec-
ted block of G, and let a, . >0, v €V, e € E,, with the property a, e = ty.e
for all e € Ey, u,v € e. We set a, = ZBEEU aye. We define modified
edge-reinforced random walk with starting point vy to be a nearest-neighbor
random walk (X,Y) on G with P(Xy = vg) =1 and for alln >0

ax,.e+ dX . kn(e) L

sy n — X

P(Ypy1 =€, Xpt1 =0|Zy) = ay +dx, - K, (Xy) if &= {Xn, v},
0 otherwise.

In the definition of modified edge-reinforced random walk, we choose
for each pair (v,e) with e € E, a weight a,, > 0. If € = {u,v} and e is
contained in a 2-edge-connected block, we require a, . = ay.. If d, = 0,
then the weights of (v,e) for e € E, never change, whereas if d, = 1 the
weight of (v,e) increases by 1 after each traversal of e. Since v +— d, is
constant on any 2-edge-connected block B of G, the restriction of modified
edge-reinforced random walk to B is either non-reinforced or edge-reinforced
random walk. We prove:

Theorem 2.1 Suppose G satisfies Assumption 1.1. A nearest-neighbor ran-
dom walk Z on G satisfies Assumptions 1.2-1.6 if and only if the conditional
probabilities

P(Yn+1 = B,Xn+1 = U|Zna kn(Xn) > 2)

agree with the corresponding conditional probabilities for a modified edge-
reinforced random walk on G with starting point vg.

If G is the star-shaped graph with vertex set V' = {vg,v1,... ,v,,} and
edges between vy and v; for 1 < ¢ < m, then the weights of an edge-reinforced
random walk observed at the times the random walker is at the central vertex
vg, obey the same dynamics as the number of balls in a Polya urn process
where after each drawing the ball is returned with two additional balls of the
same color. In this case, Assumption 1.5 is just Johnson’s “sufficientness”
postulate and we recover Johnson’s result (compare [7], Corollary 2.2).

3 Mixtures of reversible Markov chains

In this section, we prove Theorem 1.1, and we derive conclusions for (modi-
fied) edge-reinforced random walk. We begin with a relation between (e, )
and k(v, ).



Remark 3.1 If 7 is an admissible path in G starting at vg and ending at
v, then

> k(e,m) = 2k(v,m) — 1 — 6, (v0); (3.1)

eeEv

here 6,(vg) denotes Kronecker’s delta. In particular, k(v,7) is determined
by k(e, ), e € E,, via equation (3.1).

We omit the elementary proof of Remark 3.1.

A closed path is a path with the same starting and endpoint. If ¢ :=
(ug,€1,...,€n,uy) is a closed path and all e;, 1 <7 < n, are distinct, then
we call ¢ a cycle.

Proof of Theorem 1.1. If Z is a reversible Markov chain, then its
transition probabilities can be described by weights on the edges. Hence for
a finite path 7 the probability P(Z,, = 7) depends only on k(e,7), e € E,
and k(v,7), v € V. By Remark 3.1, k(v,7) is uniquely determined by
k(e,m), e € E,. Hence Z is partially exchangeable in the sense of Definition
1.2, and the same is true if Z is a unique mixture of reversible Markov
chains.

Conversely, suppose Z is partially exchangeable in the sense of Definition
1.2. Then Z is partially exchangeable in the sense of Diaconis and Freedman
(see the comments before Definition 1.2). By Theorem (7) of [2], Z is a
unique mixture of Markov chains. We denote the mixing measure by pu.

Suppose there exist e € E and u € € such that p(u,e) = 0 on a set S of
positive pu-measure. Using the definition of mixtures of Markov chains, we
obtain P(There exists n > 0 with (X, Y41, Xpnt1) = (u,e,v)) < 1 — pu(S),
which contradicts (1.4). Hence p(u,e) > 0 p-a.s.. Thus for p-a.a. (v,p) €
V x P, the Markov chain with transition matrix p is irreducible and since
the state space is finite, recurrent.

