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Preliminaries

0.0. Preface

This is a collection of expository articles about various topics at the interface
between enumerative combinatorics and stochastic processes. These articles ex-
pand on a course of lectures given at the École d’Été de Probabilités de St.
Flour in July 2002. The articles are called ’chapters’ and numbered according
to the order of these chapters in a printed volume to appear in Springer Lecture
Notes in Mathematics. Each chapter is fairly self-contained, so readers with ad-
equate background can start reading any chapter, with occasional consultation
of earlier chapters as necessary. Following this Chapter 0, there are 10 chapters,
each divided into sections. Most sections conclude with some Exercises. Those
for which I don’t know solutions are called Problems.
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and Gregory Miermont. The last four deserve special thanks for their contri-
butions as research assistants. Thanks to the many people who have read ver-
sions of these notes and made suggestions and corrections, especially David
Aldous, Jean Bertoin, Aubrey Clayton, Shankar Bhamidj, Rui Dong, Steven
Evans, Sasha Gnedin, Bénédicte Haas, Jean-Francois Le Gall, Neil O’Connell,
Mihael Perman, Lea Popovic, Jason Schweinsberg. Special thanks to Marc Yor
and Matthias Winkel for their great help in preparing the final version of these
notes for publication. Thanks also to Jean Picard for his organizational efforts
in making arrangements for the St. Flour Summer School. This work was sup-
ported in part by NSF Grants DMS-0071448 and DMS-0405779.
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0.1. Introduction

The main theme of this course is the study of various combinatorial models of
random partitions and random trees, and the asymptotics of these models re-
lated to continuous parameter stochastic processes. A basic feature of models for
random partitions is that the sum of the parts is usually constant. So the sizes
of the parts cannot be independent. But the structure of many natural mod-
els for random partitions can be reduced by suitable conditioning or scaling to
classical probabilistic results involving sums of independent random variables.
Limit models for combinatorially defined random partitions are consequently
related to the two fundamental limit processes of classical probability theory:
Brownian motion and Poisson processes. The theory of Brownian motion and
related stochastic processes has been greatly enriched by the recognition that
some fundamental properties of these processes are best understood in terms of
how various random partitions and random trees are embedded in their paths.
This has led to rapid developments, particularly in the theory of continuum
random trees, continuous state branching processes, and Markovian superpro-
cesses, which go far beyond the scope of this course. Following is a list of the
main topics to be treated:

• models for random combinatorial structures, such as trees, forests, permu-
tations, mappings, and partitions;

• probabilistic interpretations of various combinatorial notions e.g. Bell poly-
nomials, Stirling numbers, polynomials of binomial type, Lagrange inver-
sion;

• Kingman’s theory of exchangeable random partitions and random discrete
distributions;

• connections between random combinatorial structures and processes with
independent increments: Poisson-Dirichlet limits;

• random partitions derived from subordinators;
• asymptotics of random trees, graphs and mappings related to excursions

of Brownian motion;
• continuum random trees embedded in Brownian motion;
• Brownian local times and squares of Bessel processes;
• various processes of fragmentation and coagulation, including Kingman’s

coalescent, the additive and multiplicative coalescents

Next, an incomplete list and topics of current interest, with inadequate refer-
ences. These topics are close to those just listed, and certainly part of the realm
of combinatorial stochastic processes, but not treated here:

• probability on trees and networks, as presented in [292];
• random integer partitions [159, 104], random Young tableaux, growth of

Young diagrams, connections with representation theory and symmetric
functions [245, 420, 421, 239];

• longest increasing subsequence of a permutation, connections with random
matrices [28];
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• random partitions related to uniformly chosen invertible matrices over a
finite field, as studied by Fulman [160];

• random maps, coalescing saddles, singularity analysis, and Airy phenom-
ena, [81];

• random planar lattices and integrated superbrownian excursion [94].

The reader of these notes is assumed to be familiar with the basic theory
of probability and stochastic processes, at the level of Billingsley [64] or Dur-
rett [122], including continuous time stochastic processes, especially Brownian
motion and Poisson processes. For background on some more specialized top-
ics (local times, Bessel processes, excursions, SDE’s) the reader is referred to
Revuz-Yor [384]. The rest of this Chapter 0 reviews some basic facts from this
probabilistic background for ease of later reference. This material is organized
as follows:

0.2. Brownian motion and related processes This section provides some
minimal description of the background expected of the reader to follow
some of the more advanced sections of the text. This includes the defi-
nition and basic properties of Brownian motion B := (Bt, t ≥ 0), and of
some important processes derived from B by operations of scaling and
conditioning. These processes include the Brownian bridge, Brownian me-
ander and Brownian excursion. The basic facts of Itô’s excursion theory
for Brownian motion are also recorded.

0.3. Subordinators This section reviews a few basic facts about increasing
Lévy processes in general, and some important facts about gamma and
stable processes in particular.

0.2. Brownian motion and related processes

Let Sn := X1 + . . .+Xn where the Xi are independent random variables with
mean 0 and variance 1, and let St for real t be defined by linear interpolation
between integer values. According to Donsker’s theorem [64, 65, 122, 384]

(Snt/
√
n, 0 ≤ t ≤ 1)

d→ (Bt, 0 ≤ t ≤ 1) (0.1)

in the usual sense of convergence in distribution of random elements of C[0, 1],
where (Bt, t ≥ 0) is a standard Brownian motion meaning that B is a process
with continuous paths and stationary independent Gaussian increments, with

Bt
d
=
√
tB1 where B1 is standard Gaussian.

Brownian bridge Assuming now that the Xi are integer valued, some con-
ditioned forms of Donsker’s theorem can be presented as follows. Let o(

√
n)

denote any sequence of possible values of Sn with o(
√
n)/
√
n → 0 as n → ∞.

Then [128]

(Snt/
√
n, 0 ≤ t ≤ 1 |Sn = o(

√
n))

d→ (Bbr
t , 0 ≤ t ≤ 1) (0.2)
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where Bbr is the standard Brownian bridge, that is, the centered Gaussian pro-
cess obtained by conditioning (Bt, 0 ≤ t ≤ 1) on B1 = 0. Some well known
descriptions of the distribution of Bbr are [384, Ch. III, Ex (3.10)]

(Bbr
t , 0 ≤ t ≤ 1)

d
= (Bt − tB1, 0 ≤ t ≤ 1)

d
= ((1− t)Bt/(1−t), 0 ≤ t ≤ 1) (0.3)

where
d
= denotes equality of distributions on the path space C[0, 1], and the

rightmost process is defined to be 0 for t = 1.

Brownian meander and excursion Let T− := inf{n : Sn < 0}. Then as
n→∞

(Snt/
√
n, 0 ≤ t ≤ 1 |T− > n)

d→ (Bme
t , 0 ≤ t ≤ 1) (0.4)

where Bme is the standard Brownian meander [205, 71], and as n→∞ through
possible values of T−

(Snt/
√
n, 0 ≤ t ≤ 1 |T− = n)

d→ (Bex
t , 0 ≤ t ≤ 1) (0.5)

where Bex
t is the standard Brownian excursion [225, 102]. Informally,

Bme d
= (B |Bt > 0 for all 0 < t < 1)

Bex d
= (B |Bt > 0 for all 0 < t < 1, B1 = 0)

where
d
= denotes equality in distribution. These definitions of conditioned

Brownian motions have been made rigorous in a number of ways: for instance
by the method of Doob h-transforms [255, 394, 155], and as weak limits as ε ↓ 0
of the distribution of B given suitable events Aε, as in [124, 69], for instance

(B |B(0, 1) > −ε) d→ Bme as ε ↓ 0 (0.6)

(Bbr |Bbr(0, 1) > −ε) d→ Bex as ε ↓ 0 (0.7)

where X(s, t) denotes the infimum of a process X over the interval (s, t).

Brownian scaling For a process X := (Xt, t ∈ J) parameterized by an in-
terval J , and I = [GI , DI ] a subinterval of J with length λI := DI − GI > 0,
we denote by X [I ] or X [GI , DI ] the fragment of X on I , that is the process

X [I ]u := XGI+u (0 ≤ u ≤ λI). (0.8)

We denote by X∗[I ] or X∗[GI , DI ] the standardized fragment of X on I , defined
by the Brownian scaling operation

X∗[I ]u :=
XGI+uλI

−XGI√
λI

( 0 ≤ u ≤ 1). (0.9)

For T > 0 let GT := sup{s : s ≤ T,Bs = 0} be the last zero of B before
time T and DT := inf{s : s > T,Bs = 0} be the first zero of B after time
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T . Let |B| := (|Bt|, t ≥ 0), called reflecting Brownian motion. It is well known
[211, 98, 384] that for each fixed T > 0, there are the following identities in
distribution derived by Brownian scaling:

B∗[0, T ]
d
= B[0, 1]; B∗[0, GT ]

d
= Bbr (0.10)

|B|∗[GT , T ]
d
= Bme; |B|∗[GT , DT ]

d
= Bex. (0.11)

It is also known that Bbr, Bme and Bex can be constructed by various other
operations on the paths of B, and transformed from one to another by further
operations [53].

For 0 < t < ∞ let Bbr,t be a Brownian bridge of length t, which may be
regarded as a random element of C[0, t] or of C[0,∞], as convenient:

Bbr,t(s) :=
√
tBbr((s/t) ∧ 1) (s ≥ 0). (0.12)

Let Bme,t denote a Brownian meander of length t, and Bex,t be a Brownian
excursion of length t, defined similarly to (0.12) with Bme or Bex instead of
Bbr.

Brownian excursions and the three-dimensional Bessel process The
following theorem summarizes some important relations between Brownian ex-
cursions and a particular time-homogeneous diffusion process R3 on [0,∞),
commonly known as the three-dimensional Bessel process BES(3), due to the
representation

(R3(t), t ≥ 0)
d
=





√
√
√
√

3∑

i=1

(Bi(t))2, t ≥ 0



 (0.13)

where the Bi are three independent standard Brownian motions. It should be
understood however that this particular representation of R3 is a relatively
unimportant coincidence in distribution. What is more important, and can
be understood entirely in terms of the random walk approximations (0.1) and
(0.5) of Brownian motion and Brownian excursion, is that there exists a time-
homogeneous diffusion process R3 on [0,∞) with R3(0) = 0, which has the
same self-similarity property as B, meaning invariance under Brownian scal-
ing, and which can be characterized in various ways, including (0.13), but most
importantly as a Doob h-transform of Brownian motion.

Theorem 0.1. For each fixed t > 0, the Brownian excursion Bex,t of length t
is the BES(3) bridge from 0 to 0 over time t, meaning that

(Bex,t(s), 0 ≤ s ≤ t) d
= (R3(s), 0 ≤ s ≤ t |R3(t) = 0).

Moreover, as t→∞
Bex,t d→ R3, (0.14)

and R3 can be characterized in two other ways as follows:
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(i) [303, 436] The process R3 is a Brownian motion on [0,∞) started at 0 and
conditioned never to return to 0, as defined by the Doob h-transform, for the
harmonic function h(x) = x of Brownian motion on [0,∞), with absorbtion at
0. That is, R3 has continuous paths starting at 0, and for each 0 < a < b the
stretch of R3 between when it first hits a and first hits b is distributed like B
with B0 = a conditioned to hit b before 0.
(ii) [345]

R3(t) = B(t)− 2B(t) (t ≥ 0) (0.15)

where B is a standard Brownian motion with past minimum process

B(t) := B[0, t] = −R3[t,∞).

Lévy’s identity The identity in distribution (0.15) admits numerous varia-
tions and conditioned forms [345, 53, 55] by virtue of Lévy’s identity of joint
distributions of paths [384]

(B −B,−B)
d
= (|B|, L) (0.16)

where L := (Lt, t ≥ 0) is the local time process of B at 0, which may be defined
almost surely as the occupation density

Lt = lim
ε↓0

1

2ε

∫ t

0

ds1(|Bs| ≤ ε).

For instance,

(R3(t), t ≥ 0)
d
= (|Bt|+ Lt, t ≥ 0).

Lévy-Itô-Williams theory of Brownian excursions Due to (0.16), the
process of excursions of |B| away from 0 is equivalent in distribution to the
process of excursions of B above B. According to the Lévy-Itô description of
this process, if I` := [T`−, T`] for T` := inf{t : B(t) < −`}, the points

{(`, µ(I`), (B −B)[I`]) : ` > 0, µ(I`) > 0}, (0.17)

where µ is Lebesgue measure, are the points of a Poisson point process on
R>0 × R>0 × C[0,∞) with intensity

d`
dt√

2π t3/2
P(Bex,t ∈ dω). (0.18)

On the other hand, according to Williams [437], if M` := B[I`] − B[I`] is the
maximum height of the excursion of B over B on the interval I`, the points

{(`,M`, (B −B)[I`]) : ` > 0, µ(I`) > 0}, (0.19)

are the points of a Poisson point process on R>0×R>0×C[0,∞) with intensity

d`
dm

m2
P(Bex |m ∈ dω) (0.20)
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where Bex |m is a Brownian excursion conditioned to have maximum m. That
is to say Bex |m is a process X with X(0) = 0 such that for each m > 0,
and Hx(X) := inf{t : t > 0, X(t) = x}, the processes X [0, Hm(X)] and
m − X [Hm(X), H0(X)] are two independent copies of R3[0, Hm(R3)], and X
is stopped at 0 at time H0(X). Itô’s law of Brownian excursions is the σ-finite
measure ν on C[0,∞) which can be presented in two different ways according
to (0.18) and (0.20) as

ν(·) =

∫ ∞

0

dt√
2πt3/2

P(Bex,t ∈ ·) =

∫ ∞

0

dm

m2
P(Bex |m ∈ ·) (0.21)

where the first expression is a disintegration according to the lifetime of the
excursion, and the second according to its maximum. The identity (0.21) has a
number of interesting applications and generalizations [60, 367, 372].

BES(3) bridges Starting from three independent standard Brownian bridges
Bbr

i , i = 1, 2, 3, for x, y ≥ 0 let

Rx→y
3 (u) :=

√

(x+ (y − x)u+Bbr
1,u)2 + (Bbr

2,u)2 + (Bbr
3,u)2 (0 ≤ u ≤ 1).

(0.22)
The random element Rx→y

3 of C[0, 1] is the BES(3) bridge from x to y, in terms
of which the laws of the standard excursion and meander are represented as

Bex d
= R0→0

3 and Bme d
= R0→ρ

3 (0.23)

where ρ is a random variable with the Rayleigh density

P (ρ ∈ dx)/dx = xe−
1
2x2

(x > 0) (0.24)

and ρ is independent of the family of Bessel bridges R0→r
3 , r ≥ 0. Then by

construction

Bme
1 = ρ

d
=
√

2Γ1 (0.25)

where Γ1 is a standard exponential variable, and

(Bme
1 |Bme

1 = r)
d
= R0→r

3 . (0.26)

These descriptions are read from [435, 208]. See also [98, 53, 62, 384] for further
background. By (0.22) and Itô’s formula, the process Rx→y

3 can be characterized
for each x, y ≥ 0 as the solution over [0, 1] of the Itô SDE

R0 = x; dRs =

(
1

Rs
+

(y −Rs)

(1− s)

)

ds + dγs (0.27)

for a Brownian motion γ.
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Exercises

0.2.1. [384] Show, using stochastic calculus, that the three dimensional Bessel
process R3 is characterized by description (i) of Theorem 0.1.

0.2.2. Check that Rx→y
3 solves (0.27), and discuss the uniqueness issue.

0.2.3. [344, 270] Formulate and prove a discrete analog for simple symmetric
random walk of the equivalence of the two descriptions of R3 given in Theorem
0.1, along with a discrete analog of the following fact: if R(t) := B(t) − 2B(t)
for a Brownian motion B then

the conditional law of B(t) given (R(s), 0 ≤ s ≤ t) is uniform on [−R(t), 0].
(0.28)

Deduce the Brownian results by embedding a simple symmetric random walk
in the path of B.

0.2.4. (Williams’ time reversal theorem)[436, 344, 270] Derive the identity
in distribution

(R3(t), 0 ≤ t ≤ Kx)
d
= (x−B(Hx − t), 0 ≤ t ≤ Hx), (0.29)

where Kx is the last hitting time of x > 0 by R3, and where Hx the first hitting
time of x > 0 by B, by first establishing a corresponding identity for paths of
a suitably conditioned random walk with increments of ±1, then passing to a
Brownian limit.

0.2.5. [436, 270] Derive the identity in distribution

(R3(t), 0 ≤ t ≤ Hx)
d
= (x−R3(Hx − t), 0 ≤ t ≤ Hx), (0.30)

where Hx is the hitting time of x > 0 by R3.

0.2.6. Fix x > 0 and for 0 < y < x let Ky be the last time before Hx(R3) that
R3 hits y, let Iy := [Ky−,Ky], and let R3[Iy ]−y be the excursion of R3 over the
interval Iy pulled down so that it starts and ends at 0. Let My be the maximum
height of this excursion. Show that the points

{(y,My, R3[Iy]− y) : My > 0}, (0.31)

are the points of a Poisson point process on [0, x]×R>0×C[0,∞) with intensity
measure of the form

f(y,m) dy dmP(Bex |m ∈ dω)

for some f(y,m) to be computed explicitly, where Bex |m is a Brownian excur-
sion of maximal height m. See [348] for related results.
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Notes and comments

See [387, 270, 39, 384, 188] for different approaches to the basic path trans-
formation (0.15) from B to R3, its discrete analogs, and various extensions.
In terms of X := −B and M := X = −B, the transformation takes X to
2M − X . For a generalization to exponential functionals, see Matsumoto and
Yor [299]. This is also discussed in [331], where an alternative proof is given
using reversibility and symmetry arguments, with an application to a certain
directed polymer problem. A multidimensional extension is presented in [332],
where a representation for Brownian motion conditioned never to exit a (type A)
Weyl chamber is obtained using reversibility and symmetry properties of certain
queueing networks. See also [331, 262] and the survey paper [330]. This repre-
sentation theorem is closely connected to random matrices, Young tableaux,
the Robinson-Schensted-Knuth correspondence, and symmetric functions the-
ory [329, 328]. A similar representation theorem has been obtained in [75] in
a more general symmetric spaces context, using quite different methods. These
multidimensional versions of the transformation from X to 2M − X are inti-
mately connected with combinatorial representation theory and Littelmann’s
path model [286].

0.3. Subordinators

A subordinator (Ts, s ≥ 0) is an increasing process with right continuous paths,
stationary independent increments, and T0 = 0. It is well known [40] that every
such process can be represented as

Tt = ct+
∑

0<s≤t

∆s (t ≥ 0)

for some c ≥ 0 where ∆s := Ts − Ts− and {(s,∆s) : s > 0,∆s > 0} is the set
of points of a Poisson point process on (0,∞)2 with intensity measure dsΛ(dx)
for some measure Λ on (0,∞), called the Lévy measure of T1 or of (Tt, t ≥ 0),
such that the Laplace exponent

Ψ(u) = cu+

∫ ∞

0

(1− e−ux)Λ(dx) (0.32)

is finite for some (hence all) u > 0. The Laplace transform of the distribution
of Tt is then given by the following special case of the Lévy-Khintchine formula
[40]:

E[e−uTt ] = e−tΨ(u). (0.33)

The gamma process Let (Γs, s ≥ 0) denote a standard gamma process, that
is the subordinator with marginal densities

P(Γs ∈ dx)/dx =
1

Γ(s)
xs−1 e−x (x > 0). (0.34)
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The Laplace exponent Ψ(u) of the standard gamma process is

Ψ(u) = log(1 + u) = u− u2

2
+
u3

3
− · · ·

and the Lévy measure is Λ(dx) = x−1e−xdx. A special feature of the gamma
process is the multiplicative structure exposed by Exercise 0.3.1 and Exercise
0.3.2 . See also [416].

Stable subordinators Let Pα govern a stable subordinator (Ts, s ≥ 0) with
index α ∈ (0, 1). So under Pα

Ts
d
= s1/αT1 (0.35)

where

Eα[exp(−λT1)] = exp(−λα) =

∫ ∞

0

e−λxfα(x) dx (0.36)

with fα(x) the stable(α) density of T1, that is [377]

fα(t) =
1

π

∞∑

k=0

(−1)k+1

k!
sin(παk)

Γ(αk + 1)

tαk+1
. (0.37)

For α = 1
2 this reduces to the formula of Doetsch [112, pp. 401-402] and Lévy

[284]

f 1
2
(t) =

t−
3
2

2
√
π
e−

1
4t = P( 1

2B
−2
1 ∈ dt)/dt (0.38)

where B1 is a standard Gaussian variable. For general α, the Lévy density of T1

is well known to be

ρα(x) :=
α

Γ(1− α)

1

xα+1
(x > 0) (0.39)

Note the useful formula

Eα(T−θ
1 ) =

Γ( θ
α + 1)

Γ(θ + 1)
(θ > −α) (0.40)

which is read from (0.36) using T−θ
1 = Γ(θ)−1

∫∞
0 λθ−1e−λT1dλ. Let (St, t ≥ 0)

denote the continuous inverse of (Ts, s ≥ 0). For instance, (St, t ≥ 0) may be the
local time process at 0 of some self-similar Markov process, such as a Brownian
motion (α = 1

2 ) or a Bessel process of dimension 2− 2α ∈ (0, 2). See [384, 41].
Easily from (0.35), under Pα there is the identity in law

St/t
α d

= S1
d
= T−α

1 (0.41)

Thus the Pα distribution of S1 is the Mittag-Leffler distribution with Mellin
transform

Eα(Sp
1 ) = Eα((T−α

1 )p) =
Γ(p+ 1)

Γ(pα+ 1)
(p > −1) (0.42)



and density at s > 0

Pα(S1 ∈ ds)/ds = gα(s) :=
fα(s−1/α)

αs1+1/α
=

1

πα

∞∑

k=0

(−1)k+1

k!
Γ(αk+1)sk−1 sin(παk)

(0.43)
See [314, 66] for background.

Exercises

0.3.1. (Beta-Gamma algebra) Let (Γt, t ≥ 0) be a standard gamma process.
For a, b > 0 let

βa,b := Γa/Γa+b. (0.44)

Then βa,b has the beta(a, b) distribution

P(βa,b ∈ du) =
Γ(a+ b)

Γ(a)Γ(b)
ua−1(1− u)b−1du (0 < u < 1) (0.45)

and βa,b is independent of Γa+b. See [117] for a review of algebraic properties of
beta and gamma distributions, and [87] for developments related to intertwining
of Markov processes.

0.3.2. (Dirichlet Process) [153, 350] Let (Γt, t ≥ 0) be a standard gamma
process, and for θ > 0 set

Fθ(u) := Γuθ/Γθ (0 ≤ u ≤ 1). (0.46)

Call Fθ(·), the standard Dirichlet process with parameter θ, or Dirichlet(θ) pro-
cess for short. This process Fθ(·) is increasing with exchangeable increments, and
independent of Γθ. Note that Fθ(·) is the cumulative distribution function of a
random discrete probability distribution on [0, 1], which may also be denoted
Fθ. For each partition of [0, 1] into m disjoint intervals I1, . . . , Im of lengths
a1, . . . , am, with

∑m
i=1 ai = 1, the random vector (Fθ(I1), . . . , Fθ(Im)) has the

Dirichlet(θ1, . . . , θm) distribution with θi = θai, with density

Γ(θ1 + · · ·+ θm)

Γ(θ1) · · ·Γ(θm)
pθ1−1
1 · · · pθm−1

m dp1 · · · dpm−1 (0.47)

on the simplex (p1, . . . , pm) with pi ≥ 0 and
∑m

i=1 pi = 1. Deduce a description
of the laws of gamma bridges (Γt, 0 ≤ t ≤ θ |Γθ = x) in terms of the standard
Dirichlet process Fθ(·) analogous to the well known description of Brownian
bridges (Bt, 0 ≤ t ≤ θ |Bθ = x) in terms of a standard Brownian bridge Bbr.

13
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Chapter 1

Bell polynomials, composite

structures and Gibbs

partitions

This chapter provides an introduction to the elementary theory of Bell polyno-
mials and their applications in probability and combinatorics.

1.1. Notation This section introduces some basic notation for factorial pow-
ers and power series.

1.2. Partitions and compositions The (n, k)th partial Bell polynomial

Bn,k(w1, w2, . . .)

is introduced as a sum of products over all partitions of a set of n elements
into k blocks. These polynomials arise naturally in the enumeration of
composite structures, and in the compositional or Faà di Bruno formula
for coefficients in the power series expansion for the composition of two
functions. Various kinds of Stirling numbers appear as valuations of Bell
polynomials for particular choices of the weights w1, w2, . . ..

1.3. Moments and cumulants The classical formula for cumulants of a
random variable as a polynomial function of its moments, and various
related identities, provide applications of Bell polynomials.

1.4. Random sums Bell polynomials appear in the study of sums of a ran-
dom number of independent and identically distributed non-negative ran-
dom variables, as in the theory of branching processes, due to the well
known expression for the generating function of such a random sum as
the composition of two generating functions.

1.5. Gibbs partitions Bell polynomials appear again in a natural model for
random partitions of a finite set, in which the probability of each partition
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is assigned proportionally to a product of weights wj depending on the
sizes j of blocks.

1.1. Notation

Factorial powers For n = 0, 1, 2 . . ., and arbitrary real x and α let (x)n↑α

denote the nth factorial power of x with increment α, that is

(x)n↑α := x(x + α) · · · (x+ (n− 1)α) =

n−1∏

i=0

(x+ iα) = αn(x/α)n↑ (1.1)

where (x)n↑ := (x)n↑1 and the last equality is valid only for α 6= 0. Similarly, let

(x)n↓α := (x)n↑−α (1.2)

be the nth factorial power of x with decrement α and (x)n↓ := (x)n↓1. Note
that (x)n↓ for positive integer x is the number of permutations of x elements of
length n, and that

(x)n↑ = Γ(x+ n)/Γ(x). (1.3)

Recall the consequence of Stirling’s formula that for each real r

Γ(x+ r)/Γ(x) ∼ xras x→∞. (1.4)

Power series Notation such as

cn = [xn]f(x)

should be read as “cn is the coefficient of xn in f(x)”, meaning

f(x) =
∑

n

cnx
n

where the power series might be convergent in some neighborhood of 0, or
regarded formally [407]. Note that e.g.

[
xn

n!

]

f(x) = n![xn]f(x)

1.2. Partitions and compositions

Let F be a finite set. A partition of F into k blocks is an unordered collection of
non-empty disjoint sets {A1, . . . , Ak} whose union is F . Let Pk

[n] denote the set

of partitions of the set [n] := {1, . . . , n} into k blocks, and let P[n] := ∪n
k=1Pk

[n],

the set of all partitions of [n]. To be definite, the blocks Ai of a partition of [n]
are assumed to be listed in order of appearance, meaning the order of their least
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elements, except if otherwise specified. For instance, the blocks of the partition
of [6]

{3, 4, 5}, {6, 1}, {2}
in order of appearance are

{1, 6}, {2}, {3, 4, 5}.

The sequence (|A1|, . . . , |Ak|) of sizes of blocks of a partition of [n] defines a
composition of n, that is a sequence of positive integers with sum n. Let Cn

denote the set of all compositions of n. An integer composition is an element of
∪∞n=1Cn. The multiset {|A1|, . . . , |Ak|} of unordered sizes of blocks of a partition
Πn of [n] defines a partition of n, customarily encoded by one of the following:

• the composition of n defined by the decreasing arrangement of block sizes
of Πn, say (N↓

n,1, . . . , N
↓
n,|Πn|) where |Πn| is the number of blocks of Πn;

• the infinite decreasing sequence of non-negative integers (N ↓
n,1, N

↓
n,2, . . .)

defined by appending an infinite string of zeros to (N ↓
n,1, . . . , N

↓
n,|Π|n), so

N↓
n,i is the size of the ith largest block of Πn if |Πn| ≥ i, and 0 otherwise,

• the sequence of non-negative integer counts (|Πn|j , 1 ≤ j ≤ n), where
|Πn|j is the number of blocks of Πn of size j, with

∑

j

|Πn|j = |Πn| and
∑

j

j|Πn|j = n. (1.5)

Thus the set Pn of all partitions of n is bijectively identified with each of the
following three sets of sequences of non-negative integers:

n⋃

k=1

{(nj)1≤j≤k : n1 ≥ n2 ≥ . . . ≥ nk ≥ 1 and
∑

j

nj = n}

or

{(nj)1≤j<∞ : n1 ≥ n2 ≥ . . . ≥ 0 and
∑

j

nj = n}

or
{(mi)1≤i≤n :

∑

i

imi = n}.

with the bijection from either (nj) to (mi) defined by mi =
∑

j 1(nj = i).

Composite structures Let v• := (v1, v2, . . .) and w• := (w1, w2, . . .) be two
sequences of non-negative integers. Let V be some species of combinatorial struc-
tures [37, 38], so for each finite set Fn with |Fn| = n elements there is some
construction of a set V (Fn) of V -structures on Fn, such that the number of
V -structures on a set of n elements is |V (Fn)| = vn. For instance V (Fn) might
be Fn×Fn, or FFn

n , or permutations from Fn to Fn, or rooted trees labeled Fn,
corresponding to the sequences vn = n2, or nn, or n!, or nn−1 respectively.
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Let W be another species of combinatorial structures, such that the number
of W -structures on a set of j elements is wj . Let (V ◦ W )(Fn) denote the
composite structure on Fn defined as the set of all ways to partition Fn into
blocks {A1, . . . , Ak} for some 1 ≤ k ≤ n, assign this collection of blocks a V -
structure, and assign each block Ai a W -structure. Then for each set Fn with
n elements, the number of such composite structures is evidently

|(V ◦W )(Fn)| = Bn(v•, w•) :=
n∑

k=1

vkBn,k(w•), (1.6)

where

Bn,k(w•) :=
∑

{A1,...,Ak}∈Pk
[n]

k∏

i=1

w|Ai| (1.7)

is the number of ways to partition Fn into k blocks and assign each block a
W -structure.

The sum Bn,k(w•) is a polynomial in variables w1, . . . , wn−k+1, known as the
(n, k)th partial Bell polynomial [100]. For a partition πn of n into k parts with
mj parts equal to j for 1 ≤ j ≤ n, the coefficient of

∏

j w
mj

j in Bn,k(w•) is the
number of partitions Πn of [n] corresponding to πn. That is to say,




∏

j

w
mj

j



Bn,k(w•) =
n!

∏

j(j!)mjmj !




∑

j

jmj = n,
∑

j

mj = k



 (1.8)

as indicated for 1 ≤ k ≤ n ≤ 5 in the following table:

Table 1.1. Some partial Bell polynomials

n Bn,1(w•) Bn,2(w•) Bn,3(w•) Bn,4(w•) Bn,5(w•)
1 w1

2 w2 w2
1

3 w3 3w1w2 w3
1

4 w4 4w1w3 + 3w2
2 6w2

1w2 w4
1

5 w5 5w1w4 + 10w2w3 10w2
1w3 + 15w1w

2
2 10w3

1w2 w5
1

Stirling numbers are obtained as evaluations of Bn,k(w•) for particular w•,
as discussed in the exercises of this section. The Bell polynomials and Stirling
numbers have many interpretations and applications, some of them reviewed in
the exercises of this section. See also [100]. Three different probabilistic inter-
pretations discussed in the next three sections involve:

• formulae relating the moments and cumulants of a random variable X ,
particularly for X with infinitely divisible distribution;

• the probability function of a random sum X1 + . . .+XK of independent
and identically distributed positive integer valued random variables Xi;

• the normalization constant in the definition of Gibbs distributions on par-
titions.
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The second and third of these interpretations turn out to be closely related, and
will be of fundamental importance throughout this course. The first interpre-
tation can be related to the second in special cases. But this interpretation is
rather different in nature, and not so closely connected to the main theme of
the course.

Useful alternative expressions for Bn,k(w•) and Bn(v•, w•) can be given as
follows. For each partition of [n] into k disjoint non-empty blocks there are
k! different ordered partitions of [n] into k such blocks. Corresponding to each
composition (n1, . . . , nk) of n with k parts, there are

(
n

n1, . . . , nk

)

= n!

k∏

i=1

1

ni!

different ordered partitions (A1, . . . , Ak) of [n] with |Ai| = ni. So the definition
(1.7) of Bn,k(w•) as a sum of products over partitions of [n] with k blocks implies

Bn,k(w•) =
n!

k!

∑

(n1,...,nk)

k∏

i=1

wni

ni!
(1.9)

where the sum is over all compositions of n into k parts. In view of this formula,
it is natural to introduce the exponential generating functions associated with
the weight sequences v• and w•, say

v(θ) :=

∞∑

k=1

vk
θk

k!
and w(ξ) :=

∞∑

j=1

wj
ξj

j!

where the power series can either be assumed convergent in some neighborhood
of 0, or regarded formally. Then (1.9) reads

Bn,k(w•) =

[
ξn

n!

]
w(ξ)k

k!
(1.10)

and (1.6) yields the formula

Bn(v•, w•) =

[
ξn

n!

]

v(w(ξ)) (1.11)

known as the compositional or Faà di Bruno formula [407],[100, 3.4]. Thus the
combinatorial operation of composition of species of combinatorial structures
corresponds to the analytic operation of composition of exponential generating
functions. Note that (1.10) is the particular case of the compositional formula
(1.11) when v• = 1(• = k), meaning vj = 1 if j = k and 0 else, for some
1 ≤ k ≤ n. Another important case of (1.11) is the exponential formula [407]

Bn(x•, w•) =

[
ξn

n!

]

exw(ξ) (1.12)

where x• is the sequence whose kth term is xk. For positive integer x, this
exponential formula gives the number of ways to partition the set [n] into an
unspecified number of blocks, and assign each block of size j one of wj possible
structures and one of x possible colors.
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Exercises

1.2.1. (Number of Compositions) [406, p. 14] The number of compositions
of n with k parts is

(
n−1
k−1

)
, and the number of compositions of n is 2n−1.

1.2.2. (Stirling numbers of the second kind) Let

Sn,k := Bn,k(1•) = #{partitions of [n] into k blocks}, (1.13)

where the substitution w• = 1• means wn = 1n ≡ 1. The numbers Sn,k are
known as Stirling numbers of the second kind.

n Sn,1 Sn,2 Sn,3 Sn,4 Sn,5

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1

Show combinatorially that the Sn,k are the connection coefficients determined
by the identity of polynomials in x

xn =

n∑

k=1

Sn,k (x)k↓. (1.14)

1.2.3. (Stirling numbers of the first kind) Let

cn,k := Bn,k((• − 1)!) = #{permutations of [n] with k cycles} (1.15)

where the substitution w• = (• − 1)! means wn = (n− 1)!. Since (n− 1)! is the
number of cyclic permutations of [n], the second equality in (1.15) corresponds to
the representation of a permutation of [n] as the product of cyclic permutations
acting on the blocks of some partition of [n]. The cn,k are known as unsigned
Stirling numbers of the first kind.

n cn,1 cn,2 cn,3 cn,4 cn,5

1 1
2 1 1
3 2 3 1
4 6 11 6 1
5 24 50 35 10 1

Show combinatorially that

(x)n↑ =

n∑

k=1

cn,k x
k and (x)n↓ =

n∑

k=1

sn,kx
k (1.16)

where the sn,k = (−1)n−kcn,k = Bn,k((−1)•−1(•− 1)!) are the Stirling numbers
of the first kind. Check that the matrix of Stirling numbers of the first kind is
the inverse of the matrix of Stirling numbers of the second kind.
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1.2.4. (Matrix representation of composition) Jabotinsky [100]. Regard
the numbers Bn,k(w•) for fixed w• as an infinite matrix indexed by n, k ≥ 1. For
sequences v• and w• with exponential generating functions v(ξ) and w(ξ), let
(v ◦w)• denote the sequence whose exponential generating function is v(w(ξ)).
Then the matrix associated with the sequence (v ◦ w)• is the product of the
matrices associated with w• and v• respectively. In particular, for w• with w1 6=
0, and w−1

• the sequence whose exponential generating function w−1 is the
compositional inverse of w, so w−1(w(ξ)) = w(w−1(ξ)) = ξ, the matrix B(w−1

• )
is the matrix inverse of B(w•).

1.2.5. (Polynomials of binomial type). Given some fixed weight sequence
w•, define a sequence of polynomials Bn(x) by B0(x) := 1 and for n ≥ 1
Bn(x) := Bn(x•, w•) as in (1.12). The sequence of polynomials Bn(x) is of
binomial type, meaning that

n∑

j=0

(
n

j

)

Bj(x)Bn−j(y) = Bn(x+ y). (1.17)

Conversely, it is known [391, 390] that if Bn(x) is a sequence of polynomials of
binomial type such that Bn(x) is of degree n, then Bn(x) = Bn(x•, w•) as in
(1.12) for some weight sequence w•. Note that then wj = [x]Bj(x).

1.2.6. (Change of basis) Each sequence of polynomials of binomial type
Bn(x) with Bn of degree n defines a basis for the space of polynomials in x. The
matrix of connection coefficients involved in changing from one basis to another
can be described in a number of different ways [391]. For instance, given two
sequences of polynomials of binomial type, say Bn(x•, u•) and Bn(x•, v•), for
some weight sequences u• and v•, with v1 6= 0,

Bn(x•, u•) =

n∑

j=0

Bn,j(w•)Bj(x•, v•) (1.18)

where

w(ξ) := v−1(u(ξ)) is the unique solution of u(ξ) = v(w(ξ)).

for u and v the exponential generating functions associated with u• and v•.

1.2.7. (Generalized Stirling numbers) Toscano [415], Riordan [385, p. 46],
Charalambides and Singh [89], Hsu and Shiue [203]. For arbitrary distinct reals

α and β, show that the connection coefficients Sα,β
n,k defined by

(x)n↓α =
n∑

k=0

Sα,β
n,k (x)k↓β (1.19)

are

Sα,β
n,k = Bn,k((β − α)•−1↓α) =

n!

k!
[ξn](wα,β(ξ))k (1.20)
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where

wα,β(ξ) :=
∞∑

j=1

(β − α)j−1↓α
ξj

j!
=







β−1((1 + αξ)β/α − 1) if α 6= 0, β 6= 0
β−1(eβξ − 1) if α = 0
α−1 log(1 + αξ) if β = 0.

(1.21)

n Sα,β
n,1 Sα,β

n,2 Sα,β
n,3 Sα,β

n,4

1 1
2 (β − α) 1
3 (β − α)(β − 2α) 3(β − α) 1
4 (β − α)(β − 2α)(β − 3α) 4(β − α)(β − 2α) + 3(β − α)2 6(β − α) 1

Alternatively

Sα,β
n,k =

n∑

j=k

sn,jSj,kα
n−jβj−k (1.22)

where sn,j := S1,0
n,j is a Stirling number of the first kind and Sj,k := S0,1

j,k is a
Stirling number of the second kind.

1.3. Moments and cumulants

Let (Xt, t ≥ 0) be a real-valued Lévy process, that is a process with stationary
independent increments, started at X0 = 0, with sample paths which are cadlag
(right continuous with left limits) [40]. According to the exponential formula of
probability theory, i.e. the Lévy-Khintchine formula, if we assume that Xt has
a convergent moment generating function in some neighborhood of 0 then

E[eθXt ] = exp (tΨ(θ)) (1.23)

for a characteristic exponent Ψ which can be represented as

Ψ(θ) =

∞∑

n=1

κn
θn

n!
(1.24)

where κ1 = E(X1), κ2 is the variance of X1, and

κn =

∫

R

xnΛ(dx) (n = 3, 4, . . .). (1.25)

where Λ is the Lévy measure ofX1. Compare (1.23) with the exponential formula
of combinatorics (1.12) to see that the coefficient of θn/n! in (1.23) is

E(Xn
t ) = Bn(t•, κ•). (1.26)

Thus the moments of Xt define a sequence of polynomials in t which is the
sequence of polynomials of binomial type associated with the sequence κ• of
cumulants of X1. Two special cases are worthy of note.
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Gaussian case If X1 is standard Gaussian, the sequence of cumulants of X1

is κ• = 1(• = 2). It follows from (1.26) and the combinatorial meaning of Bn,k

that the nth moment µn of X1 is the number of matchings of [n], meaning the
number of partitions of [n] into n/2 pairs. Thus

E(Xn
t )/tn/2 =

{
0 if n is odd
1× 3× · · · (n− 1) if n is even.

(1.27)

Exercise 1.3.4 and Exercise 1.3.5 offer some generalizations.

Poisson case If X1 = N1 is Poisson with mean 1, the sequence of cumulants
is κ• = 1•. The positive integer moments of Nt are therefore given by

E(Nn
t ) =

∞∑

m=0

e−ttmmn

m!
=

n∑

k=1

Bn,k(1•)tk (n = 1, 2, . . .) (1.28)

where the Bn,k(1•) are the Stirling numbers of the second kind. These polyno-
mials in t are known as exponential polynomials. In particular, the nth moment
of the Poisson(1) distribution of N1 is the nth Bell number

Bn(1•, 1•) :=
n∑

k=1

Bn,k(1•) =

[
ξn

n!

]

exp(eξ − 1)

which is the number of partitions of [n]. The first six Bell numbers are

1, 2, 5, 15, 52, 203.

Now (1.28) for t = 1 gives the famous Dobiński formula [111]

Bn(1•, 1•) = e−1
∞∑

m=1

mn

m!
. (1.29)

As noted by Comtet [100], for each n the infinite sum in (1.29) can be evaluated
as the least integer greater than the sum of the first 2n terms.

Exercises

1.3.1. (Moments and Cumulants) [290, 100] Let X1 be any random variable
with a moment generating function which is convergent in some neighborhood of
0. Let µn := E(Xn

1 ) and let the cumulants κn of X1 be defined by the expansion
(1.24) of Ψ(θ) := log E[eθX1 ]. Show that the moment and cumulant sequences
µ• and κ• determine each other by the formulae

µn =

n∑

k=1

Bn,k(κ•) and κn =

n∑

k=1

(−1)k−1(k − 1)!Bn,k(µ•) (1.30)

for n = 1, 2, . . .. These formulae allow the first n cumulants of X to be defined
for anyX with E[|X |n] <∞, and many of the following exercises can be adapted
to this case.
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1.3.2. (Thiele’s recursion) [186, p. 144, (4.2)], [316, p.74, Th. 2], [107, Th.
2.3.6]. Two sequences µ• and κ• are related by (1.30) if and only if

µn =

n−1∑

i=0

(
n− 1

i

)

µiκn−i (n = 1, 2, . . .) (1.31)

where µ0 = 0.

1.3.3. (Moment polynomials) [77], [187], [319, p. 80], [146] [147, Prop. 2.1.4].
For t = 1, 2, . . . let St =

∑t
i=1 Xi where the Xi are independent copies of X

with moment sequence µ• and cumulant sequence κ•. Then

E[Sn
t ] =

n∑

k=1

Bn,k(κ•)tk =

n∑

k=1

Bn,k(µ•)(t)k↓. (1.32)

For n = 0, 1, . . ., and x real, let

µn(x, t) := E[(x + St)
n] =

n∑

k=0

(
n

k

)

xk
E[Sn−k

t ] (t = 0, 1, 2, . . .) (1.33)

where S0 := 0, and let

Hn(x, t) := µn(x,−t) (1.34)

where the right side is defined for each x by polynomial continuation of µn(x, t)
in (1.33). Then

(Hn(St, t), t = 0, 1, 2, . . .) is an (Ft)-martingale (1.35)

where Ft is the σ-field generated by (Su, u = 0, 1, . . . , t).

1.3.4. (Matchings and Stirling numbers). Check that for X1 standard
Gaussian (1.32) for even n = 2q gives

E(S2q
t ) = tqµ2q =

q
∑

k=1

B2q,k(µ•)(t)k↓. (1.36)

Compare with the definition (1.16) of Stirling numbers of the second kind to
see that

B2q,k(µ•) = µ2qBq,k(1•). (1.37)

Give a combinatorial proof of (1.37) and deduce more generally that

B2q,k(µ•x•/2) = µ2qB2q,k(x•) (1.38)

for an arbitrary sequence x•, where the nth term of µ•x•/2 is µqxq if n = 2q is
even, and 0 else.
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1.3.5. (Feynman diagrams) [214, Theorem 1.28] [297, Lemma 4.5]. Check the
following generalization of (1.27): if X1, . . . , Xn are centered jointly Gaussian
variables, then

E(X1 · · ·Xn) =
∑∏

k

E(Xik
Xjk

) (1.39)

where the sum is over all partitions of [n] into n/2 pairs {{ik, jk}, 1 ≤ k ≤ n/2}.
See [297] for applications to local times of Markov processes.

1.3.6. (Poisson moments)[353] Deduce (1.28) from (1.16) and the more ele-
mentary formula E[(Nt)n↓] = tn.

Notes and comments

Moment calculations for commutative and non-commutative Gaussian random
variables in terms of partitions, matchings etc. are described in [196]. There, for
instance, is a discussion of the fact that the Catalan numbers are the moments
of the semicircle law, which appears in Wigner’s limit theorem for the empirical
distribution of the eigenvalues of a random Hermitian matrix. Combinatorial
representations for the moments of superprocesses, in terms of expansions over
forests, were given by Dynkin [129], where a connection is made with similar cal-
culations arising in quantum field theory. This is further explained with pictures
in Etheridge [136]. These ideas are further applied in [139, 140, 388].

1.4. Random sums

Recall that if X , X1, X2, . . . are independent and identically distributed non-
negative integer valued random variables with probability generating function

GX (z) := E[zX ] =

∞∑

n=0

P(X = n)zn,

andK is a non-negative integer valued random variable independent ofX1, X2, . . .
with probability generating function GK , and SK := X1 + · · · + XK , then, by
conditioning on K, the probability generating function of SK is found to be the
composition of GK and GX :

GSK
(z) = GK(GX (z)). (1.40)

Comparison of this formula with the compositional formula (1.11) for Bn(v•, w•)
in terms of the exponential generating functions v(z) =

∑∞
n=0 vnz

n/n! and
w(ξ) =

∑∞
n=1 wnξ

n/n!, suggests the following construction. (It is convenient
here to allow v0 to be non-zero, which makes no difference in (1.11)). Let ξ > 0 be
such that v(w(ξ)) <∞. Let Pξ,v•,w•

be a probability distribution which makes
Xi independent and identically distributed with the power series distribution

Pξ,v•,w•
(X = n) =

wnξ
n

n!w(ξ)
for n = 1, 2, . . . , so GX(z) =

w(zξ)

w(ξ)
(1.41)
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and K independent of the Xi with the power series distribution

Pξ,v•,w•
(K = k) =

vkw(ξ)k

k!v(w(ξ))
for k = 0, 1, 2, . . . so GK(y) =

v(yw(ξ))

v(w(ξ))
. (1.42)

Let SK := X1 + · · ·+XK . Then from (1.40) and (1.11),

Pξ,v•,w•
(SK = n) =

ξn

n!v(w(ξ))
Bn(v•, w•) (1.43)

or

Bn(v•, w•) =
n!v(w(ξ))

ξn
Pξ,v•,w•

(SK = n) (1.44)

This probabilistic representation of Bn(v•, w•) was given in increasing generality
by Holst [201], Kolchin [260], and Kerov [240]. Rényi’s formula for the Bell
numbers Bn(1•, 1•) in Exercise 1.4.1 is a variant of (1.44) for v• = w• = 1•.
Holst [201] gave (1.44) for v• and w• with values in {0, 1}, when Bn(v•, w•) is
the number of partitions of [n] into some number of blocks k with vk = 1 and
each block of size j with wj = 1. As observed by Rényi and Holst, for suitable
v• and w• the probabilistic representation (1.44) allows large n asymptotics of
Bn(v•, w•) to be derived from local limit approximations to the distribution of
sums of independent random variables. This method is closely related to classical
saddle point approximations: see notes and comments at the end of Section 1.5.

Exercises

1.4.1. (Rényi’s formula for the Bell numbers)[382, p. 11]. Let (Nt, t ≥ 0)
and (Mt, t ≥ 0) be two independent standard Poisson processes. Then for n =
1, 2, . . . the number of partitions of [n] is

Bn(1•, 1•) = n! ee−1
P(NMe

= n). (1.45)

1.4.2. (Asymptotic formula for the Bell numbers)[288, 1.9]. Deduce from
(1.45) the asymptotic equivalence

Bn(1•, 1•) ∼ 1√
n
λ(n)n+1/2eλ(n)−n−1 as n→∞, (1.46)

where λ(n) log(λ(n)) = n.

1.5. Gibbs partitions

Suppose as in Section 1.2 that (V ◦W )([n]) is the set of all composite V ◦W -
structures built over [n], for some species of combinatorial structures V and W .
Let a composite structure be picked uniformly at random from (V ◦W )([n]), and
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let Πn denote the random partition of [n] generated by blocks of this random
composite structure. Recall that vj and wj denote the number of V - and W -
structures respectively on a set of j elements. Then for each particular partition
{A1, . . . , Ak} of [n] it is clear that

P(Πn = {A1, . . . , Ak}) = p(|A1|, . . . , |Ak|; v•, w•) (1.47)

where for each composition (n1, . . . , nk) of n

p(n1, . . . , nk; v•, w•) :=
vk

∏k
i=1 wni

Bn(v•, w•)
(1.48)

with the normalization constant Bn(v•, w•) :=
∑n

k=1 vkBn,k(w•) as in (1.6)
and (1.11), assumed strictly positive. More generally, given two non-negative
sequences v• := (v1, v2, . . .) and w• := (w1, w2, . . .), call Πn a Gibbs[n](v•, w•)
partition if the distribution of Πn on P[n] is given by (1.47)-(1.48). Note that
due to the normalization in (1.48), there is the following redundancy in the
parameterization of Gibbs[n](v•, w•) partitions: for arbitrary positive constants
a, b and c,

Gibbs[n](ab
•v•, c

•w•) = Gibbs[n](v•, bw•). (1.49)

That is to say, the Gibbs[n](v•, w•) distribution is unaffected by multiplying
v• by a constant factor a, or multiplying w• by a geometric factor c•, while
multiplying v• by the geometric factor b• is equivalent to multiplication of w•
by the constant factor b.

The block sizes in exchangeable order The following theorem provides a
fundamental representation of Gibbs partitions.

Theorem 1.2. (Kolchin’s representation of Gibbs partitions) [260], [240]
Let (N ex

n,1, . . . , N
ex
n,|Π|n) be the random composition of n defined by putting the

block sizes of a Gibbs[n](v•, w•) partition Πn in an exchangeable random order,
meaning that given k blocks, the order of the blocks is randomized by a uniform
random permutation of [k]. Then

(N ex
n,1, . . . , N

ex
n,|Π|n)

d
= (X1, . . . , XK) under Pξ,v•,w•

given X1 + · · ·+XK = n
(1.50)

where Pξ,v•,w•
governs independent and identically distributed random variables

X1, X2, . . . with E(zXi) = w(zξ)/w(ξ) and K is independent of these variables
with E(yK) = v(yw(ξ))/v(w(ξ)) as in (1.41) and (1.42).

Proof. It is easily seen that the manipulation of sums leading to (1.9) can be
interpreted probabilistically as follows:

P((N ex
n,1, . . . , N

ex
n,|Π|n) = (n1, . . . , nk)) =

n! vk

k!Bn(v•, w•)

k∏

i=1

wni

ni!
(1.51)

for all compositions (n1, . . . , nk) of n. Compare with formula (1.43) and the
conclusion is evident. �
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Note that for fixed v• and w•, the Pξ,v•,w•
distribution of the random integer

composition (X1, . . . , XK) depends on the parameter ξ, but the Pξ,v•,w•
condi-

tional distribution of (X1, . . . , XK) given SK = n does not. In statistical terms,
with v• and w• regarded as fixed and known, the sum SK is a sufficient statistic
for ξ. Note also that for any fixed n, the distribution of Πn depends only on
the weights vj and wj for j ≤ n, so the condition v(w(ξ)) < ∞ can always be
arranged by setting vj = wj = 0 for j > n.

The partition of n Recall that the random partition of n induced by a
random partition Πn of [n] is encoded by the random vector (|Πn|j , 1 ≤ j ≤ n)
where |Πn|j is the number of blocks of Πn of size j. Using (1.8), the distribution
of the partition of n induced by a Gibbs[n](v•, w•) partition Πn is given by

P(|Πn|j = mj , 1 ≤ j ≤ n) =
n! vk

Bn(v•, w•)

n∏

j=1

(
wj

j!

)mj 1

mj !
(1.52)

where
∑n

j=1 mj = k and
∑n

j=1 jmj = n. In particular, for a Gibbs[n](1
•, w•)

partition

(|Πn|j , 1 ≤ j ≤ n)
d
=



Mj , 1 ≤ j ≤ n

∣
∣
∣
∣
∣
∣

n∑

j=1

jMj = n



 (1.53)

where the Mj are independent Poisson variables with parameters (wjξ
j/j!) for

arbitrary ξ > 0. This can also be read from (1.50). For v• = 1• the random vari-
able K has Poisson (w(ξ)) distribution. Hence, by the classical Poissonization of
the multinomial distribution, the number Mj of i such that i ≤ K and Xi = j
has a Poisson (wjξ

j/j!) distribution, and SK =
∑

j jMj is compound Poisson.
See also Exercise 1.5.1 . Arratia, Barbour and Tavaré [27] make the identity in
distribution (1.53) the starting point for a detailed analysis of the asymptotic
behaviour of the counts (|Πn|j , 1 ≤ j ≤ n) of a Gibbs[n](1

•, w•) partition as
n→∞ for w• in the logarithmic class, meaning that jwj/j!→ θ as j →∞ for
some θ > 0. One of their main results is presented later in Chapter 2.

Physical interpretation Suppose that n particles labeled by elements of the
set [n] are partitioned into clusters in such a way that each particle belongs to a
unique cluster. Formally, the collection of clusters is represented by a partition
of [n]. Suppose further that each cluster of size j can be in any one of wj

different internal states for some sequence of non-negative integers w• = (wj).
Let the configuration of the system of n particles be the partition of the set of n
particles into clusters, together with the assignment of an internal state to each
cluster. For each partition π of [n] with k blocks of sizes n1, . . . , nk, there are
∏k

i=1 wni
different configurations with that partition π. So Bn,k(w•) gives the

number of configurations with k clusters. For v• = 1(• = k) the sequence with
kth component 1 and all other components 0, the Gibbs(v•, w•) partition of [n]
corresponds to assuming that all configurations with k clusters are equally likely.
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This distribution on the set Pk
[n] of partitions of [n] with k blocks, is known in

the physics literature as a microcanonical Gibbs state. It may also be called here
the Gibbs(w•) distribution on Pk

[n]. A general weight sequence v• randomizes
k, to allow any probabilistic mixture over k of these microcanonical states. For
fixed w• and n, the set of all Gibbs(v•, w•) distributions on partitions of [n], as
v• varies, is an (n − 1)-dimensional simplex whose set of extreme points is the
collection of n different microcanonical states. Whittle [432, 433, 434] showed
how the Gibbs distribution (1.52) on partitions of n arises as the reversible
equilibrium distribution in a Markov process with state space Pn, where parts of
various sizes can split or merge at appropriate rates. In this setting, the Poisson
variables Mj represent equilibrium counts in a corresponding unconstrained
system where the total size is also subject to variation. See also [123] for further
studies of equilibrium models for processes of coagulation and fragmentation.

Example 1.3. Uniform random set partitions. Let Πn be a uniformly
distributed random partition of [n]. Then Πn is a random (V ◦ V )-structure
on [n] for V the species of non-empty sets. Thus Πn has the Gibbs(1•, 1•)
distribution on P[n]. Note that P(|Πn| = k) = Bn,k(1•)/Bn(1•, 1•) but there is
no simple formula, either for the Stirling numbers of the second kind Bn,k(1•),
or for the Bell numbers Bn(1•, 1•). Exercise 1.5.5 gives a normal approximation
for |Πn|. The independent and identically distributed variables Xi in Kolchin’s
representation are Poisson variables conditioned not to be 0. See [159, 174, 424]
and papers cited there for further probabilistic analysis of Πn for large n.

Example 1.4. Random permutations. Let W (F ) be the set of all permu-
tations of F with a single cycle. Then wn = (n− 1)!, so

w(ξ) =

∞∑

n=1

(n− 1)!
ξn

n!
= − log(1− ξ)

and

eθw(ξ) = e−θ log(1−ξ) = (1− ξ)−θ =

∞∑

n=0

(θ)n↑1
ξn

n!
.

So

Bn(1•, θ(• − 1)!) = (θ)n↑1. (1.54)

In particular, for θ = 1, Bn(1•, (•−1)!) = (1)n↑1 = n! is just the number of per-
mutations of [n]. Since each permutation corresponds bijectively to a partition
of [n] and an assignment of a cycle to each block of the partition, the random
partition Πn of [n] generated by the cycles of a uniform random permutation of
[n] is a Gibbs[n](1

•, (•− 1)!) partition. While there is no simple formula for the
unsigned Stirling numbers Bn,k((• − 1)!) which determine the distribution of
|Πn|, asymptotic normality of this distribution is easily shown ( Exercise 1.5.4
). Similarly, for θ = 1, 2, . . . the number in (1.54) is the number of different ways
to pick a permutation of [n] and assign each cycle of the permutation one of
θ possible colors. If each of these ways is assumed equally likely, the resulting
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random partition of [n] is a Gibbs[n](1
•, θ(• − 1)!) partition. For any θ > 0, the

Xi in Kolchin’s representation have logarithmic series distribution

pj =
1

− log(1− b)
bj

j
(j = 1, 2, . . .)

where 0 < b < 1 is a positive parameter. This example is developed further in
Chapter 3.

Example 1.5. Cutting a rooted random segment. Suppose that the inter-
nal state of a cluster C of size j is one of wj = j! linear orderings of the set C.
Identify each cluster as a directed graph in which there is a directed edge from
a to b if and only if a is the immediate predecessor of b in the linear ordering.
Call such a graph a rooted segment. Then Bn,k(•!) is the number of directed

4 2 3 651

4 2 3 651

4 2 3 651

4 2 3 651

4 2 3 651

4 2 3 651

Figure 1.1: Cutting a rooted random segment

graphs labeled by [n] with k such segments as its connected components. In the
previous two examples, with wj = 1j and wj = (j − 1)!, the Bn,k(w•) were
Stirling numbers for which there is no simple formula. Since j! = (β − α)j−1↓α

for α = −1 and β = 1, formula (1.20) shows that the Bell matrix Bn,k(•!) is the
array of generalized Stirling numbers

Bn,k(•!) = S−1,1
n,k =

(
n− 1

k − 1

)
n!

k!
(1.55)

known as Lah numbers [100, p. 135], though these numbers were already con-
sidered by Toscano [415]. The Gibbs model in this instance is a variation of
Flory’s model for a linear polymerization process. It is easily shown in this
case that a sequence of random partitions (Πn,k, 1 ≤ k ≤ n) such that Πn,k

has the microcanonical Gibbs distribution on clusters with k components may
be obtained as follows. Let G1 be a uniformly distributed random rooted seg-
ment labeled by [n]. Let Gk be derived from G1 by deletion of a set of k − 1
edges picked uniformly at random from the set of n − 1 edges of G1, and let
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Πn,k be the partition induced by the components of Gk . If the n − 1 edges of
G1 are deleted sequentially, one by one, cf. Figure 1.1, the random sequence
(Πn,1,Πn,2, . . . ,Πn,n) is a fragmenting sequence, meaning that Πn,j is coarser
than Πn,k for j < k, such that Πn,k has the microcanonical Gibbs distribution
on Pk

[n] derived from the weight sequence wj = j!. The time-reversed sequence

(Πn,n,Πn,n−1, . . . ,Πn,1) is then a discrete time Markov chain governed by the
rules of Kingman’s coalescent [30, 253]: conditionally given Πk with k compo-
nents, Πk−1 is equally likely to be any one of the

(
k
2

)
different partitions of [n]

obtained by merging two of the components of Πk. Equivalently, the sequence
(Πn,1,Πn,2, . . . ,Πn,n) has uniform distribution over the set Rn of all fragment-
ing sequences of partitions of [n] such that the kth term of the sequence has k
components. The consequent enumeration #Rn = n!(n−1)!/2n−1 was found by
Erdös et al. [135]. That Πn,k determined by this model has the microcanonical
Gibbs(•!) distribution on Pk

[n] was shown by Bayewitz et. al. [30] and Kingman

[253]. See also Chapter 5regarding Kingman’s coalescent with continuous time
parameter.

Example 1.6. Cutting a rooted random tree. Suppose the internal state
of a cluster C of size j is one of the wj = jj−1 rooted trees labeled by C. Then
Bn,k(••−1) is the number of forests of k rooted trees labeled [n]. This time again
there is a simple construction of the microcanonical Gibbs states by sequential
deletion of random edges, hence a simple formula for Bn,k.
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Figure 1.2: Cutting a rooted random tree with 5 edges

By a reprise of the previous argument [356],

Bn,k(••−1) =

(
n

k

)

knn−k−1 (1.56)

which is an equivalent of Cayley’s formula knn−k−1 for the number of rooted
trees labeled by [n] whose set of roots is [k]. The Gibbs model in this instance
corresponds to assuming that all forests of k rooted trees labeled by [n] are
equally likely. This model turns up naturally in the theory of random graphs
and has been studied and applied in several other contexts. The coalescent
obtained by reversing the process of deletion of edges is the additive coalescent
studied in [356]. The structure of large random trees is one of the main themes
of this course, to be taken up in Chapter 6. This leads in Chapter 7 to the
notion of continuum trees embedded in Brownian paths, then in Chapter 10 to
a representation in terms of continuum trees of the large n asymptotics of the
additive coalescent.
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Gibbs fragmentations Let p(λ | k) denote the probability assigned to a par-
tition λ of [n] by the microcanonical Gibbs distribution on Pk

[n] with weights w•,

that is p(λ | k) = 0 unless λ is a partition of of [n] into k blocks of sizes say
ni(λ), 1 ≤ i ≤ k, in which case

p(λ | k) =
1

Bn,k(w•)

k∏

i=1

wni(λ) (1.57)

The simple evaluation of Bn,k(w•) in the two previous examples, for wn = (n−
1)! and wn = nn−1 respectively, was related to a simple sequential construction
of a Gibbs(w•) fragmentation process, that is a sequence of random partitions

(Πn,1,Πn,2, . . . ,Πn,n)

such that Πn,k has the Gibbs(w•) distribution on Pk
[n], and for each 1 ≤ k ≤

n − 1 the partition Πn,k is a refinement of Πn,k−1 obtained by splitting some
block Πn,k−1 in two. This leads to the question of which weight sequences
(w1, . . . , wn−1) are such that there exists a Gibbs(w•) fragmentation process. Is
there exists such a process, then one can also be constructed as a Markov chain
with some transition matrix P (π, ν) indexed by P[n] such that P (π, ν) > 0 only
if ν is a refinement of π, and

∑

ν∈P[n]

p(π|k − 1)P (π, ν) = p(ν | k) (1 ≤ k ≤ n− 1). (1.58)

Such a transition matrix P (π, ν) corresponds to a splitting rule, which for each
1 ≤ k ≤ n − 1, and each partition π of [n] into k − 1 components, describes
the probability that π splits into a partition ν of [n] into k components. Given
that Πk−1 = {A′

1, . . . , A
′
k−1} say, the only possible values of Πk are partitions

{A1, . . . , Ak} such that two of the Aj , say A1 and A2, form a partition of one
of the A′

i, and the remaining Aj are identical to the remaining A′
i. The initial

splitting rule starting with π1 = {1, . . . , n} is described by the Gibbs formula
p(· | 2) determined by the weight sequence (w1, . . . , wn−1). The simplest way to
continue is to use the following
Recursive Gibbs Rule: whenever a component is split, given that the component
currently has size m, it is split according to the Gibbs formula p(n1, n2 | 2) for
n1 and n2 with n1 + n2 = n.