Let ¢ = (ug, €1,... ,en,u,) be acycle. Weset 7:= min{i > 0: X; = ug};
7 is the first hitting time of ug. We denote by @, , the distribution of the
Markov chain with transition matrix p which starts in v with probability 1.
We write Qp(c) for the probability that the Markov chain with transition
matrix p traverses the cycle ¢ starting at a point in the cycle. We define
Q(XU, Yl, Xl,YVQ, ce ) = (Xl, YQ, XQ, Yg, ce ); thus 0 shifts the random walk
Z by one step. We denote by 0™ the mth iterate of #. For m,n > 0,
0"Z)n = (X, Yit1, Xt 1y - -+ » Yimbns Xmtn) equals the random path of
length n traversed by the random walker starting at time m. We calculate
the probability that the process Z traverses c twice immediately after time



¢ = P(r1<00,(07Z)n=c=(0"""2))

- / Qup(7 < 00, (67 Z)n = ¢ = (67" Z))u(dv, dp)
VXP

- / Qup(7 < 00)Quop(Zn = ¢ = (8" Z))u(dv, dp)
VP

— / Q)2 u(dv. dp);

VP

for the first equality we used that the process is a mixture of Markov chains,
for the second equality we used the strong Markov property under @, ;,, and
for the last equality we used @, ,(7 < 00) = 1 which follows from recurrence
of the Markov chain.

Using partial exchangeability, we see that the probability that the pro-
cess Z traverses the reversed cycle ¢ := (upn,€n,Un—1,... ,€1,Uy) twice
immediately after time 7 equals ¢, and the same argument as above yields

q= Qp(c™)?pu(dv, dp).
VP

Furthermore the probability to traverse first ¢ and then ¢~ immediately
after time 7 also equals ¢:

q= Qp(c)Qp(c™ ) p(dv, dp).
VxP

Consequently,
| 1@ule) = @ule ) ntav.dp)
VXP
- /pr [Qp(c)? = 2Q,(0)Qy(c™) + Qp(c™)?] p(dv, dp)
= ¢—2¢+q¢=0,

and we conclude Q,(c) = Qp(c™) p-a.s. It follows from Kolmogorov’s cycle
criterion (see e.g. [3], page 303), that for p-a.a. (v,p) the Markov chain with
transition matrix p is reversible. This completes the proof of Theorem 1.1.
[ |



Corollary 3.1 Edge-reinforced random walk and modified edge-reinforced
random walk on a finite graph G are unique miztures of reversible Markov
chains.

Proof. The assumptions of Theorem 1.1 are satisfied for edge-reinforced
random walk: By Lemma 2 in [4] the process is partially exchangeable;
Proposition 1 in [4] implies (1.3) and (1.4). The claim for modified edge-
reinforced random walk follows similarly. m

For edge-reinforced random walk on a finite graph the mixing measure
can be given explicitly. Let A := {(zc;e € E) 12, >0, cpe = 1}, and
let o denote Lebesgue measure on A.

Theorem 3.1 Let Z be edge-reinforced random walk on a finite graph G.
There exists a function ® : A — [0,00[ such that for any admissible path
T = (vo,€1,01,... ,€n,vy) the following holds:

n
P(Z,=m7)= /H Tes O(xe;e € E)do(xeye € E);
A i=1 Tvia

here v, =3 cp Te. The density ® is given explicitly in Theorem 1 of [4],
see also Diaconis [1]; ® is strictly positive in the interior of A.

Proof. By Corollary 3.1, Z is a unique mixture of reversible Markov chains.
Hence the mixing measure can be described as the image of a measure on A.
Theorem 1 of [4] states that lim,, .. (k,(e)/n;e € E) exists almost surely
and has distribution ®do. The claim follows from Markov chain theory. m

4 Some graph-theoretical lemmas

In this section, we collect some graph-theoretical results which will be needed
in the proofs of Theorems 1.2 and 2.1. We assume in the whole section that
degree(v) > 3 for all v € V.

If a path 7 starts at vy and ends at v, then we say that 7 is a path from
vp to v. For a vertex v € V, we define IL,; , to be the set of all admissible
paths from vg to v which visit v only in the last step:

II,, » := {7 admissible path from vy to v with k(v,7) =1}. (4.1)

IT,, v, contains only the trivial path 7 = (vg). If 7 = (vo, e1,v1,... ,€n,vp)
is an admissible path, we say that 7 enters vertex v, via e,. We define



subsets of E,:

Eyinitian = {e € E,: every 7 € Il ,, enters v via e}, (4.2)
Eyenter = {e € E,: nomwell, , enters v via e}, (4.3)

— {e € E, : there exist ¢’ € E, \ {e} and a cycle c} (4.4)

Ey cyal
veyeie such that e and e’ are both contained in ¢

We have Ey; initial = 0 and Eyg enter = Fuvg- If Eyinitial 7 0, then it contains
precisely one edge which we denote by e, initial. Removing e, initial from G
makes the graph disconnected; thus e is a bridge. Hence E, initial N Ey cycle =
(. Note that E, = Ev,initial U Ev,enter U Ev,cycle-

If 7 and 7" are admissible paths with the property that the endpoint of 7
agrees with the starting point of 7/, then we write 77’ for the concatenation
of 7 and 7’. For a closed path m we denote by 7* the concatenation of k
copies of w. By definition, 7° equals the empty path. We set N := {1,2,...}
and Ny := NU{0}.