To complete the description of a splitting rule, it is also necessary to specify
for each partition πk−1 = {A′

1, . . . , A
′
k−1} the probability that the next com-

ponent to be split is A′
i, for each 1 ≤ i ≤ k − 1. Here the simplest possible

assumption seems to be the following:
Linear Selection Rule: Given πk−1 = {A′

1, . . . , A
′
k−1}, split A′

i with probability
proportional to #Ai − 1.

While this selection rule is somewhat arbitrary, it is natural to investigate its
implications for the following reasons. Firstly, components of size 1 cannot be
split, so the probability of picking a component to split must depend on size. This
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probability must be 0 for a component of size 1, and 1 for a component of size
n− k+ 2. The simplest way to achieve this is by linear interpolation. Secondly,
both the segment splitting model and the tree splitting model described in
Examples 1.5 and 1.6 follow this rule. In each of these examples a component
of size m is derived from a graph component with m − 1 edges, so the linear
selection rule corresponds to picking an edge uniformly at random from the
set of all edges in the random graph whose components define Πk−1. Given
two natural combinatorial examples with the same selection rule, it is natural
ask what other models there might be following the same rule. At the level of
random partitions of [n], this question is answered by the following proposition.
It also seems reasonable to expect that the conclusions of the proposition will
remain valid under weaker assumptions on the selection rule.

Proposition 1.7. Fix n ≥ 4, let (wj , 1 ≤ j ≤ n − 1) be a sequence of pos-
itive weights with with w1 = 1, and let let (Πk, 1 ≤ k ≤ n) be a P[n]-valued
fragmentation process defined by the recursive Gibbs splitting rule derived from
these weights, with the linear selection rule. Then the following statements are
equivalent:

(i) For each 1 ≤ k ≤ n the random partition Πk has the Gibbs distribution
on Pk

[n] derived from (wj , 1 ≤ j ≤ n− 1);

(ii) The weight sequence is of the form

wj =

j
∏

m=2

(mc+ jb) (1.59)

for every 1 ≤ j ≤ n− 1 for some constants c and b.

(iii) For each 2 ≤ k ≤ n, given that Πk has k components of sizes n1, · · · , nk,
the partition Πk−1 is derived from Πk by merging the ith and jth of these com-
ponents with probability proportional to 2c+ b(ni +nj) for some constants c and
b.

The constants c and b appearing in (ii) and (iii) are only unique up to con-
stant factors. To be more precise, if either of conditions (ii) or (iii) holds for
some (b, c), then so does the other condition with the same (b, c). Hendriks et
al. [195] showed that the construction (iii) of a P[n]-valued coalescent process
(Πn,Πn−1, . . . ,Π1) corresponds to the discrete skeleton of the continuous time
Marcus-Lushnikov model with state space Pn and merger rate 2c + b(x + y)
between every pair of components of sizes (x, y), and that the distribution of
Πk is then determined as in (i) and (ii). Note the implication of Proposition 1.7
that if (Πn,Πn−1, . . . ,Π1) is so constructed as a coalescent process, then the
reversed process (Π1,Π2, . . . ,Πn) is a Gibbs fragmentation process governed by
the recursive Gibbs splitting rule with weights (wj) as in (ii) and linear selection
probabilities.

Lying behind Proposition 1.7 is the following evaluation of the associated
Bell polynomial:
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Lemma 1.8. For wj =
∏j

m=2(mc+ jb), j = 2, 3, . . .

Bn,k(1, w2, w3, . . .) =

(
n− 1

k − 1

) n∏

m=k+1

(mc+ nb) (1 ≤ k ≤ n). (1.60)

This evaluation can be read from [195, (19)-(21)]. The full proof of Proposi-
tion 1.7 will be given elsewhere.

Example 1.9. Random mappings. Let Mn be a uniformly distributed ran-
dom mapping from [n] to [n], meaning that all nn such maps are equally likely.
Let Πn the partition of [n] induced by the tree components of the usual func-
tional digraph of Mn. Then Πn is the random partition of [n] associated a
random (V ◦W )-structure on [n] for V the species of permutations and W the
species of rooted labeled trees. So Πn has the Gibbs(•!, ••−1) distribution on
P[n]. Let Π̂n denote the partition of [n] induced by the connected components

of the usual functional digraph of Mn, so each block of Π̂n is the union of tree
components in Πn attached to some cycle of Mn. Then Π̂n is the random parti-
tion of [n] derived from a random (V ◦W )-structure on [n] for V the species of
non-empty sets and W the species of mappings whose digraphs are connected.
So Π̂n has a Gibbs(1•, w•) distribution on P[n] where wj is the number of map-
pings on [j] whose digraphs are connected. Classify by the number c of cyclic
points of the mapping on [j], and use (1.56), to see that

wj =

j
∑

c=1

(c− 1)!

(
j

c

)

cjj−c−1 = P(Nj < j)(j − 1)!ej ∼ 1
2 (j − 1)!ej as j →∞

(1.61)
where Nj is a Poisson(j) variable. This example is further developed in Chapter
9.

Exercises

1.5.1. (Compound Poisson) Stam [404]. Let ∆1, ∆2, . . . denote the successive
jumps of a non-negative integer valued compound Poisson process (X(t), t ≥ 0)
with jump intensities λj , j = 1, 2, . . ., with λ :=

∑

j λj ∈ (0,∞), and let N(t)

be the number of jumps of X in [0, t], so that Xt =
∑Nt

i=1 ∆i. The ∆i are
independent and identically distributed with distribution P (∆i = j) = λj/λ,
independent of N(t), hence

P(X(t) = n |N(t) = k) = λk∗
n /λk

where (λk∗
n ) is the k-fold convolution of the sequence (λn) with itself, with the

convention λ0∗
n = 1(n = 0). So for all t ≥ 0 and n = 0, 1, 2, . . .

P[X(t) = n] = e−λt
n∑

k=0

λk∗
n

tk

k!
=
e−λt

n!
Bn(t•, w•) for wj := j!λj . (1.62)



34 Jim Pitman

Moreover for each t > 0 and each n = 1, 2, . . .,

(∆1, . . . ,∆N(t)) given X(t) = n (1.63)

has the exchangeable Gibbs distribution on compositions of n defined by (1.51)
for vk ≡ 1 and wj := tj!λj . Let Nj(t) be the number of i ≤ N(t) such that
∆i = j. Then the Nj(t) are independent Poisson variables with means λjt.
The random partition of n derived from the random composition (1.63) of n is
identical to

(Nj(t), 1 ≤ j ≤ n) given

∞∑

j=1

jNj(t) = n, (1.64)

and the distribution of (Nj(t), 1 ≤ j ≤ n) remains the same with conditioning
on
∑n

j=1 jNj(t) = n instead of
∑∞

j=1 jNj(t) = n.

1.5.2. (Distribution of the number of blocks) For a Gibbs(1•, w•) partition
of [n],

P(|Πn| = k) =
Bn,k(w•)

Bn(w•)
=
n!

k!

(w(ξ))k

ξnBn(w•)
Pξ,w•

(Sk = n) (1.65)

for 1 ≤ k ≤ n, where Pξ,w•
governs Sk as the sum of k independent variables

Xi with the power series distribution (1.41), assuming that ξ > 0 is such that
w(ξ) < ∞, and the complete Bell polynomial Bn(1•, w•) :=

∑n
k=1 Bn,k(w•) is

determined via the exponential formula (1.12). Deduce from (1.65) the formula
[99]

E(|Πn|) =
1

Bn(1•, w•)

[
ξn

n!

]

w(ξ)ew(ξ). (1.66)

Kolchin [260, §1.6] and other authors [317], [99] have exploited the representation
(1.65) to deduce asymptotic normality of |Πn| for large n, under appropriate
assumptions on w•, from the asymptotic normality of the Pξ,w•

asymptotic
distribution of Sk for large k and well chosen ξ, which is typically determined
by a local limit theorem. See also [27] for similar results obtained by other
techniques.

1.5.3. (Normal approximation for combinatorial sequences: Harper’s
method)

(i) (Lévy) Let (a0, a1, . . . an) be a sequence of nonnegative real numbers, with
generating polynomial A(z) :=

∑n
k=0 akz

k, z ∈ C, such that A(1) > 0.
Show that A has only real zeros if and only if there exist independent
Bernoulli trials X1, X2, . . . , Xn with P (Xi = 1) = pi ∈ (0, 1], 1 ≤ i ≤ n,
such that P (X1 +X2 + · · ·+Xn = k) = ak/A(1), ∀ 0 ≤ k ≤ n. Then the
roots αi of A are related to the pi by αi = −(1− pi)/pi.

(ii) (Harper, [190]) Let {an,k}nk=0 be a sequence of nonnegative real numbers.
Suppose that Hn(z) :=

∑n
k=0 an,kz

k, z ∈ C with Hn(1) > 0 has only real
roots, say αn,i = −(1− pn,i)/pn,i. Suppose Kn is a random variable with
distribution

Pn(k) := P (Kn = k) = an,k/Hn(1) (0 ≤ k ≤ n).
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Then
Kn − µn

σn

d→ N(0, 1) if and only if σn →∞,

where µn := E (Kn) =
∑n

i=1 pn,i, and σ2
n := Var (Kn) =

∑n
i=1 pn,i(1 −

pn,i). See [352] and papers cited there for numerous applications. Two
basic examples are provided by the next two exercises. Harper [190] also
proved a local limit theorem for such a sequence provided the central limit
theorem holds. Hence both kinds of Stirling numbers admit local normal
approximations.

1.5.4. (Number of cycles of a uniform random permutation) Let an,k =
Bn,k ((• − 1)!) be the Stirling numbers of the first kind, note from (1.14) that

Hn(z) = z(z + 1)(z + 2) · · · (z + n− 1)

Deduce that if Kn is the number of cycles from a uniformly chosen permutation
of [n] then the Central Limit Theorem holds, E (Kn)− logn = O(1), Var (Kn) ∼
logn, and hence

Kn − logn√
logn

d→ N(0, 1).

1.5.5. (Number of blocks of a uniform random partition) Let an,k =
Bn,k (1•) be the Stirling numbers of the second kind. Let Kn be the number of
blocks of a uniformly chosen partition of [n].

(a) Show that Bn+1,k(1•) = Bn,k−1(1•) + k Bn,k(1•).
(b) Using (a) deduce that

ezHn+1(z) = z
d

dz
(ezHn(z)) .

(c) Apply induction to show that for all n ≥ 1, Hn has only real zeros.
(d) Use the recursion in (a) again to show

µn := E [Kn] =
Bn+1

Bn
− 1, and

σ2
n := Var (Kn) =

Bn+2

Bn
−
(
Bn+1

Bn

)2

− 1,

where Bn := Hn(1) = Bn(1•, 1•) is the nth Bell number.
(e) Deduce the Central Limit Theorem.

1.5.6. (Problem: existence of Gibbs fragmentations) For given w•, de-
scribe the set of n for which such a fragmentation process exists. In particular,
for which w• does such a process exist for all n? Even the following particular
case for wj = (j − 1)! does not seem easy to resolve:



1.5.7. (Problem: cyclic fragmentations) Does there exist for each n a Pn-
valued fragmentation process (Πn,k, 1 ≤ k ≤ n) such that Πn,k is distributed
like the partition generated by cycles of a uniform random permutation of [n]
conditioned to have k cycles?

1.5.8. Show that for w• = 1•, for all sufficiently large n there does not exist a
Gibbs(w•) fragmentation process of [n]. [Hint: Πn,k has the same distribution
as the partition generated by n independent random variables with uniform
distribution on [k], conditioned on the event that all k values appear].

1.5.9. (Problem) For exactly which n does there exist a Gibbs(1•) fragmen-
tation process of [n]? What is the largest such n?

Notes and comments

See also Bender [31, 32] and Canfield [83] for more general analytic methods
to obtain central and local limit theorems for combinatorial sequences. Canfield
[83] gives nice sufficient conditions for central and local limit theorems for the
coefficients of polynomials of binomial type. Similar results may also be derived
using classical analytic techniques like the saddle point approximation [333] and
Hayman’s criterion [194].

36
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Chapter 2

Exchangeable random

partitions

This chapter is a review of basic ideas from Kingman’s theory of exchangeable
random partitions [253], as further developed in [14, 347, 350]. This theory
turns out to be of interest in a number of contexts, for instance in the study of
population genetics, Bayesian statistics, and models for processes of coagulation
and fragmentation. The chapter is arranged as follows.

2.1. Finite partitions This section introduces the exchangeable partition
probability function (EPPF) associated with an exchangeable random par-
tition Πn of the set [n] := {1, . . . , n}. This symmetric function of composi-
tions (n1, · · · , nk) of n gives the probability that Πn equals any particular
partition of [n] into k subsets of sizes n1, n2, . . .,nk, where ni ≥ 1 and
Σini = n. Basic examples are provided by Gibbs partitions for which the
EPPF assumes a product form.

2.2. Infinite partitions A random partition Π∞ of the set N of positive in-
tegers is called exchangeable if its restriction Πn to [n] is exchangeable
for every n. The distribution of Π∞ is determined by an EPPF which
is a function of compositions of positive integers subject to an addition
rule expressing the consistency of the partitions Πn as n varies. King-
man [250] established a one-to-one correspondence between distributions
of such exchangeable random partitions of N and distributions for a se-
quence of nonnegative random variables P ↓

1 , P
↓
2 , . . . with P ↓

1 ≥ P ↓
2 ≥ . . .

and
∑

k P
↓
k ≤ 1. In Kingman’s paintbox representation, the blocks of Π∞

are the equivalence classes generated by the random equivalence relation
∼ on positive integers, constructed as follows from ranked frequencies (P ↓

k )
and a sequence of independent random variables Ui with uniform distri-
bution on [0, 1], where (Ui) and (P ↓

k ) are independent: i ∼ j iff either
i = j or both Ui and Uj fall in Ik for some k, where the Ik are some dis-
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joint random sub-intervals of [0, 1] of lengths P ↓
k . Each P ↓

k with P ↓
k > 0 is

then the asymptotic frequency of some corresponding block of Π∞, and if
∑

k P
↓
k < 1 there is also a remaining subset of N with asymptotic frequency

1−∑k P
↓
k , each of whose elements is a singleton block of Π∞.

2.3. Structural distributions A basic property of every exchangeable ran-
dom partition Π∞ of N is that each block of Π∞ has a limiting relative
frequency almost surely. The structural distribution associated with Π∞
is the probability distribution on [0, 1] of the asymptotic frequency of the
block of Π∞ that contains a particular positive integer, say 1. In terms
of Kingman’s representation, this is the distribution of a size-biased pick
from the associated sequence of random frequencies (P ↓

k ). Many impor-
tant features of exchangeable random partitions and associated random
discrete distributions, such as the mean number of frequencies in a given
interval, can be expressed in terms of the structural distribution.

2.4. Convergence Convergence in distribution of a sequence of exchange-
able random partitions Πn of [n] as n → ∞ can be expressed in several
equivalent ways: in terms of induced partitions of [m] for fixed m, in terms
of ranked or size-biased frequencies, and in terms of an associated process
with exchangeable increments.

2.5. Limits of Gibbs partitions Limits of Gibbs partitions lead to exchange-
able random partitions of N with ranked frequencies (P ↓

i , i ≥ 1) distributed
according to some mixture over s of the conditional distribution of ranked
jumps of some subordinator (Tu, 0 ≤ u ≤ s) given Ts = 1. Two important
special cases arise when T is a gamma process, or a stable subordinator of
index α ∈ (0, 1). The study of such limit distributions is pursued further
in Chapter 4.

2.1. Finite partitions

A random partition Πn of [n] is called exchangeable if its distribution is invari-
ant under the natural action on partitions of [n] by the symmetric group of
permutations of [n]. Equivalently, for each partition {A1, . . . , Ak} of [n],

P(Πn = {A1, . . . , Ak}) = p(|A1|, . . . , |Ak|)

for some symmetric function p of compositions (n1, . . . , nk) of n. This function
p is called the exchangeable partition probability function (EPPF) of Πn. For
instance, given two positive sequences v• = (v1, v2, . . .) and w• = (w1, w2, . . .),
the formula

p(n1, . . . , nk; v•, w•) :=
vk

∏k
i=1 wni

Bn(v•, w•)
(2.1)

where Bn(v•, w•) is a normalization constant, defines the EPPF of a Gibbs
partition determined by v• and w• as discussed in Section 1.5 . In most appli-
cations, it is the sizes of blocks of an exchangeable random partition Πn which
are of primary interest. The next three paragraphs present three different ways



40 Jim Pitman

to encode these block sizes as a random composition of [n], and show how the
distributions of these encodings are determined by the EPPF p.

Decreasing order Let (N↓
n,1, . . . , N

↓
n,Kn

) denote the partition of n induced
by Πn, that is the random composition of n defined by the sizes of blocks of
Πn with blocks in decreasing order of size. Then for each partition of n with
component sizes (ni) in decreasing order,

P((N↓
n,1, . . . , N

↓
n,Kn

) = (n1, . . . , nk)) =
n!

∏n
i=1(i!)mimi!

p(n1, . . . , nk) (2.2)

where

mi :=

k∑

`=1

1(n` = i) (2.3)

is the number of components of size i in the given partition of n, and the
combinatorial factor is the number of partitions of [n] corresponding to the
given partition of n. Let |Πn|j denote the number of blocks of Πn of size j.
Due to the bijection between partitions of n and possible vectors of counts
(mi, 1 ≤ i ≤ n), for (mi) a vector of non-negative integers subject to

∑

imi = k
and

∑

i imi = n, the probability

P(|Πn|i = mi for 1 ≤ i ≤ n), (2.4)

that is the probability that Πn has mi blocks of size i for each 1 ≤ i ≤ n, is
identical to the the probability in (2.2) for (n1, . . . , nk) the decreasing sequence
subject to (2.3).

Size-biased order of least elements Let (Ñn,1, . . . , Ñn,Kn
) denote the ran-

dom composition of n defined by the sizes of blocks of Πn with blocks in order
of appearance. Then for all compositions (n1, . . . , nk) of n into k parts,

P((Ñn,1, . . . , Ñn,Kn
) = (n1, . . . , nk)) (2.5)

=
n!

nk(nk + nk−1) · · · (nk + · · ·+ n1)
∏k

i=1(ni − 1)!
p(n1, . . . , nk) (2.6)

where the combinatorial factor is the number of partitions of [n] with the pre-
scribed block sizes in order of appearance [115]. Note that (Ñn,1, . . . , Ñn,Kn

) is

a size-biased random permutation of (N ↓
n,1, . . . , N

↓
n,Kn

), meaning that given the
decreasing rearrangement, the blocks appear in the random order in which they
would be discovered in a process of simple random sampling without replace-
ment.

Exchangeable random order It is often convenient to consider the block
sizes of a random partition of [n] in exchangeable random order, meaning that
conditionally given Πn = {A1, . . . , Ak}, random variables (N ex

n,1, . . . , N
ex
n,k) are
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constructed as N ex
n,i = |Aσ(i)| where σ is a uniformly distributed random per-

mutation of [k]. Then

P((Nex
n,1, . . . , N

ex
n,Kn

) = (n1, . . . , nk)) =

(
n

n1, . . . , nk

)
1

k!
p(n1, . . . , nk). (2.7)

To see this, recall that p(n1, . . . , nk) is the probability of any particular partition
of [n] with block sizes (n1, . . . , nk) in some order. Dividing by k! gives the
probability of obtaining a particular ordered partition of [n] after randomizing
the order of the blocks, and the multinomial coefficent is the number of such
ordered partitions consistent with (n1, . . . , nk).

Partitions generated by sampling without replacement. Let

Π(x1, . . . , xn)

denote the partition of [n] generated by a sequence x1, . . . , xn. That is the parti-
tion whose blocks are the equivalence classes for the random equivalence relation
i ∼ j iff xi = xj . If (X1, . . . , Xn) is a sequence of exchangeable random variables,
then Π(X1, . . . , Xn) is an exchangeable random partition of [n]. Moreover, the
most general possible distribution of an exchangeable random partition of [n]
is obtained this way. To be more precise, there is the following basic result. See
Figure 2.1 for a less formal statement.

Proposition 2.1. [14] Let Πn be an exchangeable random partition of [n], and

let πn := (N↓
n,i, 1 ≤ i ≤ Kn) be the corresponding partition of n defined by

the decreasing rearrangement of block sizes of Πn. Then the joint law of Πn

and πn is that of Π(X1, . . . , Xn) and πn, where conditionally given πn the se-
quence (X1, . . . , Xn) is defined by simple random sampling without replacement

from a list x1, . . . , xn with N↓
n,i values equal to i for each 1 ≤ i ≤ Kn, say

(X1, . . . , Xn) = (xσ(1), . . . , xσ(n)) where σ is a uniform random permutation of
[n].

Exercises

2.1.1. Prove Proposition 2.1.

2.1.2. Corresponding to each probability distribution Q on the set Pn of par-
titions of n, there is a unique distribution of an exchangeable partition Πn of
[n] which induces a partition πn of n with distribution Q: given πn, let Πn have
uniform distribution on the set of all partitions of [n] whose block sizes are
consistent with πn.

2.1.3. A function p defined on the set of compositions of n is the EPPF of
some exchangeable random partition Πn of [n] if and only if p is non-negative,
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Block sizes in decreasing order
of size : (5, 3, 2, 1)
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Block sizes in the size-biased
order of the least element :
(3, 2, 5, 1)

Figure 2.1: A random partition Π11 of [11]. To state Proposition 2.1 less for-
mally: if Πn is exchangeable, then given that the block sizes of Πn in decreasing
order define some pattern of boxes, as above left for n = 11, known as a Ferrer’s
diagram, corresponding to a partition of the integer n, the partition of [n] is
recovered by filling the boxes with numbers sampled from [n] without replace-
ment, then taking the partition generated by the columns of boxes, to get e.g.
Πn = {{4, 9, 3, 8, 10}, {1, 11, 5}, {2, 6}, {7}} as above.

symmetric, and

n∑

k=1

∑

(n1,...,nk)

(
n

n1, . . . , nk

)
1

k!
p(n1, . . . , nk) = 1,

where the second sum is over all compositions (n1, . . . , nk) of n with k parts.

2.1.4. (Serban Nacu [318]) . Let Xi be the indicator of the event that i is the
least element of some block of an exchangeable random partition Πn of [n]. Show
that the joint law of the (Xi, 1 ≤ i ≤ n) determines the law of Πn.

2.1.5. (Problem) Characterize all possible laws of strings of 0’s and 1’s which
can arise as in the previous exercise. Variants of this problem, with side condi-
tions on the laws, are easier but still of some interest. Compare with Exercise
3.2.4 .

2.1.6. The EPPF of an exchangeable random partition Πn of [n] is p(n1, . . . , nk) :=
P(Πn = Π) for each particular partition Π = {A1, . . . , Ak} of [n] with |Ai| = ni

for all 1 ≤ i ≤ n. Let q(n1, . . . , nk) be the common value of P(Πn ≥ Π) for each
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such Π, where Πn ≥ Π means that Πn is coarser than Π, i.e. each block of Πn is
some union of blocks of Π. Each of the functions p and q determines the other
via the formula

q(n1, . . . , nk) =

k∑

j=1

∑

{B1,...,Bj}
p(nB1 , . . . , nBj

) (2.8)

where the second sum is over partitions {B1, . . . , Bj} of [k], and nB :=
∑

i∈B ni.

2.2. Infinite partitions

For 1 ≤ m ≤ n let Πm,n denote the restriction to [m] of Πn, an exchangeable
random partition of [n]. Then Πm,n is an exchangeable random partition of [m]
with some EPPF pn : Cm → [0, 1], where Cm is the set of compositions of m. So
for each partition {A1, . . . , Ak} of [m]

P(Πm,n = {A1, . . . , Ak}) = pn(|A1|, . . . , |Ak|)

where the definition of the EPPF of Πn, that is pn : Cn → [0, 1], is extended
recursively to Cm for m = n − 1, n − 2, . . . , 1, using the addition rule of prob-
ability. Thus the function p = pn satisfies the following addition rule: for each
composition (n1, . . . , nk) of m < n

p(n1, . . . , nk) =

k∑

j=1

p(. . . , nj + 1, . . .) + p(n1, . . . , nk, 1) (2.9)

where (. . . , nj +1, . . .) is derived from (n1, . . . , nk) by substituting nj +1 for nj .
For instance,

1 = p(1) = p(2) + p(1, 1) (2.10)

and

p(2) = p(3) + p(2, 1); p(1, 1) = p(1, 2) + p(2, 1) + p(1, 1, 1) (2.11)

where p(1, 2) = p(2, 1) by symmetry of the EPPF.

Consistency [253, 14, 347] Call a sequence of exchangeable random partitions
(Πn) consistent in distribution if Πm has the same distribution as Πm,n for every
m < n. Equivalently, there is a symmetric function p defined on the set of all
integer compositions (an infinite EPPF) such that p(1) = 1, the addition rule
(2.9) holds for all integer compositions (n1, . . . , nk), and the restriction of p to
Cn is the EPPF of Πn. Such (Πn) can then be constructed so that Πm = Πm,n

almost surely for every m < n. The sequence of random partitions Π∞ := (Πn)
is then called an exchangeable random partition of N, or an infinite exchangeable
random partition. Such a Π∞ can be regarded as a random element of the set
PN of partitions of N, equipped with the σ-field generated by the restriction
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maps from PN to P[n] for all n. One motivation for the study of exchangeable
partitions of N is that if (Πn) is any sequence of exchangeable partitions of [n]

for n = 1, 2, . . . which has a limit in distribution in the sense that Πm,n
d→ Πm,∞

for each m as n→∞, then the sequence of limit partitions (Πm,∞,m = 1, 2, . . .)
is consistent in distribution, hence constructible as an exchangeable partition of
N. This notion of weak convergence of random partitions is further developed
in Section 2.4.

Partitions generated by random sampling Let (Xn) be an infinite ex-
changeable sequence of real random variables. According to de Finetti’s theo-
rem, (Xn) is obtained by sampling from some random probability distribution
F . That is to say there is a random probability distribution F on the line, such
that conditionally given F the Xi are i.i.d. according to F . To be more explicit,
if

Fn(x) :=
1

n

n∑

i=1

1(Xi ≤ x)

is the empirical distribution of the first n values of the sequence, then by combi-
nation of de Finetti’s theorem [122, p. 269] and the Glivenko-Cantelli theorem
[122, p. 59]

F (x) = lim
n
Fn(x) uniformly in x almost surely. (2.12)

Let Π∞ be the exchangeable random partition of N generated by (Xn), meaning
that the restriction Πn of Π∞ to [n] is the partition generated by (X1, . . . , Xn),
as defined above Proposition 2.1. The distribution of Π∞ := (Πn) is determined

by the distribution of (P ↓
i , i ≥ 1), where P ↓

i is the magnitude of the ith largest

atom of F . Note that 1 −∑i P
↓
i is the magnitude of the continuous compo-

nent of F , which might be strictly positive, and that almost surely each i such
that Xi is not an atom of F contributes a singleton component {i} to Π∞. To
summarize this setup, say Π∞ is generated by sampling from a random distribu-
tion with ranked atoms (P ↓

i , i ≥ 1). According to the following theorem, every
infinite exchangeable partition has the same distribution as one generated this
way. This is the infinite analog of Proposition 2.1, according to which every
finite exchangeable random partition can be generated by a process of random
sampling without replacement from some random population.

Theorem 2.2. (Kingman’s representation [251, 253]) Let Π∞ := (Πn) be an

exchangeable random partition of N, and let (N ↓
n,i, i ≥ 1) be the decreasing

rearrangement of block sizes of Πn, with N↓
n,i = 0 if Πn has fewer than i blocks.

Then N↓
n,i/n has an almost sure limit P ↓

i as n → ∞ for each i. Moreover the

conditional distribution of Π∞ given (P ↓
i , i ≥ 1) is as if Π∞ were generated by

random sampling from a random distribution with ranked atoms (P ↓
i , i ≥ 1).

Proof. (Sketch, following Aldous [14, p. 88]) Without loss of generality, it can
be supposed that on the same probability space as Π∞ there is an independent
sequence of i.i.d. uniform [0, 1] variables Uj . Let Xn = Uj if n falls in the jth
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class of Π∞ to appear. Then (Xn, n = 1, 2, . . .) is exchangeable. Hence Π∞ is
generated by random sampling from F which is the uniform almost sure limit
of

Fn(u) :=
1

n

n∑

m=1

1(Xm ≤ u) =

∞∑

i=1

N↓
n,i

n
1(Ûn,i ≤ u)

for some Πn-dependent rearrangement Ûn,i of the Uj . By the almost sure uni-

formity (2.12) of convergence of Fn to F , the size N↓
n,i/n of the ith largest atom

of Fn has almost sure limit P ↓
i which is the size of the ith largest atom of F . �

Theorem 2.2 sets up a bijection (Kingman’s correspondence) between prob-
ability distributions for an infinite exchangeable random partition, as specified
by an infinite EPPF, and probability distributions of (P ↓

i ) on the set

P↓
[0,1] := {(p1, p2, . . .) : p1 ≥ p2 ≥ · · · ≥ 0 and

∞∑

i=1

pi ≤ 1} (2.13)

of ranked sub-probability distributions on N.
Note that the set of all infinite EPPF’s p : ∪∞n=1Cn → [0, 1], with the topology

of pointwise convergence, is compact.

Theorem 2.3. (Continuity of Kingman’s correspondence [250, §5], [252, p. 45])
Pointwise convergence of EPPF’s is equivalent to weak convergence of finite
dimensional distributions of the corresponding ranked frequencies.

A similar result holds for the frequencies of blocks in order of appearance. See
Theorem 3.1. Assuming for simplicity that Π∞ has proper frequencies, meaning
that

∑

i P
↓
i = 1 a.s., Kingman’s correspondence can be made more explicit

as follows. Let (Pi) denote any rearrangement of the ranked frequencies (P ↓
i ),

which can even be a random rearrangement. Then

p(n1, . . . , nk) =
∑

(j1,...,jk)

E

[
k∏

i=1

Pni

ji

]

(2.14)

where (j1, . . . , jk) ranges over all ordered k-tuples of distinct positive integers.

This is easily seen from Kingman’s representation for (Pi) = (P ↓
i ). The formula

holds also for any rearrangement of these frequencies, because the right side is
the expectation of a function of (P1, P2, . . .) which is invariant under finite or
infinite permutations of its arguments. In particular (Pi) could be the sequence
(P̃i) of limit frequencies of classes of (Πn) in order of appearance, which is a

size-biased random permutation of (P ↓
i ). A much simpler formula in this case

is described later in Theorem 3.1.

Exercises

The first two exercises recall some forms of Pólya’s urn scheme [151, VII.4],
which allow explicit sequential constructions of exchangeable sequences and ran-
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dom partitions. See [300],[350] for more in this vein.

2.2.1. (Beta-binomial) Fix a, b > 0. Let Sn := X1 + · · ·+Xn, where the Xi

have values 0 or 1. Check that

P(Xn+1 = 1 |X1, . . . , Xn) =
a+ Sn

a+ b+ n
(2.15)

for all n ≥ 0 if and only if the Xi are exchangeable and the almost sure limit of
Sn/n has the beta(a, b) distribution.

2.2.2. (Dirichlet-multinomial) Fix θ1, . . . , θm > 0. Let (Xn, n = 1, 2, . . .) be
a process with values in {1, . . . ,m}. If for each n ≥ 0, given (X1, . . . , Xn) with
ni values equal to i for each 1 ≤ i ≤ m, where n1 + · · ·+ nm = n,

Xn+1 = i with probability
θi + ni

θ1 + · · ·+ θm + n

then (Xn) is exchangeable with asymptotic frequencies Pi with the Dirichlet(θ1, . . . , θm)
distribution (0.47), and conversely.

2.2.3. (Sampling from exchangeable frequencies) Let p(n1, . . . , nk) be the

EPPF corresponding to some sequence of random ranked frequencies (P ↓
1 , . . . , P

↓
m)

with
∑m

i=1 P
↓
i = 1 for some m < ∞. Let (P1, . . . , Pm) be the exchangeable

sequence with
∑m

i=1 Pi = 1 obtained by putting these ranked frequencies in
exchangeable random order. Then

p(n1, . . . , nk) = (m)k↓E

[
k∏

i=1

Pni

i

]

.

2.2.4. (Coupon Collecting) If P ↓
i = 1/m for 1 ≤ i ≤ m then

p(n1, . . . , nk) = (m)k↓/m
n where n :=

k∑

i=1

ni. (2.16)

2.2.5. (Sampling from exchangeable Dirichlet frequencies) [428] If (P1, . . . , Pm)
has the symmetric Dirichlet distribution (0.47) with parameters θ1 = · · · = θm =
κ > 0, then

p(n1, . . . , nk) = (m)k↓

∏k
i=1(κ)ni↑
(mκ)n↑

. (2.17)

Note that the coupon collector’s partition (2.16) is recovered in the limit as
κ→∞.

2.2.6. (The Blackwell-MacQueen urn scheme) [68]. Fix θ > 0. Let (Xn)
with values in [0, 1] be governed by the following prediction rule: n ≥ 0,

P(Xn+1 ∈ · |X1, . . . , Xn) =
θ λ(·) +

∑n
i=1 1(Xi ∈ ·)

θ + n
(2.18)

where λ(·) is Lebesgue measure on [0, 1]. Then (Xn) is exchangeable, distributed
as a sample from a Dirichlet(θ) process Fθ as in (0.46).
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2.2.7. (The Ewens sampling formula) [144, 26, 145] As m→∞ and κ→ 0
with mκ→ θ, the EPPF in (2.17) converges to the EPPF

p0,θ(n1, . . . , nk) =
θk

(θ)n↑

k∏

i=1

(ni − 1)! (2.19)

Such a partition is generated byX1, . . . , Xn governed by the Blackwell-MacQueen
urn scheme (2.18). The corresponding partition of n has distribution

P(|Πn|i = mi, 1 ≤ i ≤ n) =
n! θk

(θ)n↑

n∏

i=1

1

imimi!
(2.20)

for (mi) as in (2.4). The corresponding ranked frequencies are the ranked jumps
of the Dirichlet(θ) process. The frequencies in order of appearance are described
in Theorem 3.2.

2.2.8. (Continuity of Kingman’s correspondence) Prove Theorem 2.3.

Notes and comments

The theory of exchangeable random partitions described here, following [14]
and [347], is essentially equivalent to Kingman’s theories of partition structures
[250, 251] and of exchangeable random equivalence relations [253]. The theory is
simplified by describing the consistent sequence of distributions of partitions of
[n] by its EPPF, rather than by the corresponding sequence of distributions of
integer partitions, which is what Kingman called a partition structure. Donnelly
and Joyce [114] and Gnedin [172] developed a parallel theory of composition
structures, whose extreme points are represented by open subsets of [0, 1]. See
also [198, 199] for alternate approaches.

In the work of Kerov and Vershik on multiplicative branchings [241, 242, 244],
each extreme infinite exchangeable partition corresponds to a real-valued char-
acter of the algebra of symmetric functions, with certain positivity conditions.
See also Aldous [14] regarding exchangeable arrays, and Kallenberg [231] for
paintbox representations of random partitions with general symmetries.

2.3. Structural distributions

Let (Pi) be a random discrete probability distribution with size-biased permu-
tation (P̃j). So in particular

P̃1 = Pσ(1) where P(σ(1) = i |P1, P2, . . .) = Pi (i = 1, 2, . . .). (2.21)

The random variable P̃1 may be called a size-biased pick from (Pi). Let ν̃ de-
note the distribution of P̃1 on (0, 1]. Following the terminology of Engen [132],
ν̃ is called the structural distribution associated with the random discrete dis-
tribution (Pi). Note that if a random partition Π∞ is derived by sampling from
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(Pi), then the size-biased permutation (P̃j) can be constructed as the sequence

of class frequencies of Π∞ in order of appearance. Then P̃1 is the frequency
of the class of Π∞ that contains 1. It follows from (2.21) that for an arbitrary
non-negative measurable function g,

∫

ν̃(dp)g(p) = E[g(P̃1)] = E

[
∑

i

Pig(Pi)

]

. (2.22)

Hence, taking g(p) = f(p)/p, for arbitrary non-negative measurable function f
there is the formula

E

[
∑

i

f(Pi)

]

= E

[

f(P̃1)

P̃1

]

=

∫ 1

0

f(p)

p
ν̃(dp). (2.23)

Formula (2.23) shows that the structural distribution ν̃ encodes much informa-
tion about the entire sequence of random frequencies. Taking f in (2.23) to be
the indicator of a subset B of (0, 1], formula (2.23) shows that the point pro-
cess with a point at each Pj ∈ (0, 1] has mean intensity measure p−1ν̃(dp). If

(Pi) = (P ↓
i ) is in decreasing order, for x > 1

2 there can be at most one P ↓
i > x,

so the structural distribution ν̃ determines the distribution ν of P ↓
1 = maxi P̃i

on ( 1
2 , 1] via the formula

P(P ↓
1 > x) = ν(x, 1] =

∫

(x,1]

p−1ν̃(dp) (x > 1
2 ). (2.24)

Typically, formulas for P(P ↓
1 > x) get progressively more complicated on the

intervals ( 1
3 ,

1
2 ], ( 1

4 ,
1
3 ], · · ·. See e.g. [339, 371]. Note that by (2.14) for k = 1 and

n1 = n and (2.23)

p(n) = E

[
∑

i

Pn
i

]

= E[ P̃n−1
1 ] = µ(n− 1) (n = 1, 2, · · ·), (2.25)

where µ(q) is the qth moment of the distribution ν̃ of P̃1 on (0, 1]. From (2.10),
(2.11), and (2.25) the following values of the EPPF of an infinite exchangeable
random partition Π∞ are also determined by the first two moments of the
structural distribution:

p(1, 1) = 1−µ(1); p(2, 1) = µ(1)−µ(2); p(1, 1, 1) = 1−3µ(1)+2µ(2). (2.26)

So the distribution of Π3 on partitions of the set {1, 2, 3} is determined by the
first two moments of P̃1. The distribution of Πn is not determined for all n by
the structural distribution ( Exercise 2.3.4 ). But moments of the structural
distribution play a key role in the description of a number of particular models
for random partitions. See for instance [362, 170].
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Exercises

2.3.1. (Improper frequencies) Show how to modify the results of this section
to be valid also for exchangeable random partitions of the positive integers with
improper frequencies. Show that formula (2.14) is false in the improper case.
Find the patch for that formula, which is not so pretty. See for instance Kerov
[244, equation (1.3.1)].

2.3.2. (Mean number of blocks) Engen [132]. For an infinite exchangeable
partition (Πn) with P̃1 the frequency of the block containing 1,

E(|Πn|) = E[kn(P̃1)], (2.27)

where kn(v) := (1− (1− v)n)/v is a polynomial of degree n− 1.

2.3.3. (Proper frequencies) [350] For an infinite exchangeable partition (Πn)
with frequencies P̃i, the frequencies are proper, meaning

∑

i P̃i = 1 almost

surely, iff P(P̃1 > 0) = 1, and also iff |Πn|/n→ 0 almost surely.

2.3.4. (The structural distribution does not determine the distribu-
tion of the infinite partition) Provide an appropriate example.

2.3.5. (Problem: characterization of structural distributions) What is
a necessary and sufficient condition for a probability distribution F on [0, 1] to
be a structural distribution? For some necessary and some sufficient conditions
see [368].

2.4. Convergence

There are many natural combinatorial constructions of exchangeable random
partitions Πn of [n] which are not consistent in distribution as n varies, so not
immediately associated with an infinite exchangeable partition Π∞. However,
it is often the case that a sequence of combinatorially defined exchangeable
partitions (Πn) converges in distribution as n→∞ meaning that

Πm,n
d→ Πm,∞ for each fixed m as n→∞, (2.28)

where Πm,n is the restriction to [m] of Πn, and (Πm,∞,m = 1, 2 . . .) is some
sequence of limit random partitions. Let pn(n1, . . . , nk) denote the EPPF of
Πn, defined as a function of compositions (n1, . . . , nk) of m for every m ≤ n,
as discussed in Section 2.2. Then (2.28) means that for all integer compositions
(n1, . . . , nk) of an arbitrary fixed m,

pn(n1, . . . , nk)→ p(n1, . . . , nk) as n→∞ (2.29)

for some limit function p. It is easily seen that any such limit pmust be an infinite
EPPF, meaning that the sequence of random partitions Πm,∞ in (2.28) can
be constructed consistently to make an infinite exchangeable random partition
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Π∞ := (Πm,∞,m = 1, 2, . . .) whose EPPF is p. Let (P̃i) and (P ↓
i ) denote the

class frequencies of Π∞, in order of appearance, and ranked order respectively.
And let (Nn,i, i ≥ 1) and (N↓

n,i, i ≥ 1) denote the sizes of blocks of Πn, in order of
appearance and ranked order respectively, with padding by zeros to make infinite
sequences. It follows from the continuity of Kingman’s correspondence (Theorem
2.3) together with Proposition 2.1, and the obvious coupling between sampling
with and without replacement for a sample of fixed size as the population size
tends to ∞, that this notion (2.28) - (2.29) of convergence in distribution of Πn

to Π∞ is further equivalent to

(Nn,i/n)i≥1
d→ (P̃i)i≥1 (2.30)

meaning weak convergence of finite dimensional distributions, and similarly
equivalent to

(N↓
n,i/n)i≥1

d→ (P ↓
i )i≥1 (2.31)

in the same sense [173]. Let (Ui) be a sequence of independent and identically
distributed uniform (0, 1) variables independent of the Πn. Another equivalent
condition is that for each fixed u ∈ [0, 1]

∞∑

i=1

(Nn,i/n)1(Ui ≤ u)
d→ F (u) (2.32)

for some random variable F (u). According to Kallenberg’s theory of processes
with exchangeable increments [226], a limit process (F (u), 0 ≤ u ≤ 1) can
then be constructed as an increasing right-continuous process with exchangeable
increments, with F (0) = 0 and F (1) = 1 a.s., and the convergence (2.32) then
holds jointly as u varies, and in the sense of convergence in distribution on the
Skorohod space D[0, 1]. To be more explicit,

F (u) =
∞∑

i=1

Pi1(Ui ≤ u) + (1− Σ∞
i=1Pi)u (2.33)

where the Ui with uniform distribution on [0, 1] are independent of the Pi, and

either (Pi) = (P̃i) or (Pi) = (P ↓
i ) . The limit partition Π∞ can then be generated

by sampling from any random distribution such as F whose ranked atoms are
distributed like (P ↓

i ). The restriction Πm,∞ of Π∞ to [m] can then be generated
for all m = 1, 2, . . . by sampling from F , meaning that i and j with i, j ≤ m lie
in the same block of Πm,∞ iff Xi = Xj where the Xi are random variables which
conditionally given F are independent and identically distributed according to
F :

P(Xi ≤ u |F ) = F (u) (0 ≤ u ≤ 1).

This connects Kingman’s theory of exchangeable random partitions to the the-
ory of Bayesian statistical inference [350]. See also James [213, 212] for recent
work in this vein.
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2.5. Limits of Gibbs partitions

As an immediate consequence of (1.50) , the decreasing arrangement of relative
sizes of blocks of a Gibbs[n](v•, w•) partition Πn, say

(N↓
n,1/n, . . . , N

↓
n,|Πn|/n) (2.34)

has the same distribution as the decreasing sequence of order statistics of

(X1/n, . . . , XK/n) given SK/n = 1

where the Xi have distribution (1.41) and K with distribution (1.42) is inde-
pendent of the Xi, for some arbitrary ξ > 0 with v(w(ξ)) < ∞. Since the
distribution of a Gibbs[n](v•, w•) partition depends only on the vj and wj for
1 ≤ j ≤ n, in this representation for fixed n the condition v(w(ξ)) < ∞ can
always be arranged by setting vj = wj = 0 for j > n. It is well known [151,
XVII.7] [230]that if Xn,1, . . . , Xn,kn

is for each n a sequence of independent and
identically distributed variables of some non-random length kn, with kn → ∞
as n→∞, then under appropriate conditions

kn∑

i=1

Xn,i
d→ T :=

∞∑

i=1

J↓
i

where J↓
1 ≥ J↓

2 ≥ . . . ≥ 0 are the points of a Poisson point process on (0,∞)
with intensity measure Λ(dx), for some Lévy measure Λ on (0,∞) with

Ψ(λ) :=

∫ ∞

0

(1− e−λx)Λ(dx) <∞ (2.35)

for all λ > 0. Then
Λ(x,∞) = lim

n→∞
knP(Xn,1 > x)

for all continuity points x of Λ, and the Laplace transform of T is given by the
Lévy-Khintchine formula

E(e−λT ) = exp(−Ψ(λ)).

It is also known that if such a sum
∑kn

i=1 Xn,i has T as its limit in distribution as

n→∞, then the convergence in distribution of
∑kn

i=1Xn,i to T holds jointly with
convergence in distribution of the k largest order statistics of theXn,i, 1 ≤ i ≤ kn

to the k largest points J↓
1 , . . . , J

↓
k of the Poisson process.

It is therefore to be anticipated that if a sequence of Gibbs[n](v•, w•) parti-

tions converges as n→∞ to some infinite partition Π∞, where either v• = v
(n)
•

or w• = w
(n)
• might be allowed to depend on n, and v

(n)
• is chosen to ensure

that the distribution of the number of components Kn of Πn grows to ∞ in
a deterministic manner, say Kn/kn → s > 0 for some normalizing constants



52 Jim Pitman

kn, then the distribution of ranked frequencies (P ↓
i ) of Π∞ obtained from the

convergence of finite-dimensional distributions

(N↓
n,i/n)i≥1

d→ (P ↓
i )i≥1 with Kn/kn → s (2.36)

should be representable as

(P ↓
i )i≥1

d
= ((J↓

s,i)i≥1 |Ts = 1) (2.37)

for the ranked points J↓
s,i of a Poisson point process with intensity sΛ, with

∑

i J
↓
s,i = Ts. This Poisson process may be constructed as the jumps of (Tu, 0 ≤

u ≤ s), where (Tu, u ≥ 0) is a subordinator with no drift and Lévy measure

Λ. Then for v
(n)
• chosen so that Kn/kn converges in distribution to S for some

strictly positive random variable S, the limit law of (P ↓
i ) in (2.36) should be

∫ ∞

0

P((J↓
s,i) ∈ · |Ts = 1)P(S ∈ ds). (2.38)

To make rigorous sense of this, it is first necessary to give a rigorous meaning to
the law of (J↓

s,i) given Ts = 1, for instance by showing that for fixed s the law of

(J↓
s,i) given Ts = t can be constructed to be weakly continuous in t. Second, to

justify weak convergence of conditional probability distributions it is necessary
to establish an appropriate local limit theorem.

This program has been carried out in two cases of combinatorial significance.
One case, treated in detail in [27], covers the class of logarithmic combinatorial
assemblies:

Theorem 2.4. [189, 27] Let w• = (wj) be a sequence of weights with

wj ∼ θ(j − 1)!yj as j →∞

for some θ > 0 and y > 0. Let Πn be a Gibbs[n](v
(n)
• , w•) partition, either for

v
(n)
• ≡ 1•, or more generally for any array of weights v

(n)
• such that |Πn|/ logn

converges in probability to θ as n → ∞. Then Πn converges in distribution
to Π∞ as n → ∞, where Π∞ is a (0, θ)-partition with EPPF (2.19), whose
Poisson-Dirichlet(0, θ) frequencies are the ranked jumps of a gamma process
(Tu, 0 ≤ u ≤ θ) given Tθ = 1.

Sketch of proof. The case when v
(n)
• ≡ 1• can be read from the work of [27],

where it is shown that in this case |Πn|/ logn converges in probability to θ as

n→∞. The extension to more general v
(n)
• is quite straightforward. �

Two cases of Theorem 2.4 of special interest, discussed further in following
chapters, are

• Πn generated by the cycles of a uniform random permutation of [n], when
wj = (j − 1)!, y = 1, θ = 1;
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• Πn generated by the basins of a uniform random mapping of [n], with

wj = (j − 1)!
∑j−1

i=0 j
i/i! as in (1.61), y = e, θ = 1

2 .

See [27] for many more examples. Note that mixtures over θ of (0, θ) partitions

could arise by suitable choice of v
(n)
• so that |Πn|/ logn had a non-degenerate

limit distribution, but this phenomenon does not seem to arise naturally in
combinatorial examples.

Another case, treated by Pavlov [335, 336, 337], and Aldous-Pitman [17]
covers a large number of examples involving random forests, where the limit
involves the stable subordinator of index 1

2 . A more general result, where the
limit partition is derived from a stable subordinator of index α for α ∈ (0, 1),
can be formulated as follows:

Theorem 2.5. Let w• = (wj) be a sequence of weights with exponential gen-
erating function w(ξ) :=

∑∞
j=1 ξ

jwj/j! such that w(ξ) = 1 for some ξ > 0. Let

(pj , j = 1, 2, . . .) be the probability distribution defined by pj = ξjwj/j! for ξ
with w(ξ) = 1, and suppose that

∞∑

j=i

pj ∼
c i−α

Γ(1− α)
as i→∞ (2.39)

for some α ∈ (0, 1). Let Πn be a Gibbs[n](v
(n)
• , w•) partition, for any array of

weights v
(n)
• such that |Πn|/nα converges in probability to s as n→∞. Then Πn

converges in distribution to Π∞ as n → ∞, where Π∞ has ranked frequencies
distributed like the

ranked jumps of (Tu, 0 ≤ u ≤ cs) given Tcs = 1, (2.40)

where (Tu, u ≥ 0) is the stable subordinator of index α with E exp(−λTu) =
exp(−uλα).

Sketch of proof. This was argued in some detail in [17] for the particular
weight sequence wj = jj−1, corresponding to blocks with an internal structure
specified by a rooted labeled tree. Then ξ = e−1, α = 1

2 , and the limiting par-
tition can also be described in terms of the lengths of excursions of a Brownian
motion or Brownian bridge, as discussed in Section 4.4 . The proof of the result
stated above follows the same lines, appealing to the well known criterion for
convergence to a stable law, and the local limit theorem of Ibragimov-Linnik
[204]. �

In Section 4.3 the limiting partition Π∞ appearing in Theorem 2.5 is called
an (α|cs) partition. Mixtures of these distributions, obtained by randomizing s
for fixed α, arise naturally in a number of different ways, as shown in Chapter
4.



Exercises

2.5.1. (Problem: Characterizing all weak limits of Gibbs partitions)
Intuitively, the above discussion suggests that the only possible weak limits of
Gibbs partitions are partitions whose ranked frequencies are mixtures over s of
the law of ranked jumps of some subordinator (Tu, 0 ≤ u ≤ s) given Ts = 1,
allowing also the possibility of conditioning on the number of jumps in the
compound Poisson case. Show that if the conditioning is well defined by some
regularity of the distribution of Ts for all s, then such a partition can be achieved
as a limit of Gibbs partitions, allowing both v• and w• to depend on n. But due
to the difficulty in giving meaning to the conditioning when Ts does not have
a density, it is not clear how to formulate a rigorous result. Can that be done?
Does it make any difference whether or not w• is allowed to depend on n?

54
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Chapter 3

Sequential constructions of

random partitions

This chapter introduces a basic sequential construction of random partitions,
motivated at first by consideration of uniform random permutations of [n] which
are consistent in a certain sense as n varies. This leads to consideration of a
particular two-parameter family of exchangeable random partition structures,
which can be characterized in various ways, and which is closely related to
gamma and stable subordinators.

3.1. The Chinese restaurant process This process defines a sequence of
random permutations σn of the set [n] := {1, . . . , n} such that the random
partitions Πn generated by cycles of σn are consistent as n varies. The
most general exchangeable random partition of positive integers can be
obtained this way.

3.2. The two-parameter model This section treats a particularly tractable
family of random partitions of N, parameterized by a pair of real num-
bers (α, θ) subject to appropriate constraints. The distribution Pα,θ of an
(α, θ) partition is characterized by the product form of its partition prob-
abilities, and by the induced distribution of its frequencies in size-biased
random order. This distribution is known in the literature as GEM(α, θ),
after Griffiths-Engen-McCloskey, while the corresponding distribution of
ranked frequencies is known as the Poisson-Dirichlet distribution pd(α, θ).
These distributions and associated random partitions arise in numerous
contexts, such as population genetics, number theory, Bayesian nonpara-
metric statistics, and the theory of excursions of Brownian motion and
Bessel processes.

3.3. Asymptotics This section treats various asymptotic properties of par-
titions of N, with special emphasis on the two-parameter family, whose
asymptotic properties are radically different according to whether α is
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positive, negative, or zero. In particular, the number Kn of blocks of Πn

is bounded if α < 0, grows like θ logn if α = 0 < θ, and grows like a ran-
dom multiple of nα if 0 < α < 1, where the distribution of the multiplier
depends on θ. For fixed α ∈ (0, 1) the probability laws of (α, θ) partitions
turn out to be mutually absolutely continuous as θ varies with θ > −α,
and the Radon-Nikodym density is described.

3.4. A branching process construction of the two-parameter model
This section offers a construction of the two-parameter model in terms of
a branching process in continuous time.

3.1. The Chinese restaurant process

Consistent random permutations Consider a sequence of random permu-
tations (σn, n = 1, 2, · · ·) such that

(i) σn is a uniformly distributed random permutation of [n] for each n;
(ii) for each n, if σn is written as a product of cycles, then σn−1 is derived

from σn by deletion of element n from its cycle.
For example, using standard cycle notation for permutations,

if σ5 = (134)(25) then σ4 = (134)(2);
if σ5 = (134)(2)(5) then σ4 = (134)(2).

It is easily seen that these requirements determine a unique distribution for
the sequence (σn), which can be described as follows.

An initially empty restaurant has an unlimited number of circular tables
numbered 1, 2, . . ., each capable of seating an unlimited number of customers.
Customers numbered 1, 2, · · · arrive one by one and are seated at the tables
according to the following:

Simple random seating plan Person 1 sits at table 1. For n ≥ 1 suppose
that n customers have already entered the restaurant, and are seated in some
arrangement, with at least one customer at each of the tables j for 1 ≤ j ≤ k
say, where k is the number of tables occupied by the first n customers to arrive.
Let customer n+ 1 choose with equal probability to sit at any of the following
n + 1 places: to the left of customer j for some 1 ≤ j ≤ n, or alone at table
k + 1. Define σn : [n] → [n] as follows. If after n customers have entered the
restaurant, customers i and j are seated at the same table, with i to the left of
j, then σn(i) = j, and if customer i is seated alone at some table then σn(i) = i.
The sequence (σn) then has features (i) and (ii) above by a simple induction.

Many asymptotic properties of uniform random permutations can be read
immediately from this construction. For instance, the number of occupied tables
after n customers have been seated is

Kn = #{ cycles of σn} = Z1 + · · ·+ Zn (3.1)

where the Zj is the indicator of the event that the jth customer is seated at
a new table. By construction, the Zj are independent Bernoulli(1/j) variables,
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hence,
Kn

logn
→ 1 almost surely,

Kn − logn

(logn)1/2

d→ B1 (3.2)

where B1 is a standard Gaussian variable. This and other results about random
permutations now recalled are well known.

Let Πn be the partition of [n] generated by the cycles of σn. Then Πn is an
exchangeable random partition of [n], and the Πn are consistent as n varies. Thus
the sequence Π∞ := (Πn) is an exchangeable random partition of N. Let Xn be
the indicator of the event that the (n+ 1)th customer sits at table 1. Then the
sequence (Xn)n≥1 is an exchangeable sequence which evolves by the dynamics
of Pólya’s urn scheme (2.15) with a = b = 1. Hence Sn := X1 + · · · + Xn has
uniform distribution on {0, 1, . . . , n}. Equivalently, the size Sn + 1 of the cycle
of σn+1 containing 1 has uniform distribution on {1, . . . , n+1}. The asymptotic
frequency of the class of Π∞ containing 1 is the almost sure limit of Sn/n, which
evidently has uniform distribution on [0, 1].

The limit frequencies Let (Nn,1, . . . , Nn,Kn
) denote the sizes of blocks of

Πn, in order of least elements. In terms of the restaurant construction,Nn,i is the
number of customers seated at table i after n customers have been seated. From
above, Nn,1 has uniform distribution on [n]. Similarly, given Nn,1 = n1 < n,
Nn,2 has uniform distribution on [n − n1]. And so on. Asymptotic behavior of
this discrete uniform stick-breaking scheme is quite obvious: as n → ∞, the
relative frequencies (Nn,i/n, i ≥ 1) of the sizes of cycles of σn, which are in a
size-biased random order, converge in distribution to the continuous uniform
stick-breaking sequence

(P̃1, P̃2, . . .) = (U1, U1U2, U1U2U3, . . .)

where the Ui are independent uniform[0, 1] variables, and Ū := 1 − U . By an
obvious combinatorial argument, the corresponding infinite exchangeable parti-
tion probability function (EPPF), which gives for each n the probability that
Πn equals any particular partition of [n] with ni elements in the ith cycle, for
some arbitrary ordering of cycles, is

p0,1(n1, . . . , nk) :=
1

n!

k∏

i=1

(ni − 1)!. (3.3)

Compare with (2.19) to see that this continuous uniform stick-breaking sequence
(P̃1, P̃2, . . .) has the same distribution as a size-biased permutation of the jumps
of the Dirichlet process with exchangeable increments

(Γu/Γ1, 0 ≤ u ≤ 1)

where (Γu, u ≥ 0) is a gamma process. Since the limiting ranked frequencies

P ↓
i are recovered from the (P̃j) by ranking, it follows that if Γ1 is a standard
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exponential variable independent of the limiting ranked frequencies P ↓
i defined

by the Chinese restaurant construction of random permutations, then

Γ1P
↓
1 > Γ1P

↓
2 > Γ1P

↓
3 > · · · > 0

are the ranked points of a Poisson point process whose intensity measure x−1e−xdx
on (0,∞) is the Lévy measure of the gamma process. This allows calculation of

moments of the P ↓
i . For instance

E#{i : Γ1P
↓
i > y} = E1(y) :=

∫ ∞

y

x−1e−xdx.

So as n → ∞ the asymptotic mean fraction of elements in the longest cycle of
a uniform random permutation of [n] is

E(P ↓
1 ) = E(Γ1)E(P ↓

1 ) = E(Γ1P
↓
1 ) =

∫ ∞

0

(1− e−E1(x))dx.

This technique of random scaling to simplify the probabilistic structure of ran-
dom partitions has many other applications. See for instance [85, 372, 374, 24].

The distribution of (P ↓
1 , P

↓
2 , . . .), constructed here from random permutations

using the Chinese restaurant process, is known as the Poisson-Dirichlet distri-
bution with parameter 1. Some references: Shepp-Lloyd [400], Vershik-Shmidt
[422, 423], Flajolet-Odlyzko [156], Arratia-Barbour-Tavaré [27].

Generalization The Chinese restaurant construction is easily generalized to
allow construction of a sequence of random permutations σn of [n] such that
the associated sequence of random partitions Π∞ := (Πn) is the most gen-
eral possible exchangeable random partition of integers, as discussed in Section
2.2. Recall that the corresponding exchangeable partition probability function
(EPPF) p(n1, . . . , nk) gives for each (n1, . . . , nk) the the probability that Πn

equals any specific partition of [n] into sets of sizes (n1, . . . , nk). In terms of
the Chinese restaurant, the permutation σn is thought of as a configuration
of n customers seated at Kn tables, where Kn is the number of cycles of σn.
For present purposes, we only care about the random partition Πn induced by
the cycles of σn. So for 1 ≤ i ≤ Kn the statement “customer n + 1 is placed
at occupied table i” means Πn+1 is the partition of [n + 1] whose restriction
to [n] is Πn, with n + 1 belonging to the ith class of Πn. Similarly “customer
n + 1 is placed at a new table” means Πn+1 is the partition of [n + 1] whose
restriction to [n] is Πn, with {n+ 1} a singleton block. Given an infinite EPPF
p(n1, . . . , nk), a corresponding exchangeable random partition of N (Πn) can
thus be constructed as follows.