The following lemma collects information about D, .(k); recall Definition
1.3.

Lemma 4.1 1. If k1 € Dy, (k), then there exist ex,es € E, \ {e1},
ey # e3, and ka, k3 € {0,1} such that for all ki, k5 ks € Ny with
ki = k; mod 2 and k} + kb + ki = 2k — 1 — 6,(vo) there exists a path
7 from vy to v with k(e;,m) =k for i =1,2,3 and k(e,7) = 0 for all
e € E,\{e1,ea,es}.

2. LetveV,eeF, and k € N. We set

{ 1 Zfe € Ev,initiala A L { 1 Zf@ € Ev,cyclea
v,e

My e 1= ; = .
v:€ 0 otherwise. ' 2 otherwise.

3

There exists M, (k) € Ny such that
Dyelk) = {mpe+j -Dpe:0<j<M,(k)}. (4.5)

Proof. Let e; € E, and k € N. We pick edges ey,e3 € E, \ {e1}, ex # e3,
with the following constraints: If v # vy and e; € FE, initial, then we choose
e2 € By \ (Eyenter U{e1}). If e1 € By enter N Ey cycle, We choose ez € E,\ {e1}
such that there exists a cycle containing both e; and es.

Suppose 0 € Dy ¢, (k). If v = vy, we set m := (vg). Otherwise there exists
7 € I, which enters v via es. For i =1,2,3, we write e; = {v,v;}, and we
set m; = (v, e;,v;,€;,v), i.e. m; crosses edge e; back and forth starting from

10



v. For j1, 792,73 € Ny with 257 + 279 + 273 +1 — 5U(U0) =2k—-1- 51,'(1}0'), we
define 7’ to be the concatenation of m with j; copies of m;: ' := 7| 7J* 71>
Using Remark 3.1, we see that 7’ is an admissible path with k(v,7’) = k.
Hence (k,2j1) € Def(f,.,) for all j1 > 0 up to a certain upper bound which
can be obtained from (3.1). This proves the first part of the lemma in the
case k1 € Dy, (k) with &y even.

Suppose 1 € D, (k). If eg € E, \ E,ecnter; then we choose a path
m € 1I,,, which enters v via e;. If ey € E), enter, we choose 7 € IL,, , which
enters v via es. In the latter case, we have ey € F, cycle because 1 € D, ., (k).
Hence we can extend 7 to a path 7 by adding one traversal of a cycle which
contains e; and e3. A similar argument as above completes the proof of the
first part of the lemma in the case k; € D, ., (k) with k; odd.

Clearly 0 € 'Dv,el (k) ife; & Ev,initiala and 1 € 'Dv,e1 (k) if e] € Ev,initial U
Ey cycle- The above argument implies that the right-hand side of (4.5) is
contained in D, (k). It remains to show the reversed inclusion. By Remark
3.1, each j € D, (k) satisfies j < 2k — 1 — 6,(vp). It is easy to see that
j € Dv’e(k) isoddife e Ev,initial-

Claim: j € D, (k) is even if e € E, \ (Eycycle U Ey initial)-

Let e € E, \ (Ev,cycle U Ev,initial) = Ev,enter \ Ev,cyclea and let m be a path
from vy to v. The path 7 which is obtained by considering 7 only until
the first time v is visited, belongs to II,,, and enters v via an edge ¢’ # e
because e € Ey enter- In particular, k(e,7) = 0. The number of traversals of
e cannot increase by 1 between two successive visits to v because ¢ € E, cycle-
Hence k(e,m) must be even. This finishes the proof of the second part of
the lemma. m

5 Proofs of Theorems 1.2 and 2.1

Throughout this section, we assume that G satisfies Assumption 1.1 and Z
is a nearest-neighbor random walk satisfying Assumptions 1.2-1.6. We will
show that the conditional probabilities P(Y,,+1 = e, Xp41 = v|Zy, kn (X)) >
2) agree with the corresponding conditional probabilities for modified edge-
reinforced random walk. By Assumption 1.5, it suffices to show that the
functions f, . have the appropriate form. Lemma 5.2 below is the first step
in this direction. Since the random walk is reflected at vertices of degree 1,
we assume in the following degree(v) > 3 for all v € V. We begin with a
remark which collects some properties of the functions f, ..

Remark 5.1 Fore € £, the function f, . is strictly positive on its domain
Def(fye). If k and k., e € E,, are such that there exists a path m from v

11



to v with k(v,7) =k and k(e,m) = ke for all e € E,, then

Z fv,e(kv ke) =1 (5.1)

eeEv

Proof. Let m = (vg,e1,...,en,v, =v) be a path as in the statement of the
remark. Then using Assumption 1.5, we obtain

1= PVopr=elZn=m)= Y foelk ke).

eeEv eeEv

Combining Assumptions 1.5 and 1.3 we see that f, .(k,k.) > 0. =
We will need the following elementary lemma:

Lemma 5.1 Let a,a/,a”, 3,5 ,v,7,6 be real numbers. If

a+pB+9+6 = 1, (5.2)
od+B+9+6 = 1, (5.3)
o +B +vy+6 = 1and (5.4)
"+ B+y+6 = 1, (5.5)

thena—o =p—p'=v—7" and a—ao' =a' —a". If only (5.2) and (5.3)
hold, then a — o' = 3 — 3.

The following lemma states that f, . is linear in the second argument.

Lemma 5.2 For all v € V, e € E, and k > 1, there exist real-valued
constants by ¢(k), cy (k) such that for all j € Dy (k) the following holds:

fv,e(kaj) = bv,e(k) + Cv(k)j- (5-6)
Here b, (k) > 0 for e € Ey\ Ey initial and by (k) +cy(k) > 0 for e € Ey jnitial-

Remark 5.2 Assumption 1.6 is just the relation (5.6) for k =2. If e.g. v #
vo, By = {e1,e2,e3} with e1 € Ey jnitial, €2,€3 € Eycycles then (5.6) need not
hold for k =2 and e = ey without Assumption 1.6.

Proof of Lemma 5.2. First we consider the case k = 1. Let k. > 0,
e € By, such that ) . ke = 2k —1 = 6,(vo) = 1 — 0y(vp). If v = vy, then
ke = 0, consequently D, (1) = {0} and the claim is trivial. If v # vy, then
there exists precisely one edge e; € E, such that k., = 1 and k., = 0 for
all ey € E, \ {e1}. Linearity of the function j — f, ., (k,J) is clear because

12



Dy, (1) contains at most two elements, namely 0 and 1. Whenever D, ¢, (1)
contains only one element, (5.6) is automatically true and does not give any
constraint on ¢,(1). If D, ., (1) = {0, 1}, there exist ez € E, \ {e1} and paths
7 from vy to v with transition counts k(e, 7) = ke, € € E,, given by

key =1, key =0, key =0 for all e3 € E,, \ {e1,e2}, and
]ﬁel =0, ke2 =1, ]€63 =0 for all e3 € E, \ {61,62}.

We apply (5.1) with these values for k. to obtain equations of the form

(5.2) and (5.3) with a = f,¢,(1,1), & = fu6,(1,0), 8 = foe,(1,1), f' =
fv.es(1,0). Lemma 5.1 implies

fv,e1(1a 1) - fv,e1(1a 0) = fv,ez(la 1) - fv,eQ(la 0)-

Hence the increment does not depend on the edge.

For k = 2, (5.6) is true by Assumption 1.6.

Supposes k > 3. By Lemma 4.1, D, (k) is a set of non-negative integers
which can be ordered in such a way that any two successive elements differ by
Ay, € {1,2}. Since k > 3, there exists j € D, (k) with j > m, . + 4. First
we show that the function j — f, .(k,7) is linear on the sets D, (k) N 2Ny
and D, (k) N (1 +2Np).

Claim 1: For all e; € E, and j € D, (k) with j > my,, +4

fv,e1(k7j) - fv,e1(kaj - 2) = fv,e1(kaj - 2) - fv,e1(kaj - 4)

Let 5 be as in the assumption of Claim 1. By Lemma 4.1, there exist
es,e3 € B, \ {61} with es # eg and ko, k3 with Jtke+ks=2k—-1-— 6v(U0)
such that paths m with the following numbers of edge traversals for e € E,
are possible: k(e,m) =0 for all e € E, \ {e1,e2,e3} and

(61, ) = j, k(BQ,Tr) = kg, k(eg,ﬂ') = kg,

(61, )—j—2, k(@Q,W):k2+2, ( W):kg,
kler,m) =7 —2, k(eg,m) = ko, k(es,m) = ks + 2, and
(61, )—j—4, k(@Q,W):k2+2, ]ﬁ(eg,ﬂ):kg-l-z

Applying equation (5.1) to these transition counts, we obtain equations of
the form (5.2)-(5.5) with a = fy ¢, (k,J), &' = foe,(k,7—2), /" = fye, (k,j—
4). Lemma 5.1 implies Claim 1.