Random seating plan for an exchangeable partition The first customer
is seated at the first table, that is Π1 = {1}. For n ≥ 1, given the partition
Πn, regarded as a placement of the first n customers at tables of the Chinese
restaurant, with k occupied tables, the next customer n+ 1 is
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• placed at occupied table j with probability p(. . . , nj + 1, . . .)/p(n1, . . . , nk)

• placed at new table with probability p(n1, . . . , nk, 1)/p(n1, . . . , nk)

In particular, it is clear that a simple product form for the EPPF will cor-
respond to a simple prescription of these conditional probabilities. But before
discussing specific examples, it is worth making some more general observa-
tions. Any sequential seating plan for the Chinese restaurant, corresponding to
a prediction rule for the conditional distribution of Πn+1 given Πn for each n,
whereby n+ 1 is either assigned to one of the existing blocks of Πn or declared
to be a singleton block of Πn+1, can be used to construct a random partition
Π∞ := (Πn) of the positive integers. Most seating plans will fail to produce a
Π∞ that is exchangeable. But it is instructive to experiment with simple plans
to see which ones do generate exchangeable partitions. According to Kingman’s
theory of exchangeable random partitions described in Section 2.2, a necessary
condition for Π∞ to be exchangeable is that for each i there exists an almost
sure limiting frequency P̃i of customers seated at table i. More formally, this
is the limit frequency of the ith block of Π∞ when blocks are put in order of
appearance. The simplest way to achieve this is to consider the following:

Random seating plan for a partially exchangeable partition Let
(Pi, i = 1, 2, . . .) be an arbitrary sequence of random variables with Pi ≥ 0 and
∑

i Pi ≤ 1. Given the entire sequence (Pi, i = 1, 2, . . .) let the first customer be
seated at the first table, and for n ≥ 1, given the partition Πn, regarded as a
placement of the first n customers at tables of the Chinese restaurant, with k
occupied tables, let the next customer n+ 1 be

• placed at occupied table j with probability Pj

• placed at new table with probability 1−∑k
i=1 Pi

P1

1st table

P2

2nd table

Pk

kth table

j = 1
Σ Pj

k

1 −

new table

Figure 3.1: Chinese Restaurant Process with random seating plan

By construction and the law of large numbers, for each i the limiting fre-
quency of customers seated at table i exists and equals Pi. Moreover, by con-
ditioning on the entire sequence Pi, the probability that Πn equals any specific
partition of [n] into sets of sizes (n1, . . . , nk), in order of least elements, is given
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by the formula

p(n1, · · · , nk) = E





k∏

i=1

Pni−1
i

k−1∏

i=1



1−
i∑

j=1

Pj







 (3.4)

Such a random partition of [n] is called partially exchangeable [347]. These con-
siderations lead to the following variation of Kingman’s representation:

Theorem 3.1. [347] Let (Pi) be a sequence of random variables with Pi ≥ 0 and
∑

i Pi ≤ 1, and let p(n1, . . . , nk) be defined by in formula (3.4). (i) There exists
an exchangeable random partition Π∞ of N whose block frequencies in order of
appearance (P̃i) are distributed like (Pi) if and only if the function p(n1, . . . , nk)
is a symmetric function of (n1, . . . , nk) for each k.
(ii) If Π∞ is such an exchangeable random partition of N with block frequencies
(P̃i), then the EPPF of Π∞ is p(n1, . . . , nk) defined by (3.4) for Pi = P̃i, and
the conditional law of Π∞ given (P̃i) is governed by the random seating plan for
a partially exchangeable partition, described above.

Proof. The “if” part of (i) is read from the preceding argument. See [347] for
the “only if” part of (i). Granted that, part (ii) follows easily. �

Exercises

3.1.1. Let Π∞ := (Πn) be an infinite exchangeable (or partially exchangeable)
random partition, with Ñn,i the number of elements of [n] in the ith class of

Π∞ to appear, and P̃i := limn Ñn,i/n. The conditional distribution of Ñn,1 − 1

given P̃1 is binomial(n− 1, P̃1), hence the distribution of Ñn,1 is determined by

that of P̃1 via

P(Ñn,1 = j) =

(
n− 1

j − 1

)

E

[

P̃ j−1
1 (1− P̃1)n−j

]

(1 ≤ j ≤ n).

Use a similar description of the law of (Ñn,1, · · · , Ñn,k) given (P̃1, · · · , P̃k) to

show that for each n, k ≥ 1 the law of (Ñn,1, · · · , Ñn,k) is determined by that of

(P̃1, · · · , P̃k).

Notes and comments

Basic references on random permutations are Feller [148] and Goncharov [177]
from the 1940’s. There is a nice bijection between the structure of records and
cycles. For this and more see papers by Ignatov [207, 206], Rényi, Goldie [175],
Stam [403, 405]. The fact that the cycle structure of uniform random permu-
tations is consistent as n varies was pointed out by Greenwood [179]. Lester
Dubins and I devised the Chinese Restaurant Process in the early 1980’s as
a way of constructing consistent random permutations and random partitions.
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The notion first appears in print in [14, (11.19)]. See also Joyce and Tavaré [224],
and Arratia, Barbour and Tavaré [27] for many further results and references.
The Chinese Restaurant Process and associated computations with random par-
titions have found applications in Bayesian statistics [109, 287, 210, 212], and
in the theory of representations of the infinite symmetric group [243].

3.2. The two-parameter model

The EPPF’s calculated in (2.17) and (2.19) suggest the following seating plan for
the Chinese restaurant construction of a random partition of N, say Π∞ := (Πn),
starting from Π1 := {1}.

(α, θ) seating plan [347] Given at stage n there are k occupied tables, with
ni customers at the ith table, let the next customer be • placed at occupied
table i with probability (ni − α)/(n+ θ),
• placed at new table with probability (θ + kα)/(n+ θ).

n  1 − α
n  + θ

1st table

n  − α
n  + θ
2

2nd table

n  − α
n  + θ
k

kth table

θ + k α
n  + θ

new table

Figure 3.2: Chinese Restaurant Process with (α, θ) seating plan

To satisfy the rules of probability it is necessary to suppose that

• either α = −κ < 0 and θ = mκ for some m = 1, 2, . . .
• or 0 ≤ α ≤ 1 and θ > −α. (3.5)

Case (α = −κ < 0 and θ = mκ, for some m = 1, 2, . . .) Compare the (α, θ)
seating plan with Exercise 2.2.5 to see that in this case Π∞ is distributed as if
by sampling from a symmetric Dirichlet distribution with m parameters equal
to κ. This can also be seen by comparison of (2.17) and (3.6) below.

Case (α = 0 and θ > 0) This is the weak limit of the previous case as κ→ 0
and mκ→ θ. By consideration of this weak limit, or by the Blackwell-MacQueen
urn scheme (2.18), such a Π∞ is distributed as if by sampling from a Dirichlet
process with parameter θ.
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Case (α = 0 and θ = 1) This instance of the previous case corresponds
to Π∞ generated by the cycles of a consistent sequence of uniform random
permutations, as in the previous section.

Case (0 < α < 1 and θ > −α) This case turns out to be related to the stable
subordinator of index α, as will be explained in detail in Section 4.2.

Theorem 3.2. [347] For each pair of parameters (α, θ) subject to the con-
straints above, the Chinese restaurant with the (α, θ) seating plan generates an
exchangeable random partition Π∞ of N. The corresponding EPPF is

pα,θ(n1, . . . , nk) =
(θ + α)k−1↑α

∏k
i=1(1− α)ni−1↑1

(θ + 1)n−1↑1
(3.6)

where

(x)n↑α :=

n−1∏

i=0

(x+ iα). (3.7)

The corresponding limit frequencies of classes, in size-biased order of least ele-
ments, can be represented as

(P̃1, P̃2, . . .) = (W1, W 1W2, W 1W 2W3, . . .) (3.8)

where the Wi are independent, Wi has beta(1 − α, θ + iα) distribution, and
W i := 1−Wi.

Proof. By construction, the probability that Πn equals a specific partition
of [n] is found to depend only on the sizes (n1, . . . , nk) of the blocks of the
partition, as indicated by pα,θ(n1, . . . , nk). Since this function is symmetric in
(n1, . . . , nk), each Πn is exchangeable, and by construction the sequence (Πn)
is consistent. So Π := (Πn) is an exchangeable random partition of N. The
joint law of the Wi can be identified either using formula (3.4), or by repeated
application of the beta-binomial relation described around (2.15) . �

Definition 3.3. (GEM and PD distributions) For (α, θ) subject to the
constraints (3.5), call the distribution of size-biased frequencies (P̃j), defined
by the residual allocation model (3.8), the Griffiths-Engen-McCloskey distri-
bution with parameters (α, θ), abbreviated GEM(α, θ). Call the corresponding

distribution on P↓
[0,1] of ranked frequencies (P ↓

i ) of an (α, θ) partition, obtained

by ranking (P̃j) with GEM(α, θ) distribution, the Poisson-Dirichlet distribution
with parameters (α, θ), abbreviated pd(α, θ).

Explicit but complicated formulae are known for the joint density of the first
j coordinates of a pd(α, θ) distributed sequence [371], but these formulae are of
somewhat limited use.
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Characterizations of the two-parameter scheme. The closure of the two-
parameter family of models consists of the original two-parameter family subject
to the constraints on (α, θ) discussed above, plus the following models:
• the degenerate case with Πn the partition of singletons for all n; this arises
for α = 1 and as the weak limit of (α, θ) partitions as θ → ∞ for any fixed
α ∈ [0, 1).
• for each m = 1, 2, . . . the coupon collectors partition (2.16) defined by m
frequencies identically equal to 1/m; this is the weak limit of (−κ,mκ) partitions
as κ→∞ for fixed m.
• for each 0 ≤ p ≤ 1 the mixture with weights p and 1 − p of the one block
partition and the partition into singletons. As observed by Kerov [240, (1.10)],
this limit is obtained as α→ 1 and θ → −1 with (1−α)/(1 + θ)→ p. The cases
p = 0 and p = 1 arise also as indicated just above.

Theorem 3.4. [240, 349] Suppose that an exchangeable random partition Π∞
of N has block frequencies P̃j (in order of least elements) such that 0 < P̃1 < 1
almost surely, and either
(i) The restriction Πn of Π∞ to [n] is a Gibbs[n](v•, w•) partition, meaning its
EPPF is of the product form (1.48), for some pair of non-negative sequences
v• and w•, or
(ii) the frequencies P̃j are of the product form (3.8) for some independent random
variables Wi.
Then the distribution of Π∞ is either that determined by (α, θ) model for some
(α, θ), or that of a coupon collectors partition, for some m = 2, 3, . . ..

Proof. Assuming (i), the form of the EPPF is forced by elementary arguments
using addition rules of an EPPF [240]. Assuming (ii), the form of the distribution
of the Wi is forced by symmetry of the EPPF and the formula (3.4). See [349]
for details. �

See also Zabell [441] for closely related characterizations by the simple form of
the prediction rule for (Πn) defined by the (α, θ) seating plan. Note in particular
the following consequence of the previous theorem:

Corollary 3.5. McCloskey [302]. An exchangeable random partition Π∞ of N

has block frequencies P̃j (in order of least elements) of the product form (3.8) for
some sequence of independent and identically distributed random variables Wi

with 0 < Wi < 1 if and only if the common distribution of the Wi is beta(1, θ)
for some θ > 0, in which case Π∞ is generated by the (0, θ) model.

This result of McCloskey is easily transformed into another characterization
of the (0, θ) model due to Kingman. The following formulation is adapted from
Aldous [14, p. 89].

Corollary 3.6. Let Π∞ be an exchangeable random partition of N. The distri-
bution of Π∞ is governed by the (0, θ) model iff for each pair of integers i and j,
the probability that i and j belong to the same component of Π∞ is 1/(1+θ), and
Π∞ has the following further property: for each pair of non-empty disjoint finite
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sets of positive integers A and B, the event that A is a block of the restriction
of Π∞ to A ∪ B is independent of the restriction of Π∞ to B.

Proof. That the (0, θ) model satisfies the independence condition is evident
from the form of its EPPF. Conversely, in terms of the general Chinese restau-
rant construction, the exchangeability of Π∞ plus the independence condition
means that the process of seating customers at tables 2, 3, . . ., watched only
when customers are placed at one of these tables, can be regarded in an obvious
way as a copy of the original process of seating customers at tables 1, 2, 3, . . .,
and that this copy of the original process is independent of the sequence of times
at which customers are seated at table 1. It follows that if the block frequencies
(P̃j) of Π∞ are represented in the product form (3.8), then the asymptotic fre-

quency P̃1 = W1 of customers arriving at table 1 is independent of the sequence
(W2,W3, . . .) governing the relative frequencies of arrivals at tables 2, 3, . . ., and

that (W2,W3, . . .)
d
= (W1,W2, . . .). So the Wi are i.i.d. and the conclusion fol-

lows from Corollary 3.5. �

Problem 3.7. Suppose an exchangeable random partition Π∞ has block fre-
quencies (P̃i) such that 0 < P̃i < 1 and P̃1 is independent of the sequence
(P̃i/(1− P̃1), i ≥ 2). Is Π∞ necessarily some (α, θ) partition?

Exercises

3.2.1. (Deletion of Classes.) Given a random partition Π∞ of N with in-
finitely many classes, for each k = 0, 1, · · · let Π∞(k) be the partition of N

derived from Π∞ by deletion of the first k classes. That is, first let Π′
∞(k) be

the restriction of Π∞ to Hk := N−G1 − · · · −Gk where G1, · · ·Gk are the first
k classes of Π∞ in order of appearance, then derive Π∞(k) on N from Π′

∞(k) by
renumbering the points of Hk in increasing order. The following are equivalent:

(i) for each k, Π∞(k) is independent of the frequencies (P̃1, · · · , P̃k) of the
first k classes of Π∞;

(ii) Π∞ is an (α, θ)-partition for some 0 ≤ α < 1 and θ > −α, in which case
Π∞(k) is an (α, θ + kα)-partition.

3.2.2. (Urn scheme for a ( 1
2 , 0) partition) Let an urn initially contain two

balls of different colors. Draw 1 is a simple draw from the urn with replacement.
Thereafter, balls are drawn from the urn, with replacement of the ball drawn,
and addition of two more balls as follows. If the ball drawn is of a color never
drawn before, it is replaced together with two additional balls of two distinct
new colors, different to the colors of balls already in the urn. Whereas if the ball
drawn is of a color that has been drawn before, it is replaced together with two
balls of its own color. Let Πn be the partition of [n] generated by the colors of
the first n draws from the urn. Then Π∞ := (Πn) is a ( 1

2 , 0) partition.

3.2.3. (Number of blocks) Let Pα,θ govern Π∞ = (Πn) as an (α, θ) partition,
for some (α, θ) subject to the constraints (3.5). Let Kn be the number of blocks
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of Πn:

Kn := |Πn| =
n∑

j=1

|Πn|j =

n∑

i=1

Xi

where |Πn|j is the number of blocks of Πn of size j, and Xi is the indicator
of the event that i is the least element of some block of Π∞ (customer i sits
at an unoccupied table). Under Pα,θ the sequence (Kn)n≥1 is a Markov chain,
starting at K1 = 1, with increments in {0, 1}, and inhomogeneous transition
probabilities

Pα,θ(Kn+1 = k + 1 |K1, . . . ,Kn = k) =
kα+ θ

n+ θ
(3.9)

Pα,θ(Kn+1 = k |K1, . . . ,Kn = k) =
n− kα
n+ θ

. (3.10)

The distribution of Kn is given by

Pα,θ(Kn = k) =
(θ + α)k−1↑α

(θ + 1)n−1↑
Sα(n, k) (3.11)

where
Sα(n, k) := Bn,k((1− α)•−1↑) = S−1,−α

n,k (3.12)

is a generalized Stirling number of the first kind, as in (1.20). The expected
value of Kn is

Eα,θ(Kn) =

n∑

i=1

(θ + α)i−1↑
(θ + 1)i−1↑

=







n∑

i=1

θ

θ + i− 1
if α = 0

(θ + α)n↑
α(θ + 1)n−1↑

− θ

α
if α 6= 0.

(3.13)

3.2.4. (Serban Nacu [318]) (Independent indicators of new blocks) Com-
pare with Exercise 2.1.4 and Exercise 4.3.4 . Let Xi be the indicator of the
event that i is the least element of some block of an exchangeable random par-
tition Πn of [n]. Show that the Xi, 1 ≤ i ≤ n are independent if and only if Πn

is a (0, θ) partition of [n] for some θ ∈ [0,∞], with the obvious definition by
continuity in the two endpoint cases.

3.2.5. (Equilibrium of a coagulation/fragmentation chain)[301, 110, 361,

169] Let P↓
1 be the space of real partitions of 1. Define a Markov kernel Q on

P↓
1 as follows. For p = (pi) ∈ P↓

1 , let I and J be independent and identically
distributed according to p. If I = J then replace pI by two parts pIU and
pI(1−U) where U is uniform(0, 1) independent of I, J , and rerank, but if I 6= J
then replace the two parts pI and pJ by a single part pI + pJ , and rerank.

• (a) Show that pd(0, 1) is a Q-invariant measure.
• (b) [110] (hard). Show pd(0, 1) is the unique Q-invariant measure.
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• (c) Modify the transition rule so that pd(0, θ) is an invariant measure.
• (d)(Open problem) Show that pd(0, θ) is the unique invariant measure for

the modified rule.
• (d)(Open problem) Define some kind of coagulation/fragmentation kernel

for which pd(α, θ) is an invariant measure.

3.2.6. The probabilities qα,θ(n, k) := Pα,θ(Kn = k) can be computed recur-
sively from the forwards equations

qα,θ(n+1, k) =
n− kα
n+ θ

qα,θ(n, k)+
θ + (k − 1)α

n+ θ
qα,θ(n, k−1), 1 ≤ k ≤ n. (3.14)

and the boundary cases

qα,θ(n, 1) =
(1− α)n−1↑
(θ + 1)n−1↑

; qα,θ(n, n) =
(θ + α)n−1↑α

(θ + 1)n−1↑α
(3.15)

For instance, the distribution of K3 is as shown in the following table:

k 1 2 3

Pα,θ(K3 = k)
(1− α)(2− α)

(θ + 1)(θ + 2)

3(1− α)(θ + α)

(θ + 1)(θ + 2)

(θ + α)(θ + 2α)

(θ + 1)(θ + 2)

3.2.7. Take θ = 0 and use (3.11) to obtain a recursion for the Sα(n, k):

Sα(n, 1) = (1− α)n−1↑; Sα(n, n) = 1 (3.16)

Sα(n+ 1, k) = (n− kα)Sα(n, k) + Sα(n, k − 1). (3.17)

Toscano [415] used this recursion as his primary definition of these numbers,
and obtained from it the formula

Sα(n, k) =
1

k!
∆k

α,x(x)n↑

∣
∣
∣
∣
x=0

(3.18)

where ∆k
α,x is the kth iterate of the operator ∆α,x, defined by ∆0,x = d

dx
(Jordan[222]) and for α 6= 0,

(∆α,xf)(x) =
f(x)− f(x− α)

α
.

Check Toscano’s formula

Sα(n, k) =
1

αkk!

k∑

j=1

(−1)j

(
k

j

)

(−kα)n↑ (α 6= 0). (3.19)

3.2.8. [132] Deduce the formula (3.13) for Eα,θ(Kn) by integration from the
general formula (2.27) and the beta(1− α, θ + α) distribution of the frequency
P̃1 of the first block.
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3.2.9. For real p > 0 let [k]p := Γ(k + p)/Γ(k) so that [k]p = (k)p↑ for p =
1, 2, . . .. For 0 < α < 1, and all real p > 0,

Eα,0[Kn]p =
Γ(p)[pα]n

Γ(n)α
. (3.20)

3.2.10. Let Π∞ := (Πn) be an exchangeable random partition of N, with

ranked frequencies denoted simply (Pj) instead of (P ↓
j ). Let p be the EPPF

of Π∞, and let q be derived from p by (2.8).

• There is the formula

q(n1, . . . , nk) = E





k∏

i=1





∞∑

j=1

Pni

j







 (3.21)

without further qualification if
∑

j Pj = 1 a.s., and with the qualification
if P(

∑

j Pj < 1) > 0 that ni ≥ 2 for all i.
• For each fixed a > 0, the distribution of (Πn) on PN, and that of (Pj) on

P↓
1 , is uniquely determined by the values of p(n1, . . . , nk) for ni ≥ a for

all a. Similarly for q instead of p.
• (Πn) is an (α, θ) partition, or equivalently (Pj) has pd(α, θ) distribution,

iff p satisfies the recursion

p(n1 + 1, . . . , nk) =
n1 − α
n+ θ

p(n1, . . . , nk). (3.22)

Note that p is subject also to the constraints of an EPPF, that is symmetry,
the addition rule, and P (1) = 1. These constraints and (3.22) imply p =
p(α,θ) as in (3.6).

• (Πn) is an (α, θ) partition, or equivalently (Pj) has pd(α, θ) distribution,
iff q satisfies the recursion

q(n1 + 1, . . . , nk) =
n1 − α
n+ θ

q(n1, . . . , nk) +
n∑

s=2

q(n1 + ns, . . . , nk) (3.23)

where the number of arguments of q(n1 + 1, . . . , nk) and q(n1, . . . , nk) is
k, and the number of arguments of q(n1 +ns, . . . , nk) is k−1, with ns the
missing argument. Note that q is subject also to the a priori constraints
of symmetry, and q(1, . . . , 1) ≡ 1. These constraints and (3.23) imply that
q = q(α,θ) is given by formula (2.8) for p = p(α,θ) as in (3.6). There does
not appear to be any simpler formula for q(α,θ).

In the case θ = 0, the recursion (3.23) for q = q(α,0) was derived by Talagrand
[412, Proposition 1.2.2], using relations of Ghirlanda-Guerra [166] in the con-
text of Derrida’s random energy model [105] in the theory of spin glasses. The
appearance of pd(α, 0) in that setting is explained in Exercise 4.2.1 . Once the
parallel between (3.22) and (3.23) has been observed for θ = 0, the result for
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general θ is easily guessed, and can be verified algebraically using (2.8). The
identities (2.8) and (3.22) have a transparent probabilistic meaning, the latter
in terms of the Chinese Restaurant Process. Can (3.23) too be understood with-
out calculation in some setting? Does (3.23) or PD(α, θ) have an interpretation
in terms of spin glass theory for θ 6= 0?

3.3. Asymptotics

The asymptotic properties of (α, θ) partitions of [n] for large n depend on
whether α is negative, 0, or positive. Recall the notations Kn := |Πn| for the
number of blocks of Πn, and |Πn|j for the number of blocks of Πn of size j. So

Kn := |Πn| =

n∑

j=1

|Πn|j

Case (α < 0). Then θ = −mα for some positive integer m, and Kn = m for
all sufficiently large n almost surely.

Case (α = 0). Immediately from the prediction rule, for a (0, θ) partition, the
Xi are independent Bernoulli(θ/(θ + i− 1) variables. Hence [263]

lim
n→∞

Kn

logn
= θ, a.s. P0,θ for every θ > 0. (3.24)

Moreover, it follows easily from Lindeberg’s theorem that the P0,θ distribution
of (Kn − θ log n)/

√
θ log n converges to standard normal as n→∞. By consid-

eration of the Ewens sampling formula (2.20), for each fixed k

{(|Πn|j , j ≥ 1); P0,θ} d→ (Zθ,j , j ≥ 1) (3.25)

meaning that under P0,θ which governs Π∞ as a (0, θ) partition, the finite dimen-
sional distributions of the counts (|Πn|j , j ≥ 1) converge without normalization
to those of (Zθ,j , j ≥ 1), where the Zθ,j are independent Poisson variables with
parameters θ/j. See [27] for various generalizations and refinements of these
results.

Case (0 < α < 1). Now Kn is a sum of dependent indicators Xi. It is easily
seen from (3.13) and Stirling’s formula that

Eα,θKn ∼
Γ(θ + 1)

αΓ(θ + α)
nα

which indicates the right normalization for a limit law.

Theorem 3.8. For 0 < α < 1, θ > −α, under Pα,θ as n→∞,

Kn/n
α → Sα almost surely (3.26)
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and in pth mean for every p > 0, for a strictly positive random variable Sα, with
continuous density

d

ds
Pα,θ(Sα ∈ ds) = gα,θ(s) :=

Γ(θ + 1)

Γ( θ
α + 1)

s
θ
α gα(s) (s > 0) (3.27)

where gα = gα,0 is the Mittag-Leffler density (0.43) of the Pα,0 distribution of
Sα, whose pth moment is Γ(p+ 1)/Γ(pα+ 1).

Proof. Fix α ∈ (0, 1). Let Fn be the field of events generated by Πn. The
formula (3.6) for the EPPF of Πn under Pα,θ gives the likelihood ratio

Mα,θ,n :=
dPα,θ

dPα,0

∣
∣
∣
∣
Fn

=
fα,θ(Kn)

f1,θ(n)
(3.28)

where for θ > −α

fα,θ(k) :=
(θ + α)k−1↑α

(α)k−1↑α
=

Γ( θ
α + k)

Γ( θ
α + 1)Γ(k)

∼ kθ/α

Γ( θ
α + 1)

as k →∞. (3.29)

Thus, for each θ > −α,

(Mα,θ,n,Fn;n = 1, 2, . . .) is a positive Pα,0-martingale.

By the martingale convergence theorem Mα,θ,n has a limit Mα,θ almost surely
(Pα,0). Theorem 3.2 shows that Π∞ has infinitely many blocks with strictly
positive frequencies, and hence Kn →∞ almost surely (Pα,0) so (3.29) gives

Mα,θ,n ∼
Γ(θ + 1)

Γ( θ
α + 1)

(
Kn

nα

)θ/α

almost surely(Pα,0) (3.30)

Moreover the ratio of the two sides in (3.30) is bounded away from 0 and ∞.
Using (3.20), it follows that for each θ > −α, the martingale Mα,θ,n is bounded
in Lp(Pα,0), hence convergent in Lp(Pα,0) to Mα,θ for every p > 1. Hence

Eα,0Mα,θ = 1. (3.31)

But also by (3.30),

Γ(θ + 1)

Γ( θ
α + 1)

(
Kn

nα

)θ/α

→Mα,θ =
Γ(θ + 1)

Γ(θ/α+ 1)
Sθ/α

α (3.32)

Pα,0 almost surely and in Lp, where Sα := Mα,α/Γ(α+ 1). Now (3.31) and (3.32)
yield the moments of the Pα,0 distribution of S. Since these are the moments
(0.42) of the Mittag-Leffler distribution, the conclusions of the theorem in case
θ = 0 are evident. The corresponding results for θ > 0 follow immediately from
the results for θ = 0, due to the following corollary of the above argument. �
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Corollary 3.9. Let Pα,θ denote the distribution on PN of an (α, θ)-partition
Π∞ := (Πn). For each 0 < α < 1, θ > −α, the laws Pα,θ and Pα,0 are mutually
absolutely continuous, with density

dPα,θ

dPα,0
=

Γ(θ + 1)

Γ( θ
α + 1)

S
θ
α
α (3.33)

where Sα is the almost sure limit of |Πn|/nα under Pα,θ for every θ > −α.

Proof. This is read from the previous argument, by martingale theory. �

In view of Corollary 3.9, the limit random variable

Sα := lim
n
|Πn|/nα (3.34)

plays a key role in describing asymptotic properties of an (α, θ) partition Π∞.

Definition 3.10. Say that Π∞, an exchangeable partition of N has α-diversity
Sα if the limit (3.34) exists and is strictly positive and finite almost surely.

This limit random variable Sα can be characterized in a number of different
ways, by virtue of the following lemma. According to Theorem 3.8 and Corollary
3.9, the conditions of the Lemma apply to an (α, θ) partition Π∞, for each
α ∈ (0, 1), and each θ > −α.

Write Ai ∼ Bi if Ai/Bi → 1 almost surely as i→∞.

Lemma 3.11. Fix α ∈ (0, 1), An exchangeable random partition Π∞ has α-
diversity Sα, defined as an almost sure limit (3.34), which is strictly positive
and finite, if and only if

P ↓
i ∼ Zi−1/α as i→∞ (3.35)

for some random variable Z with 0 < Z <∞. In that case Sα and Z determine
each other by

Z−α = Γ(1− α)Sα

and the following conditions also hold:

(1−∑k
i=1 P̃i) ∼ αΓ(1− α)1/αZk1−1/α as k →∞ (3.36)

where P̃i is the frequency of the ith block of Π∞ in order of appearance;

|Πn|j ∼ pα(j)Sαn
α for each j = 1, 2, . . . (3.37)

where |Πn|j is the number of blocks of Πn of size j, and (pα(j), j = 1, 2, . . .) is
the discrete probability distribution defined by

pα(j) = (−1)j−1

(
α

j

)

=
α(1− α)j−1↑

j!
(3.38)

and

|Πn|j/|Πn| → pα(j) for every j = 1, 2, . . . a.s. as n→∞. (3.39)
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Sketch of proof. By Kingman’s representation, it suffices to establish the
Lemma for Π∞ with deterministic frequencies P ↓

i . Most of the claims in this
case can be read from the works of Karlin [232] and Rouault [392], results in
the theory of regular variation [66], and large deviation estimates for sums of
bounded independent random variables obtained by Poissonization [158]. �

The discrete probability distribution (3.38) arises in other ways related to
the positive stable law of index α. See the exercises below, and [351, 355] for
further references.

The ranked frequencies

Theorem 3.12. Case (α = 0) [153]. A random sequence (P ↓
i ) has pd(0, θ)

distribution iff for Γθ a gamma(θ) variable independent of (P ↓
i ), the sequence

(ΓθP
↓
i ) is the ranked sequence of points of a Poisson process on (0,∞) with

intensity θx−1e−xdx.

Proof. This follows from previous discussion.

Theorem 3.13. Case (0 < α < 1).

(i) [341] A random sequence (P ↓
i ) with

∑

i P
↓
i = 1 has pd(α, 0) distribution iff

the limit
Sα := lim

i→∞
iΓ(1− α)(P ↓

i )α (3.40)

exists almost surely, and the sequence (S
−1/α
α P ↓

i ) is the ranked sequence of points
of a Poisson process on (0,∞) with intensity αΓ(1− α)−1x−α−1dx.

(ii) [351] For θ > −α, and (P ↓
i ) the pd(α, θ) distributed sequence of ranked

frequencies of an (α, θ)-partition Π∞, the limit Sα defined by (3.40) exists and
equals almost surely the α-diversity of Π∞, that is

Sα = limn→∞|Πn|/nα. (3.41)

(iii) [341] For θ > −α, the pd(α, θ) distribution is absolutely continuous with
respect to pd(α, 0), with density

d pd(α, θ)

d pd(α, 0)
=

Γ(θ + 1)

Γ( θ
α + 1)

S
θ
α
α

for Sα as in (3.40).

Proof. Part (i) follows from results of [341] which are reviewed in Section 4.1. If
a sequence of ranked frequencies admits the limit (3.40) almost surely in (0,∞),
then it can be evaluated as in (3.41) using the associated random partition Π∞.
This was shown by Karlin [232] for Π∞ with deterministic frequencies, and the
general result follows by conditioning on the frequencies. This gives (ii), and
(iii) is just a translation of Corollary 3.9 via Kingman’s correspondence, using
(ii). �
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In particular, parts (i) and (ii) imply that if S := Sα is the α-diversity of
an (α, 0) partition Π∞, then S−1/α has the stable(α) law whose Lévy density
is αΓ(1 − α)−1x−α−1dx. This can also be deduced from Theorem 3.8, since
we know from (0.43) that a random variable S has Mittag-Leffler(α) law iff
S−1/α has this stable(α) law. It must also be possible to establish the Poisson

character of the random set of points {S−1/αP ↓
i } = {S−1/αP̃i} by some direct

computation based on the prediction rule for an (α, 0) partition, but I do not
know how to do this.

Exercises

3.3.1. [351](Poisson subordination) Fix α ∈ (0, 1), and let Z be the closure
of the range of a stable subordinator of index α. Let N be a homogeneous
Poisson point process on R>0 and let Xi be the number of points of N in the
ith interval component of the complement of Z that contains at least one point
of N . Then the Xi are independent and identically distributed with distribution
(pα(j), j = 1, 2, . . .) as in (3.38). Generalize to a drift-free subordinator that is
not stable.