Next, we show that the increment does not depend on the edge e.
Claim 2: For any eq,e9 € E, we have

fv,e1 (ka My,e; + 2) - fv,e1 (ka mv,e1) = fv,ez(ka Myer + 2) - fv,e2 (ka mv,e2)'
(5.7)
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If v # vy we choose e; € E,\ E} enter; Otherwise we choose e; € F), arbitrarily.
Let eg,e3 € E,\{e1}, e2 # e, and let k3 be such that my ¢, +my e, +2+ks =
2k—1—6,(vg). There exist paths 7 with k(e,7) = 0 for all e € E,\{e1, ez, €3}
and

]{)(61,7'() = My,e1 + 27 ]{)(62,7’() = My es, ]{)(63,7’(’) = k37
k(ep,m) = mye,, k(eg,m) = mye, +2, k(es,m)=ks.

Applying equation (5.1) to these transition counts and then using Lemma
5.1 yields (5.7). Since ey is arbitrary in E, \ {e1}, Claim 2 follows.

Finally we show that j — f,(k,j) is linear on D, (k) for e € E, cycle-
Because of Claim 1 it suffices to prove Claim 3: If e; € E), cycle, then

fv,e1 (ka 3) - fv,e1 (ka 1) = fv,el(ka 2) - fv,e1(k7 0)-

We can find edges ey, e3 € E, \ {e1}, e2 # e3, and k3 such that there exist
paths 7= with k(e,7) = 0 for all e € E,, \ {e1, e2,e3} and

k(elﬂr) =3, k(6277r) = Muy,eq, ]ﬁ(eg,ﬁ) = ks,
k(er,m) =1, k(ea,m) =mye, +2, k(es,m) = k3.

Using (5.1) with these transition counts and Lemma 5.1 we obtain

fv,e1 (ka 3) - fv,e1 (ka 1) = fv,eQ(ka My, ey + 2) - fv,eg (k, mv,eQ)-

Since my e, = 0, the last equation together with Claim 2 implies Claim 3.

Let £ > 1 and e € E,, \ E, jnitial- There exists a path 7 from vy to v
with k(v,7) = k and k(e,7) = 0. Using Remark 5.1 we obtain b, (k) =
fu,e(k,0) > 0. A similar argument shows b, (k) + ¢, (k) > 0 for e € Ej, initial-
[ |

Remark 5.3 The set D, (1) has cardinality 1 for all e € E, if and only if
v =g or Eyinitial # 0. In these cases, ¢,(1) can be chosen arbitrarily. For
technical reasons, we choose in these cases c,(1) := ¢, (3).

Lemma 5.3 If ¢,(k)c,(k+1) =0 for some k > 1, then ¢, (k) = ¢,(k+1) =
0. In particular, we have either c,(k) =0 for all k > 1 or ¢ (k) # 0 for all
kE>1.

Proof. Let k > 2, and let ej,ea € E, \ Eyinitial, €1 7 €2. We assume
e; has endpoints v and v; for ¢+ = 1,2. Let m be any path from vy to
v with k(v,7) = k. We abbreviate k; := k(e;,m), ky, := k(v;,m). Let
7 = (v, €, v, €;,v) be the path which traverses e; back and forth starting
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at v. We define m := w77y, mo = mwom. By partial exchangeability
(Assumption 1.4), m; and 72 have the same probability. Using Assumption
1.5 we can write the probability of m; as a product of values of f, ., u eV,
e € E. The factors corresponding to the transitions in 7 agree for m and ms.
Since fy . is strictly positive on its domain by Remark 5.1, all these factors
cancel and we obtain

fv,e1(ka kl)fv1,e1(kv1 +1, k1 + 1)fv,ez(k +1, k2)fv2,62(kv2 +1, ko + 1)
= fv,eg(ka k?)fvz,ez(kvg + ]-7 k? + 1)fv,61 (k + 17 kl)fv1,e1 (km + 17 kl + ]-)

The last equality implies

fv,e1(ka ]‘Cl)fv,@(k +1, k2) = fv,e2(ka k2)fv,e1(k +1, kl)- (5-8)

Suppose ¢,(k) = 0. Using Lemma 5.2, we can rewrite (5.8) as follows:

Doy (k) [bo.eq (k + 1) + co(k + 1))
= Dyey (k) [boe, (k + 1) + o (k + 1)ki] . (5.9)

We apply the last equation first with k&1 = 0,ky = 2 and then with k4 =
2,ky = 0 (recall e1, ey € Ey \ Eyinitial and k& > 2; hence there exist paths 7
from vy to v with k(e;, m) = k; for i = 1,2.). This yields

bosey (k) [buses (b + 1) + 20 (k +1)] = byey(K)bue, (k+1), (5.10)
bu,er (K)bu,ey (k1) = byes (F) [bo,e; (K 4 1) + 2¢0 (K H{3)11)

Subtracting (5.11) from (5.10), we obtain
20y e (B)ey(k4+1) = —2bye,(k)ey(k+1). (5.12)

Since ey, ez € Ey \ Ey initial, We have by, ¢, (k), by e, (k) > 0 by Lemma 5.2. If
co(k + 1) # 0, then left and right-hand side of (5.12) have different signs.
Hence ¢,(k + 1) = 0. If we assume ¢,(k 4+ 1) = 0, then we obtain (5.9) with
k and k + 1 interchanged and the same argument shows ¢, (k) = 0.