3.3.2. If Pα governs independent X1, X2, . . . with distribution (3.38), as in the
previous exercise, then

Eα(zXi) = 1− (1− z)α. (3.42)

Let Sk := X1 + · · ·+Xk. Then

Pα(Sk = n) = [zn](1− (1− z)α)k (3.43)

so the generalized Stirling number Sα(n, k) in (3.11), (3.12), (3.18), (3.19), ac-
quires another probabilistic meaning as

Sα(n, k) =
n!

k!
α−k

Pα(Sk = n) (3.44)

and the distribution of Kn for an (α, θ) partition is represented by the formula

Pα,θ(Kn = k) =
( θ

α + 1)k−1↑
α(θ + 1)n−1↑

n!

k!
Pα(Sk = n). (3.45)

3.3.3. (A local limit theorem) [355] In the setting of Theorem 3.8, establish
the local limit theorem

Pα,θ(Kn = k) ∼ gα,θ(s)n−α as n→∞ with k ∼ snα. (3.46)

Deduce from (3.11) and (3.46) an asymptotic formula for Sα(n, k) as n → ∞
with k ∼ snα.

3.3.4. For 0 < α < 1, as n→∞, for each p > 0

Eα,θ(Kp
n) ∼ nαp Γ( θ

α + p+ 1)Γ(θ + 1)

Γ(θ + pα+ 1)Γ( θ
α + 1)

. (3.47)
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Notes and comments

Lemma 3.11 is from unpublished work done jointly with Ben Hansen. There is
much interest in power law behaviour, such as described by Lemma 3.11, in the
literature of physical processes of fragmentation and coagulation. See [306] and
papers cited there.

3.4. A branching process construction of the two-parameter model

This section offers an interpretation of the (α, θ) model for 0 ≤ α ≤ 1, θ > −α,
in terms of a branching process in continuous time, which generalizes the model
of Tavaré [414] in case θ = 0. This brings out some interesting features of (α, θ)
partitions which are hidden from other points of view.

Fix 0 ≤ α ≤ 1. Consider a population of individuals of two types, novel and
clone. Each individual is assigned a color, and has infinite lifetime. Starting from
a single novel individual at time t = 0, of some first color, suppose that each
individual produces offspring throughout its infinite lifetime as follows:

• Novel individuals produce novel offspring according to a Poisson process
with rate α, and independently produce clone offspring according to a
Poisson process with rate 1− α.

• Clones produce clone offspring according to a Poisson process with rate 1.

Each novel individual to appear is assigned a new color, distinct from the colors
of all individuals in the current population. Each clone has the same color as its
parent. Let

Nt := number of all individuals at time t

N∗
t := number of novel individuals at time t.

Thus N∗
0 = N0 = 1, and 1 ≤ N∗

t ≤ Nt for all t ≥ 0. The process (N∗
t , t ≥ 0) is a

Yule process with rate α, that is a pure birth process with transition rate iα from
state i to state i+ 1. Similarly, (Nt, t ≥ 0) is a Yule process with rate 1. Think
of the individuals as colored balls occupying boxes labelled by N := {1, 2, . . .}.
So the nth individual to be born into the population is placed in box n. The
colors of individuals then induce a random partition of N. Each novel individual
appears in the first of an infinite subset of boxes containing individuals of the
same color.

Proposition 3.14. The random partition of Π of N, generated by the colors
of successive individuals born into the population described above, is an (α, 0)
partition. The number of blocks in the induced random partition of [n] is the
value of N∗

t at every time t such that Nt = n. For each t > 0, the conditional
distribution of N∗

t given Nt = n is identical to the distribution of Kn, the number
of blocks of the partition of [n], for an (α, 0) partition.

Proof. Let Πn be the partition of [n] induced by Π. It follows easily from the
description of the various birth rates that (Πn, n = 1, 2, . . .) is a Markov chain
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with transition probabilities described by the (α, θ) urn scheme, independent of
the process (Nt, t ≥ 0). �

According to a standard result for the Yule process

e−tNt
a.s.→ W

e−αtN∗
t

a.s.→ W ∗,

where W and W ∗ are both exponentially distributed with mean 1. Combined
with Proposition 3.14 this implies

Corollary 3.15. W ∗ = SWα where S := limn→∞Kn/n
α is independent of W .

A formula for the moments of S follows immediately, confirming the result
of Theorem 3.8 that S has Mittag-Leffler distribution with parameter α.

To present a continuous time variation of the residual allocation model, let

N
(k)
t = be the number of individuals of the kth color to appear that are present

in the population at time t. From the previous analysis, as t→∞

(e−tNt,
N

(1)
t

Nt
,
N

(2)
t

Nt
,
N

(3)
t

Nt
, . . .)

a.s.→ (W, X1, X1X2, X1X2X3, . . .) (3.48)

where W , X1, X2, . . . are independent, W has exp(1) distribution, and Xi (de-
noted Wi in (3.8)) has beta(1− α, iα) distribution. Equivalently,

e−t(Nt, N
(1)
t , N

(2)
t , . . .)

a.s.→ (W,WX1,WX1X2, . . .). (3.49)

In particular, the limit law of e−t(N
(1)
t , Nt − N1

t ) is that of WX1 and WX1,
which are independent gamma(1 − α) and gamma(α) respectively. The subse-
quent terms have more complicated joint distributions.

Case 0 ≤ α ≤ 1, θ > −α. Define a population process with two types of
individuals, exactly as in the case θ = 0 treated as above, but with the following
modification of the rules for the offspring process of the first novel individual
only. This first individual produces novel offspring at rate α + θ (instead of α
as before) and clone offspring at rate 1− α (exactly as before). Both clone and
novel offspring of the first individual reproduce just as before. And the rules for
coloring are just as before. It is easily checked that the transition rules when the
partition is extended from n individuals to n + 1 individuals are exactly those
of the (α, θ) prediction rule. So the random partition Π of N induced by this
population process is an (α, θ) partition.

Case 0 ≤ α ≤ 1, θ ≥ 0. This can be described more simply by a slight
modification of the rules for the above scheme. The modified scheme is then a
generalization of the process described by Tavaré [414] in case α = 0, θ > 0.
Instead of letting the first individual produce novel offspring at rate α+θ, let the
first individual produce novel offspring at rate α, and let an independent Poisson
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migration process at rate θ bring further novel individuals into the population.
Otherwise the process runs as before. Now the first novel individual follows the
same rules as all other novel individuals.

If the distinction between novel and clone individuals is ignored, we just
have a Yule process with immigration, where all individuals produce offspring
at rate 1, and there is immigration at rate θ. If we keep track of the type
of individuals, since each immigrant is novel by definition, it is clear that the
partition generated by all the colors is a refinement of the partition whose classes
are the progeny of the first individual, the progeny of the first immigrant, the
progeny of the second immigrant, and so on. Each of these classes is created by
a Yule process with rate 1, whose individuals are partitioned by coloring exactly
as before in case θ = 0. This structure reveals the following result:

Proposition 3.16. Let 0 ≤ α ≤ 1, θ ≥ 0. Let a stick of length 1 be broken
into lengths Pn = X1 . . . Xn−1Xn according to the GEM (0, θ) distribution, as
in (3.8). Then, let each of these stick be broken further, independently of each
other, according to the GEM (α, 0), to create a countable array of sticks of
lengths

P1X11, P1X11X12, P1X11X12X13, . . .

P2X21, P2X21X22, P2X21X22X23, . . .

where X1, X2, . . . , X11, X12, . . . , X21, X22, . . . are independent, with Xj ∼ beta(1, θ)
for all j, and Xij ∼ beta(1−α, jα) for all i and j. Let Q1, Q2, . . . be a size-biased
random permutation of the lengths in this array. Then the Qn are distributed
according to GEM(α, θ), that is:

Qn = Y 1Y 2 . . . Y n−1Yn

where the Yj are independent beta(1− α, θ + jα).

By arguing as in Hoppe [202], Proposition 3.16 can be restated as follows:

Proposition 3.17. Let 0 < α <, θ ≥ 0. Let {Ai} be a (0, θ) random partition of
[n]. Given {Ai}, with say k blocks, let {Aij}, j = 1, . . . , k be independent (α, 0)
random partitions of Ai. Then {Aij} is an (α, θ) random partition of [n].

In view of Theorem 3.2, either of these propositions follow easily from the
other. A direct calculation shows that the result for finite partitions reduces to
the following variant of formula (1.16) for the generating function of numbers
of cycles in a random permutation of [n]:

n∑

j=1

θj
∑

{Ci,1≤i≤j}
Πj

i=1(|Ci| − 1)!α|Ci|−1 = θ(θ + α) . . . (θ + (n− 1)α) (3.50)

where the second sum is over all partitions {Ci, 1 ≤ i ≤ j} of [n] into j parts,
and |Ci| is the number of elements of Ci. See also [368, (67)], [371, Proposition
22] for further discussion, and (5.26) for a more refined result.



Notes and comments

This section is based on an unpublished supplement to the technical report
[346], written in November 1992. See also Feng and Hoppe [152] for a similar
approach, with reference to an earlier model of Karlin. See Dong, Goldschmidt
and Martin [113] for some recent developments.
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Chapter 4

Poisson constructions of

random partitions

This chapter is a review of various constructions of random partitions from
Poisson point processes of random lengths, based on the work of Kingman and
subsequent authors [249, 341, 371, 351, 362]. The lengths can be interpreted as
the jumps of a subordinator, or as the lengths of excursions of some Markov
process. The treatment is organized by sections as follows:

4.1. Size-biased sampling This section presents results of Perman, Pit-
man and Yor [341], characterizing the distribution of the size-biased per-
mutation of relative lengths derived from the Poisson point process of
jumps (Tt − Tt−; 0 ≤ t ≤ 1) of a subordinator (Tt, t ≥ 0).

4.2. Poisson representation of the two-parameter model In the par-
ticular case when (Tt) is a stable subordinator of index α ∈ (0, 1), this
provides a natural approach to the two-parameter family of (α, θ) random
partitions whose frequencies in size-biased order have the characteristic
property that they may be represented as

(W1,W 1W2,W 1W 2W 3, . . .) (4.1)

where the Wi are independent random variables with values in (0, 1), and
W i := 1−Wi.

4.3. Representation of infinite Gibbs partitions This section shows how
exchangeable random partitions of N, whose partition probability func-
tions are of a particular product form, may be represented in terms of
partitions derived from suitable subordinators.

4.4. Lengths of stable excursions This section treats various features of
the two-parameter Poisson-Dirichlet distributions PD(α, 0) and PD(α, α)
which are induced by the ranked lengths of excursions of a Bessel process
and Bessel bridge of dimension 2− 2α.
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4.5. Brownian excursions The special case α = 1
2 , corresponds to excur-

sions of a Brownian motion or Brownian bridge. Various integrals, which
are intractable for general α, can be expressed for α = 1

2 in terms of
classical special functions. This provides a detailed description of random
partitions of [0, 1] generated by Brownian excursions, with conditioning on
the local time at 0. As shown in [17, 18], and discussed further in Chapter
9 and Chapter 10, these random partitions arise naturally in studying the
asymptotic distribution of partitions derived in various ways from random
forests, random mappings, and the additive coalescent.

4.1. Size-biased sampling

Following McCloskey [302], Kingman [249], Engen [132], Perman, Pitman and

Yor [339, 341, 371], consider the ranked random discrete distribution (P ↓
i ) :=

(J↓
i /T ) derived from an inhomogeneous Poisson point process of random lengths

J↓
1 ≥ J↓

2 ≥ · · · ≥ 0

by normalizing by the total length T :=
∑∞

i=1 J
↓
i . For each interval I it is

assumed that NI :=
∑

i 1(J↓
i ∈ I) is a Poisson variable with mean Λ(I), for some

Lévy measure Λ on (0,∞), and that the counts NI1 , · · · , NIk
are independent for

every finite collection of disjoint intervals I1, · · · , Ik. The following assumption
will also be made so that various conditional probabilities can be defined easily:
Regularity assumption. The Lévy measure Λ has a density ρ(x) and the
distribution of T is absolutely continuous with density

f(t) := P(T ∈ dt)/dt

which is strictly positive and continuous on (0,∞) with
∫∞
0
f(t)dt = 1.

For λ ≥ 0 let

Ψ(λ) :=

∫ ∞

0

(1− e−λx)ρ(x)dx. (4.2)

Since P(T = 0) = exp[−Ψ(∞−)] the regularity assumption implies

Ψ(∞−) =

∫ ∞

0

ρ(x)dx =∞. (4.3)

It is well known that f is uniquely determined by ρ, either via its Laplace
transform

E(e−λT ) =

∫ ∞

0

e−λxf(x)dx = exp[−Ψ(λ)] (4.4)

or as the unique solution of the integral equation

f(t) =

∫ t

0

ρ(v)f(t− v)
v

t
dv (4.5)
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which is obtained by differentiation of (4.4) with respect to λ. Let (P̃j) be a size-

biased permutation of the normalized lengths (P ↓
i ) := (J↓

i /T ) and let (J̃j) =

(T P̃j) be the corresponding size-biased permutation of (J↓
i ). Then [302, 341]

P(J̃1 ∈ dv, T ∈ dt) = ρ(v)dvf(t− v)dt
v

t
, (4.6)

which can be understood informally as follows. The left side of (4.6) is the
probability that among the Poisson lengths there is some length in dv near v,
and the sum of the rest of the lengths falls in an interval of length dt near t− v,
and finally that the interval of length about v is the one picked by length-biased
sampling. Formally, (4.6) is justified by the description of a Poisson process in
terms of its family of Palm measures [341]. Note that (4.5) is recovered from
(4.6) be integrating out v. See also Exercise 4.1.1 for another interpretation of
(4.5).

Immediately from (4.6), there is the following formula for the density of the
structural distribution of P̃1 := J̃1/T given T = t: for 0 < p < 1 with p̄ := 1− p

P(P̃1 ∈ dp |T = t)

dp
= f̃(p | t) := pt ρ(pt)

f(p̄t)

f(t)
. (4.7)

For j = 0, 1, 2, · · · let

T̃j := T −
j
∑

k=1

J̃k =

∞∑

k=j+1

J̃k (4.8)

which is the total length remaining after removal of the first j Poisson lengths
J̃1, . . . , J̃j chosen by length-biased sampling. Note that T̃0 := T. Then a calcu-
lation similar to (4.6) yields:

Lemma 4.1. [341, Theorem 2.1] The sequence (T̃0, T̃1, T̃2, . . .) is a Markov chain
with stationary transition probabilities

P(T̃j+1 ∈ dt1 | T̃j = t) =
ρ∗(t− t1)

t

f(t1)

f(t)
dt1 (4.9)

where ρ∗(x) := xρ(x).

Now

P̃j = Wj

j−1
∏

i=1

(1−Wi) (4.10)

where 1−Wi = T̃i/T̃i−1 with T̃0 = T and the joint law of the T̃i given T = t is
described by Lemma 4.1. This description of the conditional law of (P̃j) given
T = t determines corresponding conditional distributions for the associated
ranked sequence (P ↓

i ) and for an associated exchangeable random partition Π∞
of positive integers. Each of these families of conditional distributions is weakly
continuous in t. For the size-biased frequencies (P̃j) this is clear by inspection
of formula (4.9). For the others it follows by continuity of the associations.



4.1. SIZE-BIASED SAMPLING 81

A formula for the joint density of (P ↓
1 , · · · , P ↓

n) given T = t was obtained by

Perman [339] in terms of the joint density of T and J↓
1 . This joint density can

be described in terms of ρ and f as the solution of an integral equation [339],
or as a series of repeated integrals [371]. The distribution of an exchangeable
partition (Πn) of positive integers, whose ranked frequencies are distributed

like (P ↓
i ) given T = t, is now determined by either of the formulae (2.14) and

(3.4). But a simpler way to compute partition probabilities to use the following
formula:

Lemma 4.2. [362] For each particular partition {A1, . . . , Ak} of [n], and arbi-
trary xi > 0 and t > 0,

P(Πn = {A1, . . . , Ak}, J̃i ∈ dxi, 1 ≤ i ≤ k, T ∈ dt)

=

(
k∏

i=1

ρ(xi)dxi

)

f(t− Σk
i=1xi)dt

k∏

i=1

(xi

t

)|Ai|
. (4.11)

Proof. This is derived in much the same way as (4.6) and (4.9). �

See [362] and exercises below for various applications of this formula.

Exercises

4.1.1. (Size-biasing) [417] For a non-negative random variableX with E(X) <
∞ let X∗ denote a random variable with the size-biased distribution of X , that
is

P(X∗ ∈ dx) = xP(X ∈ dx)/E(X).

The distribution of X∗ arises naturally both as an asymptotic distribution in
renewal theory, and in the theory of infinitely divisible laws. For λ ≥ 0 let
ϕX(λ) := E[e−λX ]. Then the Laplace transform of X∗ is

E[e−λX∗

] = −ϕ′
X(λ)/E(X)

where ϕ′
X is the derivative of ϕX . According to the Lévy-Khintchine represen-

tation, the distribution of X is infinitely divisible iff

−ϕ
′
X(λ)

ϕX(λ)
= c+

∫ ∞

0

xe−λxΛ(dx)

for some c ≥ 0 and some Lévy measure Λ, that is iff

E[e−λX∗

] = ϕX(λ)ϕY (λ)

where Y is a random variable with

P(Y ∈ dy) = (cδ0(dy) + yΛ(dy))/E(X). (4.12)
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Hence, for a non-negative random variable X with E(X) < ∞, the equation

X∗ d
= X + Y is satisfied for some Y independent of X if and only if the law of

X is infinitely divisible, in which case the distribution of Y is given by (4.12) for c
and Λ the Lévy characteristics of X . See also [27, 375] for further developments.

4.1.2. [362] Derive from (4.11) a formula for the infinite exchangeable parti-
tion probability function (EPPF) Section 2.2 associated with random ranked
frequencies (J̃i/T, i ≥ 1) given T = t. Deduce that the infinite EPPF associated
with random ranked frequencies (J̃i/T, i ≥ 1) is given by the (k+1)-fold integral

p(n1, . . . , nk) =

∫ ∞

0

· · ·
∫ ∞

0

f(v)dv
∏k

i=1 ρ(xi)x
ni

i dxi

(v + Σk
i=1xi)n

, (4.13)

where n = Σini. Use b−n = Γ(n)−1
∫∞
0
λn−1e−λbdλ to recast this as

p(n1, . . . , nk) =
(−1)n−k

(n− 1)!

∫ ∞

0

λn−1dλ e−Ψ(λ)
k∏

i=1

Ψ(ni)(λ) (4.14)

where Ψ(λ) is the Laplace exponent (4.2) and Ψ(j)(λ) is the jth derivative of
Ψ(λ). Check from (4.14) that the gamma(θ) Lévy density (4.15) corresponds to
a (0, θ) partition, and the stable(α) Lévy density (0.39) corresponds to an (α, 0)
partition.

4.1.3. Show that formula (4.14) and an obvious generalization of (4.13) give
the infinite EPPF associated with random ranked frequencies (J̃i/T, i ≥ 1)
without any regularity assumption on the Lévy measure besides Ψ(λ) <∞ and
Ψ(∞−) =∞.

4.1.4. Check that formula (4.14) satisfies the addition rule (2.9) for an EPPF.

4.1.5. (Problem) What conditions on a function Ψ are necessary for (4.14) to
define an EPPF? Must Ψ be the Laplace exponent of some infinitely divisible
distribution on (0,∞)?

Notes and comments

This section is based on [341] and [362]. See James [212] for a closely related
approach to partition probabilities associated with sampling from random mea-
sures derived from Poisson processes, and applications to Bayesian inference.

4.2. Poisson representation of the two-parameter model

Consider now the two-parameter family of (α, θ) random partitions, defined as
in Section 3.2 for 0 < α < 1 and θ > −α by size-biased frequencies of the
product form (4.1) for independent Wi with beta(1− α, θ + iα) distributions.
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Case(α = 0) Consider the particular choice of Lévy density

ρ(x) = θ x−1 e−bx (4.15)

where θ > 0 and b > 0. This makes T
d
= Γθ/b where (Γs, s ≥ 0) is a standard

gamma process. The formulae of the preceding section confirm that in this case
the Wi in (4.10) are independent beta(1, θ) variables, so (P̃j) has the GEM(0, θ)
distribution of frequencies of blocks of a (0, θ)-partition of positive integers, as
described in Theorem 3.2. The corresponding distribution of ranked frequencies
(P ↓

i ) is Poisson-Dirichlet(0, θ), by Definition 3.3 . See [27] for further study of
this distribution, which has numerous applications. Two special properties, each
known to be characteristic [341] of this Lévy density (4.15), are that

T is independent of the sequence of ranked frequencies (P ↓
i ), (4.16)

T is independent of the size-biased frequency P̃1. (4.17)

Case(0 < α < 1) Consider next the stable(α) Lévy density ρ(x) = sρα(x) for
some s > 0 where

ρα(x) :=
α

Γ(1− α)

1

xα+1
(x > 0) (4.18)

In contrast to (4.16), a feature of this choice of ρ(x) is that

T is a measurable function of the ranked frequencies (P ↓
i ), (4.19)

specifically

T =
(s/Γ(1− α))1/α

limi→∞ i1/αP ↓
i

. (4.20)

This formula holds, by the law of large numbers for the underlying Poisson
process, whenever ρ(x) ∼ sρα(x) as x ↓ 0. A special feature of ρ(x) = sρα(x),
shown in [341] to be characteristic of this case, is that

T̃1 := T (1− P̃1) is independent of the size-biased frequency P̃1. (4.21)

To see this, and derive the distributions of T̃1 and P̃1, observe from (4.6) that
for general ρ(x) the joint density of T̃1 := T − J̃1 and U1 := T̃1/T = 1− P̃1 is

fT̃1,U1
(t1, u1) = u−1

1 ρ∗

(
u1

u1
t1

)

f(t1) (4.22)

where u1 := 1− u1 and ρ∗(x) := xρ(x). For ρ(x) = sρα(x), by scaling there is
no loss of generality in supposing s = 1, when (4.22) simplifies to

fT̃1,U1
(t1, u1) = Kαu

α−1
1 u−α

1 t−α
1 fα(t1) (4.23)
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for some constant Kα, where fα(t) is the stable(α) density of T . This confirms
the independence result (4.21), and shows that

U1 := 1− P̃1 has beta(α, 1− α) distribution, (4.24)

T̃1 has density at t proportional to t−αfα(t). (4.25)

In view of the independence of U1 and T̃1, formula (4.25), and the homogeneous
Markov property of T, T̃1, T̃2, . . . provided by Lemma 4.1, the random variable
U1 := T̃1/T is independent of (T̃1, T̃2, . . .), and the joint density of T̃2 and
U2 := T̃2/T̃1 at (t1, u1) relative to that of T̃1 and U1 := T̃1/T at (t1, u1), is some
constant times (t1/u1)−α. Hence U1, U2 and T̃2 are independent, the distribution
of U2 is beta(2α, 1− α), and

T̃2 has density at t proportional to t−2αfα(t). (4.26)

Continuing like this, it is clear that the Ui are independent, the distribution of
Ui is beta(iα, 1− α), and

T̃i has density at t proportional to t−iαfα(t). (4.27)

A little more generally, if Pα denotes the probability measure governing the
original scheme with T distributed according to the stable(α) density, and Pα,θ

denotes the probability measure which is absolutely continuous with respect to
Pα, with density Cα,θT

−θ for some θ > −α, then since T = T̃1/U1 we find from

(4.23) that the joint density of (T̃1, U1) at (t1, u1) under Pα,θ is

Kαu
α−1
1 u−α

1 t−α
1 f(t1)Cα,θ

(
t1
u1

)−θ

= KαCα,θ u
θ+α−1
1 u−α

1 t−θ−α
1 f(t1).

That is to say, under Pα,θ the random variables U1 and T̃1 are independent, U1

with beta(α + θ, 1 − α) distribution, and T̃1 distributed like T under Pα,θ+α.
Combine this calculation with the homogeneous Markov property of (T =
T̃0, T̃1, T̃2, . . .) under Pα,θ for each θ, and set Wi = 1 − T̃i/T̃i−1 to obtain the
following conclusion:

Theorem 4.3. Let Pα govern a Poisson process of lengths with intensity sρα(x)
for some s > 0 and 0 < α < 1, so the sum T of these lengths has a stable
law of index α, and let P̃j = J̃j/T where (J̃j) is the sequence of lengths in a
length-biased random order. Let Pα,θ denote the probability measure which is
absolutely continuous with respect to Pα, with density proportional to T−θ for
some θ > −α. Then under Pα,θ the sequence (P̃j) admits the representation

P̃j = Wj

j−1
∏

i=1

(1−Wi) (4.28)

where the Wi are independent and Wi has beta(1− α, θ + iα) distribution.
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Compare with Theorem 3.2 to see that if Π∞ is the exchangeable random
partition obtained by sampling from random frequencies defined by normalizing
the Poisson lengths with sum T , then Pα,θ governs Π∞ as an (α, θ) partition.
To complete the proof of Theorem 3.13, it has to be seen that the α-diversity
limn |Πn|/nα of such a partition equals T−α almost surely, but this can be seen
as in [171].

Exercises

4.2.1. (Low temperature asymptotics for Derrida’s random energy
model) This exercise is taken almost verbatim from Neveu [322]. See also Ta-
lagrand [412, §1.2] for a similar treatment. Let X,X1, X2, . . . be independent
standard Gaussian variables. For n = 1, 2, . . . define an by P(X > an) = 1/n.
Let `n :=

√
2 logn so that an/`n → 1 as n → ∞. By the theory of extreme

values [279],

lim
n→∞

P( max
1≤i≤n

Xi ≤ an + x/`n) = exp(−e−x) (x ∈ R). (4.29)

More precisely, if the sequence (Yn,k, 1 ≤ k ≤ n) with Yn,1 ≥ Yn,2 ≥ · · · ≥ Yn,n

is the ranked rearrangement of (`n(Xi − an), 1 ≤ i ≤ n), then as n → ∞ there
is the convergence of finite dimensional distributions

(Yn,k, 1 ≤ k ≤ n)
d→ (− log(τk), k ≥ 1) (4.30)

where τk :=
∑k

i=1 εi for independent standard exponential variables εi. So the
right side of (4.30) is the sequence of points of a Poisson process on R with
intensity e−xdx, in descending order. Consider next the sums of Boltzman ex-
ponentials

Z(α)
n :=

n∑

i=1

exp(α−1`nXi) (4.31)

where α > 0 is a temperature parameter, and note that E(Z
(α)
n ) = n1+α−2

. In
the low temperature case α < 1 the leading terms in (4.31) are those corre-
sponding to the greatest Xi, and

Z(α)
n exp(−α−1`nan)

d→
∞∑

k=1

τ
−1/α
k

d
= T

(α)
Γ(1−α) (4.32)

for (T
(α)
s , s ≥ 0) the stable(α) subordinator with E[exp(−λT (α)

s )] = exp(−sλα).
Hence for α ∈ (0, 1) the asymptotic distribution of the ranked Gibbs weights

exp(α−1`nXi)/Z
(α)
n , 1 ≤ i ≤ n is PD(α, 0).

See [371, p. 861] for other references to the appearance of PD(α, 0) by random
normalization of arrays of independent random variables whose sum is asymp-
totically stable with index α. See [322, 412] regarding the asymptotics of the



86 Jim Pitman

Gibbs weights in the high temperature case α > 1, which is quite different.
See [322, 72, 50, 54, 357] for further developments of the low temperature case,
related to continuous state branching processes, Ruelle’s probability cascades,
and the Bolthausen-Sznitman coalescent. See [412] for a recent review of the
rigorous mathematical theory of spin glasses. The paper of Derrida [106] draws
parallels between the spin-glass theory and the Poisson-Dirichlet asymptotics
for random permutations and random mappings discussed in this course.

4.3. Representation of infinite Gibbs partitions

Consider the setup of Corollary 3.9, with Pα,θ the distribution of an (α, θ)
partition Π∞ of positive integers, for α ∈ (0, 1), and θ > −α. That is to say,
Pα,θ makes the frequencies of classes of Π∞, in order of their least elements,
distributed as in (4.28). According to Corollary 3.9, the density of Pα,θ with
respect to Pα,0 is a function of the α-diversity Sα(Π∞). Consequently, for each
fixed α ∈ (0, 1), the one-parameter family of laws {Pα,θ, θ > −α} shares a
common conditional distribution for Π∞ given Sα(Π∞). To be more precise:

Lemma 4.4. For each α ∈ (0, 1) there exists a unique family of probability laws
{Pα|s, 0 < s <∞} on partitions of positive integers such that

Pα|s(·) = Pα,θ(· |Sα = s) for all θ > −α (4.33)

and s → Pα|s is weakly continuous in s, where Sα := limnKn/n
α with Kn the

number of blocks of the partition of [n]. Under Pα|s the frequencies of classes of
Π∞ are distributed like

the jumps of (Tu, 0 ≤ u ≤ s) given Ts = 1,

or, equivalently, like

the jumps of (Tu/T1, 0 ≤ u ≤ 1) given T1 = s−1/α,

where (Tu, u ≥ 0) is the stable(α) subordinator with

E[e−λTu ] = exp(−uλα).

Moreover, Pα|s(Sα = s) = 1 for all s, and Pα|s(·) is the weak limit of Pα,θ(· |Kn =
kn) as n→∞ for any sequence kn with kn/n

α → s.

Proof. This is read from Theorem 4.3, with the last sentence a particular case
of Theorem 2.5. �

By combining Theorem 3.8 and Lemma 4.4 , for each α ∈ (0, 1) there is the
disintegration

Pα,θ(·) =

∫ ∞

0

Pα|s(·)gα,θ(s)ds (4.34)
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where gα,θ as in (3.27) is the probability density of Sα under Pα,θ. In particular,
the EPPF pα,θ of an (α, θ) partition, displayed in (3.6), is disintegrated as

pα,θ(·) =

∫ ∞

0

pα|s(·)gα,θ(s)ds (4.35)

where pα|s is the EPPF of Π∞ governed by Pα|s. The form of this EPPF is made
explicit by the following theorem:

Theorem 4.5. [362] For each α ∈ (0, 1) and each s > 0, the EPPF pα|s of Π∞
governed by Pα|s is of the Gibbs form

pα|s(n1, . . . , nk) = v
n,α|s
k

k∏

i=1

(1− α)ni−1↑ (4.36)

where n =
∑

i ni and

v
n,α|s
k = αksn/αGα(n− kα, s−1/α), (4.37)

where

Gα(q, t) :=
1

Γ(q)fα(t)

∫ t

0

fα(t− v)vq−1dv (4.38)

with fα the the stable(α) density of the Pα,0 distribution of (Sα)−1/α, as in
(0.37) .

Proof. That the EPPF pα|s must be of the Gibbs form

vn,k

k∏

i=1

(1− α)ni−1↑ (4.39)

for some weights vn,k depending on α and s can be seen without calculation
as follows. Let Π∞ := (Πn) be an (α, θ) partition, with Kn := |Πn|. From the
prediction rule for construction of (Πn), described in Section 3.2, the random
partition Πn of [n] and the inhomogeneous Markov chain (Kn,Kn+1, . . .) are
conditionally independent given Kn. So for each n < m and each choice of
km ∈ [m], the conditional law of Πn given Km = km is some mixture over k of
the conditional laws of Πn given Kn = k, for 1 ≤ k ≤ n. That is to say, by (3.6),
Πn given Km = km is an exchangeable partition of [n] with EPPF of the Gibbs
form (4.39) for all compositions (n1, . . . , nk) of n, for some vn,k depending on
m and km. According to Lemma 4.4, the Pα|s distribution of Πn is some weak
limit of such laws, and any such limit is evidently of the same form. The precise
formula (4.37) is deduced from Lemma 4.2. �

Theorem 4.6. An exchangeable random partition of positive integers Π∞ with
infinite number of blocks has an EPPF of the Gibbs form

p(n1, · · · , nk) = cn,k

k∏

i=1

wni
, with n =

∑k
i=1 ni (4.40)
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for some positive weights w1 = 1, w2, w3, . . . and some cn,k if and only if wj =
(1− α)j↑ for all j for some 0 ≤ α < 1. If α = 0 then the distribution of Π∞ is
∫∞
0 P0,θγ(dθ) for some probability distribution γ on (0,∞), whereas if 0 < α < 1

then the distribution of Π∞ is
∫∞
0 Pα|sγ(ds) for some such γ.

Sketch of proof. That the weights wj chosen with w1 = 1 are necessarily of the
form wj = (1−α)j↑ for some α ∈ [0, 1) can be seen by elementary consideration
of the addition rules of an EPPF, much as in Kerov [240] and Zabell [441]. For
given α, the Gibbs prescription specifies the law of Πn given Kn,Kn+1, . . .. The
extreme laws for this specification are then identified using the general theory
of such problems [108], combined with the facts that Kn/ logn→ θ under P0,θ

and Kn/n
α → s under Pα|s for 0 < α < 1. �

Exercises

4.3.1. [362] Check that the function defined by (4.36) satisfies the addition rule
(2.9) for an EPPF.

4.3.2. (Problem) In Theorem 4.6 it is supposed that the exchangeable par-

tition Π∞ = (Πn) is such that Πn is a Gibbs[n](v
(n)
• , w•) for some weight se-

quence w• which does not depend on n, and v
(n)
• which does. What if Πn is a

Gibbs[n](v
(n)
• , w

(n)
• ) partition, allowing both weight sequences to depend on n.

Is a larger family of distributions of Π∞ obtained? I guess no.

4.3.3. (Problem) Formulae (4.59) and (4.67) in Section 4.5 show that in the
case α = 1

2 the integral Gα(q, t) in (4.38) can be simply expressed in terms of
an entire function of a complex variable, the Hermite function, which has been
extensively studied. It is natural to ask whether Gα(q, t) might be similarly
represented in terms of some entire function with a parameter α, which reduces
to the Hermite function for α = 1

2 .

4.3.4. (Problem: Number of components a Markov chain) (Compare
Exercise 2.1.4 and Exercise 3.2.4 Suppose Π∞ is an exchangeable partition of
N such that (|Πn|, n = 1, 2, . . .) is a Markov chain, with possibly inhomogeneous
transition probabilities, which increases to infinity. Is Π∞ necessarily of the form
described by Theorem 4.6?

4.4. Lengths of stable excursions

Following Lamperti [267], Wendel [431], Kingman [249], Knight [256], Perman,
Pitman and Yor [339, 341, 366], consider the following construction of random
partitions based on a random closed subset Z of [0,∞) such that Z has Lebesgue
measure 0 almost surely. Without loss of generality, Z may be regarded as the
closure of the zero set of some random process. For fixed or random T > 0 let

V ↓
1 (T ) ≥ V ↓

2 (T ) ≥ · · · ≥ 0 (4.41)
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be the ranked lengths of component intervals of the set [0, T ]\Z. For i ≥ 1 let

P ↓
i (T ) := V ↓

i (T )/T. (4.42)

Then (P ↓
i (T ), i ≥ 1) is a sequence of ranked relative lengths with sum 1, which

may be regarded as the frequencies of an exchangeable random partition Π∞(T )
of positive integers. Such a random partition could be generated by the random
equivalence relation i ∼ j if TUi and TUj fall in the same component interval
of [0, T ]\Z, where the Ui are independent and identically distributed uniform
[0, 1] variables, independent of Z and T .

This construction is of particular interest when Z is the closure of the zero
set of some strong Markov process X started at zero. If X is recurrent, and
Z is not discrete, then it is well known that Z is the closure of the range of a
subordinator (T`, ` ≥ 0) which is the inverse of a continuous local time process
of X at zero, say (Lt, t ≥ 0).

The stable case If X is self-similar, e.g. a Brownian motion or Bessel process,
or a stable Lévy process, then (T`, ` ≥ 0) is necessarily a stable(α) subordinator
for some 0 < α < 1, so

E[exp(−λT`)] = exp(−`Kλα) (4.43)

for some K > 0.

Theorem 4.7. [366, 341, 371] If Z is the closure of the range of a stable(α)
subordinator then

(P ↓
i (T ))i≥1 has PD(α, 0) distribution (4.44)

1. for each fixed time T > 0, and
2. for each inverse local time T = T` for some ` > 0.

Proof. Recall from Definition Definition 3.3 that PD(α, θ) is the distribution

of the sequence derived by ranking (Wj

∏j−1
i=1 (1−Wi))j≥1 for Wj independent

with Wj
d
= β1−α,α+jθ . Case 2 of the theorem is read from Theorem 4.3. Case 1

is left as an exercise. �

It is shown in [370] that (4.44) also holds for a number of other random times
T besides inverse local times, for instance T the first time t that V ↓

n (t) = v,
for arbitrary fixed v > 0 and n = 1, 2, . . .. As observed in [370], it follows
from (4.20) that for any fixed or random T , a random partition Π∞(T ) with

frequencies (P ↓
i (T ), i ≥ 1) has α-diversity

Sα(Π∞(T )) = Γ(1− α) lim
i→∞

i(P ↓
i (T ))α =

KLT

Tα
almost surely. (4.45)

In particular, if T is a constant time, the α-diversity of Π∞(T ) is just a constant
multiple of the local time LT , whereas if T is an inverse local time, the α-diversity
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is a constant multiple of T−α. So the two cases of (4.44) described in Theorem
4.7 are consistent with the consequence of (0.41) that LT /T

α has the same
distribution for any fixed time T as for T = T` for any ` > 0, when LT = `. Let

GT = sup(Z ∩ [0, T ]); DT = inf(Z ∩ (T,∞)). (4.46)

A fundamental difference between fixed times and inverse local times is that if T
is fixed then GT < T < DT almost surely whereas if T = T` then GT = T = DT

almost surely. In the former case, the meander interval (GT , T ) is one of the

component intervals whose lengths are ranked to form the sequence (V ↓
i (T ), i ≥

1), so T −GT = V ↓
NT

(T ) for some random index NT . To prove (4.44) for fixed
times T it seems essential to understand the joint distribution of the length of
the meander interval and the ranked lengths of the remaining intervals. This is
specified by the following corollary of all known proofs of (4.44) for fixed T :

Corollary 4.8. [366, 341, 371] For each fixed time T , the length of the meander
interval T −GT is a size-biased pick from the whole collection of ranked interval
lengths:

P(NT = n |P ↓
i (T ), i ≥ 1) = P ↓

n(T ), (4.47)

(P ↓
i (GT ))i≥1 has PD(α, α) distribution, (4.48)

and

the meander length T −GT is independent of (P ↓
i (GT ))i≥1. (4.49)

As a check, recall the well known fact that the distribution of GT /T is
beta(α, 1−α) for each fixed T . So the distribution of (T−GT )/T is beta(1−α, α).
According to Corollary 4.8, this is the structural distribution of a size-biased pick
from the ranked relative lengths (P ↓

i (T ))i≥1. This agrees with (4.44) for fixed T ,
because the structural distribution of PD(α, 0) is beta(1−α, α). Granted (4.44)
and (4.47), the assertions (4.48) and (4.49) follow from Exercise 3.2.1 because

(P ↓
i (GT ), i ≥ 1) is derived from (P ↓

i (T ), i ≥ 1) by deleting a term picked by
size-biased sampling, then renormalizing the rest of the terms.

Recall the definition of standardized bridges and excursions derived from a
self-similar Markov process X . Then (P ↓

i (GT ), i ≥ 1) is the sequence of ranked
lengths of excursions of the bridge of length 1 derived by rescaling the path of
X on [0, GT ]. Then (4.44) and (4.48) yield:

Corollary 4.9. For each α ∈ (0, 1),

• the sequence of ranked lengths of excursions of a standard Bessel process
of dimension 2−2α, up to time 1 and including the meander length 1−G1,
has PD(α, 0) distribution;

• the sequence of ranked lengths of excursions of a standard Bessel bridge of
dimension 2− 2α has PD(α, α) distribution.
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Exercises

4.4.1. (Proof of Case 1 of (4.44) and Corollary 4.8) See [366], [341]
and [351] for three different approaches. Basically, what is required is a good

understanding of, on the one hand, the joint law of (P ↓
i (T ))i≥1 and (T −GT )/T ,

for fixed T , which is provided by the last exit decomposition at time GT given
by excursion theory, and on the other hand, the joint law of (P ↓

i (T`))i≥1 and a

size-biased pick P̃1(T`), which is provided by Lemma 4.1. If both are computed
they are found to be identical, and the conclusion follows, along with Corollary
4.8. The approach of [351] is to use sampling with points of a Poisson process
to reduce the result to an elementary combinatorial analog, involving sums of
independent variables Xi as in Exercise 3.3.1 .

Notes and comments

This section is based on [366, 341, 371]. See [371] for a thorough treatment of the
two-parameter family of Poisson-Dirichlet distributions. The study of ranked
lengths of excursion intervals has a long history which is reviewed there. See
[370, 368, 369] for various generalizations to do with ranked lengths, and [374]
regarding ranked values of other functionals of self-similar Markovian excursions,
such as their heights or areas.

4.5. Brownian excursions

Suppose in this section that P governsB = (Bt, 0 ≤ t ≤ 1) as standard Brownian
motion started at 0. Let Π∞ := (Πn) be the Brownian excursion partition. That
is the random partition of positive integers defined by the random equivalence
relation i ∼ j iff Ui and Uj fall in the same excursion interval of B away
from 0, where the Ui are independent and identically distributed uniform [0, 1]
independent of B. According to the result of [366] and [347] recalled at the end
of the last section,

Π∞ is a ( 1
2 , 0) partition. (4.50)

That is, the sequence of partitions (Πn, n = 1, 2, . . .) develops according to a
variation of Pólya’s urn scheme for random sampling with double replacement,
described in Exercise 3.2.2 . Equivalently, the sequence (P̃j) of lengths of ex-
cursions of B on [0, 1], in the size-biased order of discovery of excursions by
the sampling process, has the GEM( 1

2 , 0) distribution defined by the products
of independent variables (4.28) for Wi with beta( 1

2 ,
1
2 i) distribution. And the

sequence (P ↓
i ) of ranked lengths of excursions of B on [0, 1] has PD( 1

2 , 0) distri-

bution. Note that each of the sequences (P̃j) and (P ↓
i ) has a term equal to the

length 1−G1 of the final meander interval. The common distribution of P̃1 and
1−G1 is beta( 1

2 ,
1
2 ), commonly known as the arcsine law.
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Conditioned on B1 = 0, the process B becomes a standard Brownian bridge,
and we find instead that

(Π∞ |B1 = 0) is a ( 1
2 ,

1
2 ) partition. (4.51)

Let L1 be the local time of B at 0 up to time 1, with the usual normalization of
Brownian local time as occupation density relative to Lebesgue measure. Note
from (4.45) that the 1

2 -diversity of Π∞ is
√

2L1. So the number Kn of compo-

nents of Πn grows almost surely like
√

2nL1 as n → ∞, both for the uncondi-
tioned Brownian excursions under P, and for the excursions of Brownian bridge
under P(· |B1 = 0). According to well known results of Lévy, unconditionally,
L1 has the same law as |B1|, that is

P(L1 ∈ dλ) = P(|B1| ∈ dλ) = 2ϕ(λ)dλ (λ > 0)

where ϕ(z) := (1/
√

2π) exp(− 1
2z

2) for z ∈ R is the standard Gaussian density of
B1, whereas the conditional law of L1 given B1 = 0 is the Rayleigh distribution
which is derived by size-biasing the unconditional law of L1.

P(L1 ∈ dλ |B1 = 0) =
√

π/2λϕ(λ)dλ (λ > 0). (4.52)

Conditioning on the local time For λ ≥ 0 let Π∞(λ) denote a random
partition of positive integers with

Π∞(λ)
d
= (Π∞ |L1 = λ)

d
= (Π∞ |L1 = λ,B1 = 0) (4.53)

where
d
= denotes equality in distribution, the second equality in distribution is

due to Lemma 4.4, and the law of Π∞(λ) is easily seen to be weakly continuous
as a function of λ. The following lemma presents Π∞(λ) in terms of a family of
conditioned Brownian bridges, which turns out to be of interest in a number of
contexts.

Lemma 4.10. [358] Let L1(Bbr) denote the local time at 0 up to time 1 for
a standard Brownian bridge Bbr. There exists for each λ ≥ 0 a unique law on
C[0, 1] of a process Bbr

λ := (Bbr
λ (u), 0 ≤ u ≤ 1) such that

Bbr
λ

d
= (Bbr |L1(Bbr) = λ) (4.54)

and the law of Bbr
λ is a weakly continuous function of λ. The law of Bbr

λ is
uniquely determined by the following two properties:

1. The complement of the zero set of Bbr
λ is an exchangeable random partition

of [0, 1] into open intervals such that the corresponding partition Π∞(λ)
of positive integers, whose frequencies are the ranked lengths of these in-
tervals, has the distribution denoted P 1

2 |
√

2λ
in Lemma 4.4, so Π∞(λ) has

1
2 -diversity

√
2λ.
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2. Conditionally given the interval partition generated by its zero set, the
excursion of Bbr

λ over each interval of length t is distributed as a Brownian
excursion of length t, independently for the different intervals, with the
signs of excursions chosen by a further independent process of fair coin
tossing.

In particular, Bbr
0 is a standard signed Brownian excursion, whose sign is chosen

by a fair coin-toss independent of |Bbr
0 |.

Let P̃j(λ) denote the frequency of the jth class of Π∞(λ). So (P̃j(λ), j =
1, 2 . . .) is distributed like the lengths of excursions of B over [0, 1] given L1 = λ,
as discovered by a process of length-biased sampling. In view of Lévy’s formula
for the stable( 1

2 ) density, the general formula (4.7) reduces for α = 1
2 to the

following more explicit formula for the structural density of Π∞(λ):

P(P̃1(λ) ∈ dp) =
λ√
2π
p−

1
2 (1− p)− 3

2 exp

(

−λ
2

2

p

(1− p)

)

dp (0 < p < 1)

(4.55)
or equivalently

P(P̃1(λ) ≤ y) = 2Φ

(

λ

√
y

1− y

)

− 1 (0 ≤ y < 1) (4.56)

where Φ(z) := P(B1 ≤ z) is the standard Gaussian distribution function. Now
(4.56) amounts to

P̃1(λ)
d
=

B2
1

λ2 +B2
1

d
=

1

Tλ + 1
(4.57)

where (Tλ, λ ≥ 0) is the stable( 1
2 ) subordinator with E(e−ξTλ) = exp(−λ√2ξ).

Furthermore [18, Corollary 5], by a similar analysis using Lemma 4.1 , the whole
sequence (P̃j(λ), j ≥ 1) may be represented as

P̃j(λ) = Rj−1(λ)−Rj(λ) with Rj(λ) =
λ2

λ2 + Sj
(4.58)

for Sj =
∑j

i=1 Xi with Xi independent and identically distributed copies of B2
1 .

Then Π∞(λ) can be constructed from (P̃j(λ), j ≥ 1) as in part (ii) of Theorem
3.1.

Moments of the structural distribution of Π∞(λ) From (4.57), for q >
− 1

2 the qth moment of the structural distribution of P̃1(λ) is

E[(P̃1(λ))q ] = E

[(
B2

1

λ2 +B2
1

)q]

= E(|B1|2q)h−2q(λ) (4.59)

where

E(|B1|2q) = 2q Γ(q + 1
2 )

Γ( 1
2 )

= 2−q Γ(2q + 1)

Γ(q + 1)
(q > − 1

2 ) (4.60)
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by the gamma( 1
2 ) distribution of 2B2

1 and the duplication formula for the gamma
function, and h−2q is the Hermite function of index −2q, that is h0(λ) = 1 and
for q 6= 0

h−2q(λ) :=
1

2Γ(2q)

∞∑

j=0

Γ(q + j/2)2q+j/2 (−λ)j

j!
. (4.61)

The second equality in (4.59) is the integral representation of the Hermite func-
tion provided by Lebedev [280, Problem 10.8.1], and (4.61) is read from [280,
(10.4.3)]. Note that hn for n = 0, 1, 2, . . ., which can be evaluated from (4.61) by
continuity as −2q approaches n, is the usual sequence of Hermite polynomials
orthogonal with respect to the standard Gaussian density ϕ(x). The function
h−1(x) for real x is Mill’s ratio [221, 33.7]:

h−1(x) =
P(B1 > x)

ϕ(x)
= e

1
2x2
∫ ∞

x

e−
1
2 z2

dz. (4.62)

For all complex ν and z, the Hermite function satisfies the recursion

hν+1(z) = zhν(z)− νhν−1(z), (4.63)

which combined with (4.62) and h0(x) = 1 yields

h−2(x) = 1− xh−1(x) (4.64)

2!h−3(x) = −x+ (1 + x2)h−1(x) (4.65)

3!h−4(x) = 2 + x2 − (3x+ x3)h−1(x) (4.66)

and so on, as discussed further in [362]. Theorem 4.5 now yields:

Corollary 4.11. The distribution of Π∞(λ), a Brownian excursion partition
conditioned on L1 = λ, is determined by the EPPF

p 1
2 |
√

2λ(n1, . . . , nk) = 2n−kλk−1hk+1−2n(λ)
k∏

i=1

( 1
2 )ni−1↑. (4.67)

To illustrate, according to (2.25) and (4.59), or (4.67) for n = 2, given L1 = λ,
two independent uniform [0, 1] variables fall in the same excursion interval of a
Brownian motion or Brownian bridge conditioned on L1 = λ with probability

p 1
2 |
√

2λ(2) = E[P̃1(λ)] = h−2(λ) = 1− λh−1(λ) (4.68)

and in different components with probability

p 1
2 |
√

2λ(1, 1) = λh−1(λ) =
λP(B1 > λ)

ϕ(λ)
. (4.69)

Note that this function increases from 0 to 1 as λ increases from 0 to ∞, as
should be intuitively expected: given L1 is close to 0 the Brownian excursion
partition most likely contains one large interval of length close to 1, whereas
given L1 is large the Brownian excursion partition most likely has maximum
interval length close to 0. Note that (4.69) implies P(B1 > λ) < ϕ(λ)/λ for
λ > 0, which is a standard estimate for the Gaussian tail probability.
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Exercises

4.5.1. (Proof of Lemma 4.10)

4.5.2. (The Brownian pseudo-bridge) [59] Let τ` := inf{t : Lt(B) > `}
where Lt(B), t ≥ 0 is the local time process at 0 of an unconditioned Brownian
motion B. Let B∗[0, τ`] be the standardized path defined as in (0.9) . Then for
each ` > 0

P(B∗[0, τ`] ∈ ·) =

∫ ∞

0

P(Bbr
λ ∈ ·)

√

2

π
e−

1
2λ2

dλ. (4.70)

Deduce that the common distribution of the Brownian pseudo-bridge B∗[0, τ`]
for all ` > 0 is mutually absolutely continuous with respect to that of Bbr, and
describe the density. To check (4.70), use the basic switching identity

(B∗[0, τ`] given τ` = t)
d
= (Bbr,t given Lt(B

br,t) = `) (4.71)

where Bbr,t is a Brownian bridge of length t, and both conditional distributions
in (4.71) are everywhere determined by weak continuity t and `.

4.5.3. Show that the function hν(λ) defined by (4.59) for ν < 1 and λ > 0
satisfies the recursion (4.63) for the Hermite function.

4.5.4. Check that Π∞(λ) can be constructed using the following seating plan
in the Chinese Restaurant, which obeys the rules of probability by virtue of the
recursion (4.63) for the Hermite function: given that at stage n there are nj ≥ 1

customers at table j for 1 ≤ j ≤ k with
∑k

j=1 nj = n, the (n + 1)th customer
sits at table j with probability (2nj − 1)hk−2n−1(λ)/hk−2n+1(λ), and at a new
table with probability λhk−2n(λ)/hk−2n+1(λ).

4.5.5. [351, Corollary 3], [362]. Let 1 ≤ k ≤ n. For the partition of n uniform
random sample points generated the excursions of an unconditioned Brownian
motion

P(|Πn| = k) =

(
2n− k − 1

n− 1

)

2k+1−2n (4.72)

whereas for the Brownian bridge

P(|Πn| = k |B1 = 0) =
k(n− 1)!

( 1
2 )n−1↑

P(|Πn| = k) (4.73)

and for Πn(λ) distributed like either of these partitions given L1 = λ

P(|Πn(λ)| = k) =
(2n− k − 1)!λk−1hk+1−2n(λ)

(n− k)!(k − 1)!2n−k
. (4.74)

Some insight into formula (4.72) is provided by Chapter 5.



4.5.6. (Problem: existence of α-fragmentations) It is shown in Chapter 9
that for α = 1

2 there is a natural construction of (Π∞(λ), λ ≥ 0) as a partition
valued fragmentation process, meaning that Π∞(λ) is constructed for each λ on
the same probability space, in such a way that Π∞(λ) is a coarser partition
than Π∞(µ) whenever λ < µ. The question of whether a similar construction is
possible for index α instead of index 1

2 remains open. A natural guess is that
such a construction might be made with one of the self-similar fragmentation
processes of Bertoin [46], but Miermont and Schweinsberg [312] have shown that
a construction of this form is possible only for α = 1

2 .

Notes and comments

See [91] for more about conditioning Bbr on its local time at 0, and [10], [427]
regarding the more difficult problem of conditioning a Brownian path fragment
on its entire local time process.

96
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Chapter 5

Coagulation and

fragmentation processes

The work of Kingman and others shows how the theory of exchangeable ran-
dom partitions and associated random discrete distributions provides a natural
mathematical framework for the analysis of coagulation processes (also called
coalescents) and fragmentation processes.

This chapter provides an introduction to this framework. Later chapters pro-
vide more detailed analysis of two particular coalescent processes, the multiplica-
tive and additive coalescents, which are of special combinatorial significance.

5.1. Coalescents Kingman’s coalescent is a Markov process with state space
the set PN of all partitions of N := {1, 2, . . .}. Markovian coalescent pro-
cesses are considered with more general transition mechanisms and state
space either PN or the set P[n] of partitions of [n] := {1, . . . , n}. In a coa-
lescent process with collision rate K(x, y), each pair of blocks of size x and
y may merge to form a combined block of size x+y. The case K(x, y) ≡ 1
gives Kingman’s coalescent. Taking K(x, y) = xy gives the multiplica-
tive coalescent, studied further in Section 6.4, and K(x, y) = x + y gives
the additive coalescent studied further in Section 10.2. A special feature
of Kingman’s coalescent is that the P[n]-valued processes can be defined
consistently as n varies. Successive generalizations of this property lead
to the study of coalescents with multiple collisions [357] including the
Bolthausen-Sznitman coalescent [72], and coalescents with simultaneous
multiple collisions [396]. The transition mechanisms of these coalescents
involve a coagulation operator on PN, denoted p -coag, which is associated
with an arbitrary probability distribution p on PN.

5.2. Fragmentations This section initiates discussion of a fundamental du-
ality between processes of coagulation and fragmentation. A fragmentation
operator on PN, denoted p -frag is associated with an arbitrary proba-



5.1. COALESCENTS 99

bility distribution p on PN.
5.3. Representations of infinite partitions This section reviews some ba-

sic facts and terminology related to different representations of infinite
partitions which are useful in the study of processes of coagulation and
fragmentation.

5.4. Coagulation and subordination The basic coagulation operator p -coag

has a natural interpretation in terms of subordination (composition ) of
increasing processes with exchangeable increments. In particular, taking p
to be the Poisson-Dirichlet distribution with parameters (α, 0), and sub-
stituting α = e−t, yields the semigroup of the Bolthausen-Sznitman coa-
lescent [72].

5.5. Coagulation – fragmentation duality The semigroup property of the
Bolthausen-Sznitman coalescent is related to a more general duality for-
mula involving coagulation and fragmentation kernels associated with the
two-parameter Poisson-Dirichlet family. Another instance of this duality
involves the asymptotic features of the combinatorial structure of random
mappings.

5.1. Coalescents

The first paragraph introduces Kingman’s coalescent. The following paragraphs
recall how this process has been generalized to construct various other partition-
valued coalescent processes.

Kingman’s coalescent Motivated by applications in the theory of genetic di-
versity, concerning the evolution over time of the distribution of different genetic
types in a large population, Kingman [253] discovered the remarkable PN-valued
process described by the following theorem. As shown by Kingman, this process
arises naturally as a limit process governing lines of descent, viewed backwards
in time, from numerous natural models of population genetics, with the first n
integers labelling the first n individuals sampled from a large population.

Theorem 5.1. Kingman [253] There exists a uniquely distributed PN-valued
process (Π∞(t), t ≥ 0), called Kingman’s coalescent, with the following proper-
ties:

• Π∞(0) is the partition of N into singletons;
• for each n the restriction (Πn(t), t ≥ 0) of (Π∞(t), t ≥ 0) to [n] is a

Markov chain with càdlàg paths with following transition rates: from state
Π = {A1, . . . , Ak} ∈ P[n] , the only possible transitions are to one of the
(
k
2

)
partitions Πi,j obtained by merging blocks Ai and Aj to form Ai ∪Aj ,

and leaving all other blocks unchanged, for some 1 ≤ i < j ≤ k, with

Π→ Πi,j at rate 1 (5.1)

Proof. This follows easily from the consistency of the descriptions for different
values of n, and Kolmogorov’s extension theorem. Or see Exercise 5.1.1 . �
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If (Π∞(t), t ≥ 0) is Kingman’s coalescent, then it is easily shown that Π∞(t)
is an exchangeable random partition of N for each t ≥ 0, with proper frequen-
cies for each t > 0, which may be described as follows. Let Dt := |Π∞(t)|.
The process (Dt, t > 0) is the homogeneous Markovian death process with state
space N whose only transitions are n → n − 1 at rate

(
n
2

)
, with initial con-

dition D(0+) = ∞. This process can be constructed in an obvious way from
its sequence of holding times εn in state n ≥ 2, where

∑∞
n=2 εn < ∞ a.s.. The

frequencies of Π∞(t), in exchangeable random order, can then be constructed as
the lengths of intervals obtained by cutting [0, 1] at Dt − 1 independent points
U1, . . . , UDt−1, where U1, U2, . . . is a sequence of independent uniform [0, 1] vari-
ables independent of (Dt, t ≥ 0). So the conditional distribution of Π∞(t) given
Dt = m does not depend on t: for each particular partition of [n] into k subsets
of sizes (n1, . . . , nk), the probability that the restriction of Π∞(t) to [n] coincides
with that partition is given by the formula

p(n1, . . . , nk) = (m)k↓

∏k
i=1(κ)ni↑
(mκ)n↑

(5.2)

for κ = 1, as in (2.17) . Unconditional partition probabilities for Π∞(t) can then
be obtained by mixing with respect to the distribution of Dt, which is known
explicitly but complicated. If It denotes the interval partition of [0, 1] into Dt

intervals, so defined, then Π∞(t) can be constructed as the partition generated
by ∼t, where i ∼t j iff Vi and Vj fall in the same component interval of It,
where V1, V2, . . . is a further independent sequence of independent uniform [0, 1]
variables.

Coalescents defined by a collision kernel One natural generalization of
Kingman’s coalescent, considered already by Marcus [296] and Lushnikov [291],
is to allow the rate of collisions between two blocks to depend on the number
of elements in the blocks. More generally, it is convenient to allow the collision
rate to depend on some other measure of the blocks besides their size.

Let µ be a mass distribution on [n], say µ(A) =
∑

i∈A µi for some µi, and
assume µi > 0 to avoid annoyances. Let K(x, y) be a non-negative symmetric
measurable function of x, y ∈ [0, 1], called a collision rate kernel. Let P[n] denote
the set of partitions of the set [n], and Pn the set of partitions of the integer n.

Definition 5.2. Call a P[n]-valued process (Π(t), t ≥ 0) a K-coalescent with
mass distribution µ if (Π(t), t ≥ 0) is a continuous time Markov chain, with right-
continuous step function paths, with the following time-homogeneous transition
rates: from state Π = {A1, . . . , Ak} ∈ P[n] the only possible transitions are to

one of the
(
k
2

)
partitions Πi,j obtained by merging blocks Ai and Aj to form

Ai ∪ Aj , and leaving all other blocks unchanged, for some 1 ≤ i < j ≤ k, with

Π→ Πi,j at rate K(µ(Ai), µ(Aj)). (5.3)

To illustrate, three cases of special interest are

• Kingman’s coalescent with K(x, y) ≡ 1;



5.1. COALESCENTS 101

• the multiplicative coalescent with K(x, y) = xy, discussed further in Sec-
tion 6.4;

• the additive coalescent with K(x, y) = x+ y, discussed further in Section
10.2.

Let P↓
finite be the set of finite real partitions, meaning decreasing sequences of

non-negative reals (x1, x2, . . .) with only a finite number of non-zero terms. Then
(x1, x2, . . .) may be called a finite real partition of

∑

i xi. Let X(t) be the se-
quence of ranked µ-masses of blocks of Π(t). If (Π(t), t ≥ 0) is a P[n]-valued
K-coalescent with mass distribution µ then the corresponding ranked coalescent
(X(t), t ≥ 0), with values in P↓

finite, is a Markov chain with the following tran-
sition mechanism, which depends neither on n nor on the choice of the mass
distribution µ.

Definition 5.3. For K a collision kernel as in Definition 5.2, a P↓
finite-valued K-

coalescent is a continuous time Markov chain with state-space P↓
finite, with right-

continuous step function paths governed by the following time-homogeneous
transition rates: from state x = (x1, x2, . . .) ∈ P↓

finite the only possible transitions

are to one of the states x⊕(i,j) := (x
⊕(i,j)
1 , x

⊕(i,j)
2 , . . .) derived from x by picking

indices i < j with xi > 0 and xj > 0, and replacing the two terms xi and xj by
a single term xi + xj , and re-ranking, with

x→ x⊕(i,j) at rate K(xi, xj). (5.4)

Note that for each n the set Pn of partitions of the integer n may be regarded
as a subset of P↓

finite. Then for µ the counting measure on [n], the ranked coa-
lescent (X(t), t ≥ 0) provides a natural representation of the process of integer
partitions induced by a P[n]-valued K-coalescent (Π(t), t ≥ 0) with mass defined
by counting measure. This model for a coalescing process of set partitions and
associated integer partitions was first studied by Marcus [296]. Lushnikov [291]
showed that for kernels K of the special form K(x, y) = xk(y) + yk(x) for some
function k, and initial state Π(0) that is the partition of [n] into singletons, Π(t)
has a Gibbs distribution with weights wj(t) determined as the solutions of a
system of differential equations.