It remains to consider the case k = 1. If v = vy or E, jnitial # 0, we chose
¢y(1) := ¢,(3) (compare Remark 5.3). In these cases ¢,(1)c,(2) = ¢y(3)cy(2),
and the claim follows from what we proved above. In the remaining cases,
v # vg and Ey initial = 0. Then there exist eq,e2 € Ey, €1 # €3, such that
Dye; = {0,1} for i = 1,2, and we can apply (5.9) with k1 = 0,k = 1 and
k1 =1,k9 = 0. The desired result follows. m
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Lemma 5.4 Suppose ¢, (k) # 0. We set K, := 2k —1 — 6,(vp), ay(k) :=
boe(k)/co(k) for e € By, and a,(k) := ) .cp ve(k). If (k,ke) € Def(fy, ),
then

Ay (k) + ke

foe(k; ke) = ay(k) + Iy

Proof. We abbreviate b,(k) := > . cp bue (k). Let (k,k.) € Def(f, ).
There exists a path 7 from vy to v with k(v,7) = k and k(e, 7) = k.. We set
ket := k(e',m) for all ¢’ € E'\ {e}. By Remark 3.1, we have Y. ket = K.
Using (5.1) and Lemma 5.2 we obtain

1= Z fv,e’(ka ke’) = Z bv,e’(k) + Cv Z ker = b + Cv(k)
e'ck, '€k, e'€E,
Dividing the last equality by ¢, (k) yields

L b
(k) co(k)

Another application of Lemma 5.2 yields

+ K, = ay(k) + K,. (5.13)

aye(k) + ke .

ol he) = bue (k) + ok = e (k) [an (k) + kel = 2555

for the last equation we used (5.13). m

Lemma 5.5 If ¢, (1) # 0, then there exist constants a,. > 0 for e € E, \
Ey initial and aye > —1 for e € Eyinitial, such that for all k > 2 and k. €
D, (k) the following holds:

Gye + ke

v,e kake = -
Foel ) a, + K,

with ay =) cp Gy and Ky =2k —1 = 6,(vo).

Proof. Let k£ > 2. Suppose ¢,(1) # 0. By Lemma 5.4 it suffices to show
aye(k) = aye(2). We choose e1,e9 € E,, e # e, with the constraint
e1 € By \ Ey enter if v # vg. Let m be any path from vg to v with k(v,7) = k.
We set k; := k(e;, 7). Applying Lemma 5.4 to the factors in (5.8) we obtain

Aue (k) + k1 ave,(K+1)+ky  ave,(k) +hy  ave(k+1)+k
ay(B) + Ky  ay(k+1)+K,+2  ay(k)+ K, ay(k+1)+K,+2’
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recall i, := 2k — 1 — 6,(vg). The denominators are equal, hence the enu-
merators are equal:

[@v,e0 (k) + k1] [av,e, (K + 1) + ko] = [ay,e, (k) + k2] [av,e, (k + 1) + k1] .(5.14)

We apply (5.14) with k; =1 —06,(vg), ko = 0 and ky = 1 —06,(vp), ko = 2
to obtain

[ay,er (k) + k1] ave, (K +1) = aye,(k)[ave (k+1) + ki, (5.15)
[av,er (k) + k1] [ap,e, (kK +1) +2] = [aye, (k) + 2] [ay,e, (K +1) + k1]

Subtracting both equations yields
=2 [av,e, (k) + k1] = =2[ave, (k +1) + k1,

which implies ay e, (k) = @y, (K 4+ 1). From (5.15) we conclude ay¢,(k) =
Ay, (kK +1).
Let e € Ey \ Eyinitial- The equation a, (k + 1) = a, (k) is equivalent

to bzve(gil)) = b;’;e(gf)). Since by ¢(k), by (k4 1) > 0 by Lemma 5.2, ¢, (k) and

¢y (k+1) have the same sign. In particular, ¢, (k) has the same sign as ¢,(2)
for all k > 2. Suppose ¢,(2) < 0. Then ¢,(k) < 0 for all £ > 2 and by (5.13),

1
0> =ay(k) + K, = ay(2) + 2k — 1 — 6,(vp).
Cv(lﬁ) a ( )+ a ( )+ (@0)
Since the right-hand side diverges to infinity for ¥ — oo, we obtained a
contradiction and we conclude ¢,(2) > 0. Hence a,.(2) = bg;e((;)) > 0 for
all e € E, \ Eyinitiai- By Lemma 5.2, a,.(2) +1 = %{;;”(2) > 0 for

e € E, initial, hence a, ((2) > —1 in this case. m

avger (1) avgen(1) .
Remark 5.4 For any e1,es € E,,, we have e @ = ae @ If G is

2-edge-connected, then the claim of Lemma 5.5 is true for k =1 if v # vy.

Proof. If v = vy, we can apply (5.14) with k1 = k9 = 0 to obtain the desired
result.

Suppose G is 2-edge-connected and v # vy, and let ey, ey € E,, €1 # e3.
Then there exist paths = € I, , with k(er,7) = k(ea,7) = 0 and k(e;,7) =
0, k(ey,m) = 1. Hence we can apply (5.14) for these values of k1, k9 to obtain
e (1) =y, (2). ®

Lemma 5.6 If c,(1) = 0, then fye(k,ke) = bye(1) for all e € E, and
(k,ke) € Def(fu.e).
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Proof. Suppose ¢,(1) = 0. We know from Lemmas 5.2 and 5.3 that
Joe(k,ke) = by (k) for all (k,k.) € Def(f,.). It remains to show b, (k) =
bye(1) for all k£ > 1.

Let e1,e2 € E,, 1 # ea. We write ; = {v,v;} for the set of endpoints

of e;, and we set 7; := (v,e;,v;,€;,v), i = 1,2. Let m € Il ,, and let
kE > 0. We extend 7 adding in two different ways k + 1 copies of 7; and
one copy of my: We define 7 := 7r7~r’f+17~r2, Ty = 7r7~r’f7~r27~r1. By partial

exchangeability (Assumption 1.4), m; and m have the same probability.
Using Assumption 1.5 we can write the probabilities of 7y and 79 as products
of values of f, ., u € V, e € E. The factors arising from the transitions in
77k are the same for 7; and 7. By Remark 5.1, all these factors are strictly
positive. Furthermore the contributions for the traversals of e; starting from
v;, © = 1,2, are the same for my and ms by Assumption 1.5. After all these
cancellations have been done, only the factors corresponding to the traversals

of e; starting from v, ¢ = 1,2 remain, and we obtain
bo,e, (k + l)bv,ez (k+2)= by,e (k + l)bv,e1 (k +2),
which implies

bues (K +2) by, (k+2)

= . 5.16
boey(k+1)  bye (k+1) (5.16)
Since ey # e; was arbitrary in E,, we conclude for e € F,
k—1 ) k—1 )
by.e 1 by.e 1
bue (k) = by (1) [ 20D g ) T LU L), (5.17)
j:l bv,e(]) j:l bv,el (])

here the empty product is defined to be 1. Let k. := k(e,n7}) for e € E
and k, := k(v,77¥). Then k, = k + 1. Combining Remark 5.1, Lemma 5.2
and (5.17), we obtain

k

1= Z fv,e(kv,]ﬁe) = Z bv,e(k —+ 1) = Z bv,e(l) H M

b
eckE, eckE, eckE, 1=1 Us€1 (‘7)

for all £ > 0, and we conclude b”b’Lk(Z)l) =1 for all £ > 1. Consequently,
v,e1

bye, (k) = by, (1) for all £ > 1. Since e; € E), is arbitrary, the claim follows.
]

Lemma 5.7 1. If ¢,(1) =0, then ¢y (1) = 0 for all vertices v' contained
in the same 2-edge-connected block as v.
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2. If cp(1) # 0 for all v in a 2-edge-connected block B, then aye = aye
for all edges e in B and u,v € €.

Proof. Let v be contained in a 2-edge-connected block, and suppose ¢,(1) =

0. There exists a cycle ¢ = (ug, €1, U1, ... ,€n, Uy) in G with ug = v. We set
Uy = {j:0<j<n—TLey(l) =0},
Uy = {j:0<j<n—Ley(l)#0}).

Note that 0 € Uy. Let w be a path from vy to v with k(v,7) > 2. We set
ke := k(e,m) for e € E, ky = k(v',m) and K, := 2ky — 1 — 6,1(vg) for
v' € V. We extend 7w adding one traversal of ¢ or of the reversed cycle ¢~
We set m := me, o := wc¢~. By partial exchangeability (Assumption 1.4),
m and 7y have the same probability. Using Assumption 1.5, we obtain

n
fuo el kvakq Hfu] 161 u],1 +17ke]‘)

= fuo,en(kva ]‘Cen) H ij,ej (kuj +1, kej)'
j=1

Lemmas 5.5 and 5.6 imply

Qo ; o5 + ke,
buo’el (1) H buj,ej+1 (].) H B R e ot e s ot

Ay -
j€Uo\{0} jeuy w2
A e + ke‘
= buo,en(l) H bu])e](]_) H _a 707 J .
€\ {0} jeuy it +2

Since the denominators on both sides agree, the same is true for the enu-
merators:

bug.ex (1) H b“j’eﬂl(l) H [“uawejﬂ +kej+1]

jEUo\{0} =2
= bugen (1) H buj’ej(l) H [%j,ej +k€j] : (5.18)
jEUo\{O} JEUL

For m > 0 we extend 7 adding m traversals of c or ¢™: We set 7y ,,, := wc"™,

To.m = m(c7)™. An analogous argument as above shows that

)" T 1) = (a)™ [ 220 (5.19)

=0 =0
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with

ap = bu()vel(l) H buj,8j+1(1)

JEUL\{0}
Qg = buo,en(l) H buj,ej(l)
JEUL\{0}
() = H [auj)€j+1 + keji ‘H]
JEUL
(,02([) = H [au]‘,e]‘ + kej + l] .
JEUL

It follows from (5.19) that

a 1= (o)

1 2

— =exp| — In ; 5.20
e (5 (50) 6o
note that ay,ay > 0 and @1, 2 > 0 on Ny by Remark 5.1. Since ¢; and ¢2
are polynomials with leading coefficient 1, lim;_. . In (¢2(1)/¢1(1)) = 0, and
the same is true for the Cesaro mean: lim,, .o, m™! Zﬁgl In (p2(l)/e1(1)) =
0. Taking the limit as m — oo in (5.20) yields oy /ag = 1; thus oy = .
Since (5.19) is valid for all m > 1, we conclude p1(m) = p2(m) for all m > 0.

Since @1 and @9 are polynomials of degree < n, @1 and @2 must be identical.
In particular, the zeros of ¢; and @9 agree:

{—ujeipr = kejns] €EULY = {—au;e; —hey3j €ULY. (5.21)

Suppose U; # (). By assumption, Uy # (). Hence there exists jo € Uy \{n—1}
such that jo+1 € U,. Recall that in the above argument, 7 can be any path
from vy to ug with k(ug,7) > 2. We can choose 7 in such a way that

Qujy ejorn + K(€jo41,m) > max {auj.e; +k(ej,m);j €Ur}.

This contradicts (5.21), and we conclude ¢4 = 0. Since for any two edges
in a 2-edge-connected block there exists a cycle containing both edges, the
first part of the lemma follows.

Suppose ¢, (1) # 0 for all vertices v contained in a 2-edge-connected block
B. Let ¢ = (ug,e1,u1,€2,... ,€,,u,) be a cycle in B. A similar argument
as above shows that

m—1 m—1
[[am = T[ a0 (5.22)
=0 =0
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with @1(1) = [T}, [au;_y.e; + ke, +1], $2(1) = -, [y e; + ke; +1].
Again, @; > 0 on Ny, ¢ = 1,2, and it follows from (5.22) that p1(I) = P2(1)
for all I > 0. Consequently ¢1 and @9 are identical, in particular they have
the same zeros. Since k. = k(e, ), e € E, and 7 was an arbitrary path from
vo to ug with k(ug,7) > 2, we conclude that a,;_, c; = ay;; for 1 < j <n.
Since for any two edges in a 2-edge-connected block, there exists a cycle in
B containing both edges, the second part of the lemma follows. m

Proof of Theorem 2.1. It is not hard to see that a modified edge-
reinforced random walk starting at vy satisfies Assumptions 1.2 - 1.6; in
order to show partial exchangeability, one uses that edge-reinforced random
walk is partially exchangeable by Lemma 2 of [4].

Let Z be a nearest-neighbor random walk satisfying Assumptions 1.2 -
1.6. Using Lemmas 5.5-5.7 together with Assumption 1.5 we conclude that
the conditional probabilities P(Y,+1 = e, X411 = v|Zy, kn(X,) > 2) agree
with the corresponding conditional probabilities for modified edge-reinforced
random walk. We remark that this statement is trivial if degree(v) = 1. This
completes the proof of the theorem. m

Proof of Theorem 1.2. A modified edge-reinforced random walk on
a 2-edge-connected graph is either a non-reinforced or an edge-reinforced
random walk. Hence Theorem 1.2 follows from Theorem 2.1 and Remark
54. m
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