The advantage of working with a P[n]-valued coalescent (Π(t), t ≥ 0) is that
this process keeps track of the merger history of collisions of blocks over time,
with a nice consistent labeling system for all time. In passing to the ranked
coalescent (X(t), t ≥ 0) there is some loss of information in the merger history,
which makes these processes difficult to handle analytically. But ranked coales-
cents allow coalescent processes derived from sets of different sizes to be readily
compared by suitable scaling. Note the special feature of Kingman’s coalescent
that the P[n]-valued processes can be defined consistently as n varies to induce
a PN-valued coalescent whose ranked frequencies are then governed by the cor-
responding ranked-mass coalescent with state-space P↓

finite, provided the time
parameter t is restricted to t > 0. As shown in the next paragraph, this con-
struction can be generalized to a larger class of coalescent processes, but this
class does not appear to include K-coalescents for any non-constant K.
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Given an arbitrary collision rate kernel K(x, y), subject only to joint sym-
metry and measurability in x and y, the above discussion shows how to define a
Markov process of jump-hold type with state space P↓

finite, the set of finite real

partitions. Since P↓
finite is dense in various spaces of finite or infinite partitions

meaning decreasing sequences (xi), equipped with suitable metrics, it is natural
to expect that under suitable regularity conditions on K it should be possible to
define a nice Markov process with such a state space, by continuous extension
of the coalescent transition mechanism defined on P↓

finite. For a general kernel
K subject to a Lipschitz condition, such a result was obtained in [141], but
only for restricted spaces of partitions equipped with particular metrics. Par-
ticular results for the multiplicative and additive coalescents will be discussed
in later chapters, as indicated above. See [356, 141] for further background on
Markovian coalescent processes, and [11] for a broader review of stochastic and
deterministic models for coalescent evolutions.

Consistent Markovian coalescents Consider now a PN-valued coalescent
process, which has the property of Kingman’s coalescent that for each n its
restriction to [n], say (Πn(t), t ≥ 0), is a Markov chain with stationary transition
probabilities. To start with a simple case, suppose that each of these processes
evolves according to the following dynamics:

• when Πn(t) has b blocks each k-tuple of blocks of Πn(t) is merging to form
a single block at rate λb,k

Clearly, the law of such a process is determined by the rates {λb,k : 2 ≤ k ≤ b}.
Not all collections of rates {λb,k : 2 ≤ k ≤ b} are possible however. For instance,
you cannot have both λ3,3 = 1 and λ2,2 = 0.

Theorem 5.4. [357] A PN-valued coalescent process, whose restriction (Πn(t), t ≥
0) to [n] is a Markov chain with stationary transition transition rates λb,k as
described above, exists for all starting partitions of N iff the rates satisfy the
consistency condition

λb,k = λb+1,k + λb+1,k+1 (2 ≤ k ≤ b),

in which case

λb,k =

∫ 1

0

xk−2(1− x)b−kΛ(dx) (5.5)

for some non-negative and finite measure Λ on [0, 1]. Then the sequence of
coalescents (Πn(t), t ≥ 0), with Πn(0) the partition of [n] into singletons, defines
an exchangeable PN-valued coalescent (Π∞(t), t ≥ 0), called a Λ-coalescent. The
frequencies of Π∞(t) sum to 1 for all t > 0 iff

∫ 1

0

x−1Λ(dx) =∞,

in which case these frequencies define a ranked Markovian coalescent with state-
space the set of real partitions of 1.
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Sketch of proof. The necessity of the consistency condition is evident by
consideration of the following rates:

{1}, . . . , {b} → {1, . . . , k}, {k + 1}, . . . , {b} at rate λb,k

{1}, . . . , {b+ 1} → {1, . . . , k, b+ 1}, {k + 1}, . . . , {b} at rate λb+1,k+1

{1}, . . . , {b+ 1} → {1, . . . , k}, {k + 1}, . . . , {b+ 1} at rate λb+1,k

Sufficiency is clear by the elementary criterion for a function of a Markov chain
to be Markov [389, Section IIId]. The integral representation (5.5) follows from
the consistency condition by de Finetti’s theorem. �

Examples:

• If Λ = δ0, then λb,k = 1(k = 2) (Kingman’s coalescent)

• If Λ(dx) = dx, then λb,k = (k−2)!(b−k)!
(b−1)! (the Bolthausen-Sznitman coales-

cent [72])

The Bolthausen-Sznitman coalescent has the following property: when started
with initial state that is all singletons, the distribution of ranked frequencies of

Π∞(t) is that of the ranked jumps of a stable(α) subordinator (T
(α)
s , 0 ≤ s ≤ 1)

normalized by T
(α)
1 , for α = e−t. See [72, 357, 54, 50, 176, 29] for various proofs

of this fact, and more about this remarkable process.
The general probabilistic meaning of the measure Λ is clarified as follows:

Corollary 5.5. [357] Let τi,j be the least t such that i and j are in the same
block of Π∞(t). Given τi,j > 0 and |Π∞(τi,j−)| = ∞ a random variable Xi,j

with distribution Λ(·)/Λ[0, 1] is obtained as the almost sure relative frequency of
blocks of Π∞(τi,j−) which merge at time τi,j to form the block containing both
i and j.

See [357] for the proof, and a more careful statement which applies also to
the case when |Π∞(τi,j−)| < ∞. In particular, the corollary applies to the
Bolthausen-Sznitman coalescent, and shows that in this process, each time a
collision occurs, the relative frequency of the blocks which merge to form the
new block is a uniform(0, 1) variable. Note that in this case, and whenever the
number of blocks stays infinite (see Exercise 5.1.3 ), the set of collision times
is a.s. dense in R≥0.

Coagulation operators

Definition 5.6. For a partition π of [n], where n ∈ N ∪ {∞} and [∞] := N,
write π = {A1, A2, . . .} to indicate that the blocks of π in increasing order of
their least elements are A1, A2, . . ., with the convention Ai = ∅ for i > |π|.
For a partition π = {A1, A2, . . .} of N and a partition Π := {B1, B2, . . .} of
[n] with n ≥ |π| let the Π-coagulation of π be the partition of N whose blocks
are the non-empty sets of the form ∪j∈Bi

Aj for some i = 1, 2, . . .. For each
probability distribution p on PN, define a Markov kernel p -coag on PN, the
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p-coagulation kernel, as follows: for π ∈ PN let p -coag(π, · ) be the distribution
of the Π-coagulation of π for Π with distribution p.

Think of Π as describing a coagulation of singleton subsets into the blocks
B1, B2, . . .. Then the Π-coagulation of π describes a corresponding coagulation
of blocks of π.

Let Ππ
∞ be a PN-valued coalescent process with Ππ

∞(0) = π for some π with
|π| = n ∈ N ∪ {∞}. Then it is easily seen that

Ππ
∞(t) = the Πn(t)-coagulation of π for t ≥ 0 (5.6)

for some uniquely defined P[n]-valued coalescent process Πn with initial state
1n, the partition of [n] into singletons.

Theorem 5.7. [357, Theorem 6] A coalescent process Ππ
∞ starting at π with

|π| = n for some 1 ≤ n ≤ ∞ is a Λ-coalescent if and only if Πn defined by (5.6)
is distributed as the restriction to [n] of a Λ-coalescent. The semigroup of the
Λ-coalescent on PN is thus given by

P
Λ,π

(Π∞(t) ∈ ·) = pΛ
t -coag(π, · ) (5.7)

where pΛ
t ( · ) := P

Λ,1∞

(Π∞(t) ∈ ·) is the distribution of an exchangeable random
partition of N with the EPPF pΛ

t (n1, . . . , nk) which is uniquely determined by
Kolmogorov equations for the finite state chains Πn for n = 2, 3, . . ..

Recall from Section 2.2 that the EPPF (exchangeable partition probability
function) is a symmetric function of (n1, . . . , nk) giving the probability of each
particular partition of an n element set into k subsets of sizes (n1, . . . , nk).
Unfortunately, it seems possible to describe the EPPF pΛ

t (n1, . . . , nk) explicitly
only in very special cases, most notably the Kingman and Bolthausen-Sznitman
coalescents. See [357] for further discussion.

Note from Definition 5.6 that no matter what the distribution p on PN, each
of the kernels K = p -coag acts locally on PN, meaning that if Ππ denotes a
random partition of N with distribution K(π, · ), and Rn denotes the opera-
tion of restriction of a partition of N to [n], then for each n the distribution of
RnΠπ depends on π only through Rnπ. It follows that any PN-valued Markov
process Π∞, each of whose transition kernels is of the form p -coag for some
p, is such that the Pn-valued process RnΠ∞ is a Markov chain. Such a coales-
cent process Π∞ with càdlàg paths can therefore be constructed more generally
from a consistent family of Markov chains with more complex transition rules,
allowing not just multiple collisions in which several blocks merge to form one
block, but simultaneous multiple collisions, in which several new blocks might
be formed, each from the merger of two or more smaller blocks. The descrip-
tion of all possible semigroups of such coagulation operators is then provided
by the larger class of coalescents with simultaneous collisions described in the
next paragraph. Note that there is a composition rule for coagulation kernels
associated with exchangeable distributions pi on PN which induces a semigroup
operation on these distributions: (p1 -coag)(p2 -coag) = p3 -coag where p3 is
determined explicitly by [357, Lemma 34].
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Coalescents with simultaneous multiple collisions Following Schweins-
berg [396], consider a coalescent process in which each restriction to a finite
set has the only transitions of the following kind: if the current partition has b
blocks, there may be a (b; k1, . . . , kr; s)-collision, which takes b blocks down to
r + s blocks in such a way that

• s of the new blocks are identical to s of the original blocks,
• r other new blocks contain k1, . . . , kr ≥ 2 of the original blocks.

where b = k1 + · · ·+ kr + s, and the order of k1, . . . , kr is irrelevant.

Definition 5.8. [396] A coalescent with simultaneous multiple collisions is a
PN-valued process Π∞ = (Π∞(t), t ≥ 0) such that for all n, when Πn(t) has b
blocks, each (b; k1, . . . , kr; s)-collision is occurring at some fixed rate λb;k1,...,kr;s.

As shown in [396], all possible collections of collision rates λb;k1,...,kr ;s can be

characterized by an integral representation over P↓
[0,1] which is a generalization

of (5.5), and there are corresponding generalizations of Corollary 5.5.

Limits of ancestral processes These coalescents with simultaneous multiple
collisions can also be characterized as the weak limits obtained from Cannings’
model [84] for the evolution of the genetic makeup of a population of fixed size.
In Cannings’ model,

• there are N individuals in each generation;
• there are infinitely many generations, forwards and backwards in time;
• in each generation, the family sizes have the same distribution as some

exchangeable sequence (ν1,N , . . . , νN,N);
• the family sizes for different generations are independent;

Now sample n individuals at random from the 0th generation. Construct a P[n]-
valued Markov chain (Πn,N (a))∞a=0 such that i and j are in the same block of
Πn,N (a) if and only if the ith and jth individuals in the sample have the same
ancestor in the ath generation backwards in time. Let

cN := P(two random individuals have the same ancestor in the previous generation).

Then there is the following generalization of Kingman’s derivation of his coales-
cent process from classical genetics models:

Theorem 5.9. Möhle and Sagitov [393], [313] Suppose that

lim
N→∞

E[(ν1,N )k1↓ . . . (νr,N )kr↓]

Nk1+···+kr−rcN
(5.8)

exists for all r ≥ 1, k1, . . . , kr ≥ 2, and that

lim
N→∞

cN = 0.

Then as N →∞

(Πn,N (bt/cNc), t ≥ 0)
d→ (Πn,∞(t), t ≥ 0)
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where the limit process is the collection of consistent Markovian restrictions to
[n] of some exchangeable PN-valued Markovian coalescent process.

In particular, if

lim
N→∞

E[(ν1,N )3]

NE[(ν1,N )2]
= 0

the limit is Kingman’s coalescent, if

lim
N→∞

N−2c−1
N E[(ν1,N )2(ν2,N )2] = 0

the limit is a Λ-coalescent as in Theorem 5.4 for some Λ, and without such
assumptions the coalescent is one of Schweinsberg’s coalescents with simulta-
neous multiple collisions, whose transition rates can be identified in terms of
the limits (5.8). See [396] for details, and [398, 67, 126] for futher work on how
coalescents with multiple and simultaneous multiple collisions arise as limits in
various discrete or continuous population models.

Exercises

5.1.1. (Construction of Kingman’s coalescent from a Poisson process)
[396]. Show how to construct Π∞(t) explicitly for each t > 0 as a function of
points of a Poisson random measure on a suitable space.

5.1.2. (The Ewens sampling formula derived from Kingman’s coalescent)[253]
This construction has well known interpretations in terms of standard models
of population genetics, due to Wright and Fisher, Moran, and Cannings [84].
See [413, 429], and [325] for more recent developments. Fix n. Let the integers
represent individuals located along a horizontal line. Time is vertical. Given a
realization of the restriction of [n] of Kingman’s coalescent, say (Πn(t), t ≥ 0),
starting with the partition into singletons, start by drawing lines of descent ver-
tically up from each individual, until the first coalescent event at time T1 say.
If say {i} merges with {j} to form {i, j}, identify the tips of these two lines of
descent at time T1, and continue upwards with n− 1 lines, until the next coa-
lescence, when the tips of two lines are identified, continue upwards with n− 2
lines, and so on, until the time Tn−1 when the last two lines meet. This defines
a random tree T with edge-lengths, whose set of leaves is [n], with n−2 internal
nodes at levels Ti for 1 ≤ i < n− 1, each of degree 3, and an exceptional node
at level Tn−1 of degree 2. Now let Nθ denote a Poisson process of marks, called
mutations along all branches of this treee at rate θ/2 per unit length. Define a
random partition Πθ

n of [n] to be the partition generated by the random equiva-
lence relation i ∼θ j iff there is no mutation on the unique path in T that joins i
to j. Then Πθ

n is an exchangeable random partition of [n], whose distribution is
given by the EPPF (2.19) corresponding to the Ewens sampling formula (2.20).
Note that the random trees defined by this construction are consistent in an
obvious sense as n varies. The completion of their union (relative to the met-
ric defined by distance measures along branches) is a relatively simple kind of
continuum random tree, discussed in [7, §4.1] and [138].
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5.1.3. (Coming down from infinity) [357, 395] Let (Π∞(t), t ≥ 0) be a
Λ-coalescent starting with all singletons. If |Π∞(t)| = ∞ for all t > 0, say the
process stays infinite, whereas if |Π∞(t)| < ∞ for all t > 0, say it comes down
from infinity. Assume Λ has no atom at 1. Then either the Λ-coalescent either
comes down from infinity almost surely or it stays infinite almost surely. Let γb

be the rate at which the number of blocks is decreasing:

γb =
b∑

k=2

(k − 1)

(
b
k

)

λb,k .

Then the Λ-coalescent comes down from infinity if and only if

∞∑

b=2

γ−1
b <∞.

For instance, if Λ is the beta(a, b) distribution the Λ-coalescent comes down
from infinity if and only if a < 1. In particular, for a = b = 1, the Bolthausen-
Sznitman coalescent stays infinite. Whereas, for Λ = δ0, Kingman’s coalescent
comes down from infinity.

Notes and comments

This section is based on [141, 357] and [396]. Thanks to Jason Schweinsberg for
his help in summarizing some results of [396].

5.2. Fragmentations

The operation of time reversal introduces a fundamental duality between a pro-
cess of coalescence and a process of fragmentation. If one is a Markov pro-
cess, then so will be the other. However, the dual by time-reversal of a time-
homogeneous Markov process will usually not be time-homogeneous. Also, a
key assumption about fragmentation processes is the branching property ac-
cording to which different fragments evolve independently. The problem with
time-reversing a coalescent process is that in general there is no such branch-
ing property, and this is a much more serious obstacle to its study than the
Markovian inhomogeneity.

This complicates considerably the discussion of duality relations between pro-
cesses of fragmentation and coagulation. The idea of looking for some kind of
duality by time reversal (or inversion, or some other transformation that reverses
the direction of time) has proved very fruitful, though difficult to formalize as
part of any general theory. It was argued in [357] that the following definition
of a fragmentation operator associated with a probability distribution p on PN

is dual in a number of intuitive ways to the Definition 5.6 of the coagulation
operator associated with p.
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Definition 5.10. For each probability measure p on PN, define a Markov kernel
p -frag on PN, the p-fragmentation kernel as follows. Let p -frag(π, · ) be the
distribution of a random refinement of π whose restriction to the mth block of
π is the restriction of Π(m) to that block, where the (Π(m),m = 1, 2, . . .) are
independent random partitions of N with distribution p.

Note the key fact that this definition is local, in the sense discussed after
Theorem 5.7. So if such kernels are used to make a Markov process, then its
restrictions to [n] will be Markovian for every n.

Suppose that p and q are distributions on PN of exchangeable random parti-
tions, and that (P ↓

i ) and (Q↓
j ) denote the ranked frequencies of random parti-

tions governed by p and q respectively. Define r(·) =
∫
p(dπ)q -frag(π, · ), and

call it the distribution of a q-fragmentation of a p-partition. Then the ranked
frequencies associated with r are the ranked rearrangement of the collection of
frequencies

{P ↓
i Q

↓
i,j , i, j ≥ 1}

where the (Q↓
i,j , j ≥ 1) are a collection of independent copies of (Q↓

j , j ≥ 1) which

are also independent of (P ↓
i ). Thus these fragmentation operators have a natural

action on the space P↓
[0,1] of proper or improper ranked frequencies. Some exam-

ples of identities involving such fragmentation kernels and the two-parameter
family of random partitions introduced in the next lecture were pointed out in
[371], [368]. These identities were generalized and related by time-reversal to
corresponding identities for coagulation kernels in [357]. The general problem
of characterizing semigroups of both coagulation and fragmentation operators
of the form introduced in Definitions 5.6 and 5.10 was posed in [357, §3.3]. The
solution in the case of coagulation operators is provided by Schweinsberg’s coa-
lescents with simultaneous multiple collisions, discussed in the previous section,
while the solution for fragmentation operators is provided by the theory of ho-
mogeneous fragmentation processes due to Bertoin [45]. In some loose sense, this
theory is dual to the theory of [357, 396] for coagulation semigroups. The method
of analysis, using consistent rates to define Lévy measures on partitions, and the
Poisson constructions for both kinds of processes are very similar. The fragmen-
tation theory introduces the concept of erosion of mass in the fragmentation
process, which is roughly dual to the way in which there can be creation of mass
in the coalescent theory, as in [357, Proposition 26]. Bertoin [46]. characterized
a more general class of self-similar fragmentation processes, where objects split
at a rate proportional to a power α of their mass. The case α = 0 corresponds
to homogeneous fragmentation fragmentation processes. When the index α is
non-negative, Bertoin [47] gave strong limit theorems for the behavior at large
times of self-similar fragmentation processes. Some further references are Filipov
[154], Bertoin [43], Haas [183, 184], and Jeon [218].

It is not clear what if any class of coalescent processes should be regarded
as the dual of self-similar fragmentation processes. Berestycki [36] considers
exchangeable coalescent-fragmentations in equilibrium, providing a synthesis of
the works by Schweinsberg and Bertoin. See also Haas [182] where an equilibrium
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is obtained for a fragmentation process with immigration. Some related studies
are [123, 110, 361].

See [357], [141], [35] and papers of Bertoin cited above, for treatment of vari-
ous technical problems related to regularity of different partition-valued Markov
processes, transformations between different representations, and so on. There is
also a connection between homogeneous fragmentations and branching random
walks. If X(t) is the process of ranked frequencies, and

Z(t)(dx) =

∞∑

i=1

δ− log Xi(t)(dx)

then discrete time skeletons of Z are branching random walks. This idea and
its applications are developed in Bertoin and Rouault [56]. For connections
between fragmentation processes and continuum random trees, see Section 10.4
and [185, 310, 311].

Exercises

5.2.1. (Problem: Fragmentation processes associated with the Ewens
family) The construction of Exercise 5.1.2 can easily be arranged to construct
a family of random partitions (Πθ

n, θ ≥ 0) which is refining or fragmenting as θ
increases from 0 to ∞, such that Π0

n = {[n]} and Πθ
n for θ > 0 has the Ewens

EPPF (2.19) with parameter θ. Call a process with these properties a Ewens
fragmentation process. Compare with the Brownian fragmentation process de-
rived similarly from the tree in a Brownian excursion in Section 10.4. Show
that when regarded for fixed n, the Ewens fragmentation process just defined
is not Markovian. What if the state is regarded as an infinite partition? Does
this Ewens fragmentation process admit any nice autonomous description? Is
there any natural construction of a Markovian Ewens fragmentation process?
Clearly, there exists some such process, by copying the inhomogeneous transi-
tion rates of a non-Markovian one. But it does not seem easy to compute these
rates for any construction. Another construction, probably also non-Markovian
and different to the above, can be made as follows, by application of Theorem
3.2. Let Nθ be a Poisson process on [0, 1] with intensity θx−1dx, arranged to be
intensifying as θ increases. Let Iθ be the interval partition generated by cutting
[0, 1] at the points of N θ, and construct Πθ

n simultaneously for all θ, by uniform
random sampling from [0, 1] partitioned by Iθ. Note that if (Πθ

n, θ ≥ 0) is a
Ewens fragmentation process, then for each fixed θ > 0, Πθ

n given |Πθ
n| = k has

the microcanonical Gibbs distribution on P[n] with weights wj = (j−1)!. If one
could construct the fragmentation so this was true also for the fixed random
time θ replaced by a random times Θ1 > Θ2 > · · · so that |ΠΘk

n | = k, then one
would have constructed a Gibbs ((• − 1)!) fragmentation on [n]. But it is not
obvious that this is possible.
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Notes and comments

Mekjian and others [90, 281, 307, 308] have considered Ewens partitions with
parameter θ as a model for fragmentation phenomena, with the intuitive notion
that increasing θ corresponds to further fragmentation, but it does not seem
obvious how to construct a nice Markovian fragmentation process corresponding
to this idea. Bertoin and Goldschmidt [49] provide an example of a fragmentation
chain for which the one-dimensional distributions are PD(0, θ+k), k = 0, 1, . . ..
This paper also provides other examples of fragmentation/coalescence duality.

5.3. Representations of infinite partitions

As a preliminary to further study of coagulation and fragmentation operators
on various spaces of partitions, this section reviews some terminology and ba-
sic facts related to different representations of infinite partitions. Recall that
P↓

1 denotes the space of real partitions of 1, that is decreasing non-negative

sequences with sum 1. Probability distributions on P↓
1 can be used to describe

the distribution of sizes of components of many different kinds of partitions of
an infinite set, subject to the constraint that the sum of sizes of components is
always equal to 1. Sometimes, especially in the discussion of weak limits, and
in the theory of processes of coagulation and fragmentation, it is convenient
to work in the larger space P↓

[0,1] := ∪0≤x≤1P↓
x where P↓

x is the space of real

partitions of x. For x > 0 there is an obvious bijection between P↓
x and P↓

1

by scaling, and P↓
0 := {(0, 0, . . .)}. To avoid largely trivial complications, the

following discussion will be restricted to probability measures on P↓
1 . With a

little care everything can be adapted to probability measures on P↓
[0,1] or even

∪x≥0P↓
x . Much more care is required to handle probability distributions over

decreasing sequences (xi) with
∑

i xi = ∞, for which many of the following
constructions don’t make sense. See [9, 13] regarding what can be done in that
case.

Let P be a probability distribution on P↓
1 . Associated with P are the dis-

tributions of various stochastic processes determined by P , each constructed
from some random element (Pi) of P↓

1 with distribution P and some further
randomization, as indicated in the following definitions. See [347, 350, 357] for
background and further discussion of the relations between these various pro-
cesses. Note well the slightly unusual but efficient convention of notation, that P
is not the random sequence (Pi), rather the distribution on P↓

1 of this sequence.
Each of the following processes encodes the distribution P in a more manage-
able way, and facilitates the description of some basic operations on probability
distributions on P↓

1 .

Definition 5.11. An exchangeable random discrete distribution on [0, 1] gov-
erned by P is a random measure τP on [0, 1] which puts mass Pj at Uj ∈ [0, 1],
for some sequence of independent and identically distributed uniform (0, 1) vari-



5.3. REPRESENTATIONS OF INFINITE PARTITIONS 111

ables (Uj) independent of (Pj):

τP (·) :=
∞∑

j=1

Pj1(Uj ∈ ·) (5.9)

Definition 5.12. A process with exchangeable increments governed by P is the
process (τP (u), 0 ≤ u ≤ 1) obtained as the cumulative distribution function of
an exchangeable random discrete distribution τP as above, that is

τP (u) := τP ([0, u]) :=

∞∑

j=1

Pj1(Uj ≤ u). (5.10)

Evidently, the distribution P of (Pi) on P↓
1 , and that of (τP (u), 0 ≤ u ≤ 1)

on D[0, 1], determine each other uniquely. According to Kallenberg’s theory
of processes with exchangeable increments [226, 228], every pure jump process
(τ(u), 0 ≤ u ≤ 1) with increasing paths in D[0, 1], which has exchangeable
increments with τ(0) = 0, τ(1) = 1, has the same distribution as τP derived as
above from (Pi) the sequence of ranked jumps of (τ(u), 0 ≤ u ≤ 1).

For (x1, x2, . . .) a sequence of non-negative real numbers with sum x < ∞,
let rank(x1, x2, . . .) ∈ P↓

x be the decreasing rearrangement of terms of the
sequence.

Definition 5.13. An interval partition of [0, 1] is a sequence of random disjoint
open intervals (Ij) with

∑

i λIj
= 1, where λI is the length of I . A P -partition

of [0, 1], often denoted (IP
j ) below, is an interval partition (Ij) of [0, 1] such that

rank(λI1 , λI2 , . . .)

has distribution P .

Note that an interval partition will always be regarded as ordered. So Ij =
(Gj , Dj) say is simply identified as a pair of random variables specifying its
endpoints, and (Ij) is just a sequence of such pairs. To completely specify the
distribution of a P -partition of [0, 1], it is necessary to specify the order of
intervals in some way. If the order is not mentioned, it can be assumed by
default that the intervals are laid out from left to right in decreasing order of
size. But other orderings, such as the exchangeable ordering discussed later in
Definition 5.16, are much more useful.

Definition 5.14. A P -partition of N is an exchangeable random partition Π∞
of N whose ranked frequencies (Pi) have distribution P .

The distribution of Π∞ is determined by the distribution of its ranked fre-
quencies via (2.14). The EPPF p of Π∞ and the distribution of ranked frequen-
cies P determine each other uniquely, by Kingman’s correspondence Theorem
2.2. According to that correspondence, the blocks of a P -partition of N can be
made by Kingman’s paintbox construction as the random sets {i : Ui ∈ IP

j } for

any P -partition (IP
j ) of [0, 1], and (Ui) a sequence of independent uniform(0, 1)

variables, assumed independent of (IP
j ).
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Definition 5.15. A size-biased presentation of P is a size-biased ordering of a
P -distributed sequence.

Such a sequence is obtained from an exchangeable P -partition of N as the
frequencies of classes in order of their first elements. In terms of Kingman’s
paintbox construction, this is the sequence of lengths of intervals IP

j in the order
they are discovered by the process of random sampling with the Ui. Think of
each IP

j being painted a different color, then observing the sequence of colors
found by the Ui.

Interval partitions of [0, 1] may be constructed as in Chapter 4 as the col-
lection of excursion intervals of a suitable stochastic process parameterized by
[0, 1]. Many such interval partitions have the following property:

Definition 5.16. Let (Ij) be an interval partition of [0, 1], with sequence of
ranked lengths

(λI(n)
, n ≥ 1) := rank(λIj

, j ≥ 1)

whose non-zero terms are distinct almost surely. Call (Ij) exchangeable if for
each n = 2, 3, . . . such that P(λI(n)

> 0) > 0, conditionally given λI(n)
> 0, the

ordering in [0, 1] of the longest n intervals I(j), 1 ≤ j ≤ n is equally likely to be
any one of the n! possible orders, independently of the lengths of these n longest
intervals. Call (Ij) infinite if P (λI(n)

> 0) = 1 for all n.

The extension of this definition to the case with ties is pedantic but obvious.
As shown by Kallenberg [227], for an infinite exchangeable interval partition
(Ij), for each u ∈ [0, 1] the fraction of the longest n intervals that lie to the left
of u has an almost sure limit Lu as n → ∞. The process (Lu, 0 ≤ u ≤ 1) is a
continuous increasing process, called the normalized local time process of (Ij).

Note that the distribution of an exchangeable P -partition (Ij) of [0, 1] is
uniquely determined by P provided the indexing is ranked, meaning Ij = I(j)
for all j, with strictly decreasing lengths, as will be assumed for simplicity from
now on. An exchangeable P partition of [0, 1] can be constructed as

IP
j := (τP (Uj−), τP (Uj)) = (τP ([0, Uj)), τP ([0, Uj ]))

with notation as in (5.9) and (5.10), for τP regarded as a process with exchange-
able increments in the first expression, and as a random measure in the second.
Inversely, assuming that (Ij) is an infinite exchangeable P -partition of [0, 1],
the increasing process with exchangeable increments (τP (u), 0 ≤ u ≤ 1) is the
right-continuous inverse of the normalized local time process of (Ij).

The following lemma is a well known consequence of Itô’s description of
excursions of a Markov process and the general construction of bridges of a nice
recurrent Markov process, as in [155].

Lemma 5.17. Let Xbr be the bridge of length 1 from 0 to 0 derived from any
nice recurrent strong Markov process X with recurrent state 0 which is regular
for itself. Then the interval partition (Ij) defined by excursions of Xbr away
from 0 is an infinite exchangeable interval partition of [0, 1], whose normalized
local time process is Lu = L0

u/L
0
1, 0 ≤ u ≤ 1 for any of the usual Markovian

definitions of a bridge local time process L0
u := L0

u(Xbr).
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In particular, this lemma applies to a self-similar recurrent Markov process
X = B as in Section 4.4. Then, according to Corollary 4.9 the distribution of
ranked lengths of excursion intervals (Ij) is PD(α, α) for some α ∈ (0, 1), with
α = (2−δ)/2 if B is BES(δ) for δ ∈ (0, 2), and α = 1

2 if B is standard Brownian
motion.

The two-parameter family Quickly reviewed here are some of the above
representations in the case of the two-parameter family. The distribution P
on P↓

1 is PD(α, θ) iff the corresponding partition of N is an (α, θ) partition,
as defined via the Chinese Restaurant Process in Section 3.2. In particular,
the distribution P is PD(0, θ) iff the corresponding process with exchangeable
increments τP is a Dirichlet process with parameter θ, obtained by normalization
and scaling of a gamma subordinator (Γs, 0 ≤ s ≤ θ). The distribution of P is
PD(α, 0) iff the corresponding process with exchangeable increments τP is a
normalized stable subordinator of index α.

5.4. Coagulation and subordination

Recall from Section 5.1 and Section 5.2 that for each probability measure Q on
P↓

1 , two Markov transition kernels Q -coag and Q -frag can be defined on P↓
1

as follows. For p ∈ P↓
1 ,

• (Q -coag)(p, ·) is the distribution on P↓
1 of

rank

(
∑

i

pi1(Ui ∈ IQ
j ), j ≥ 1

)

(5.11)

where (IQ
j ) is a Q-partition of [0, 1], and the Ui are i.i.d. uniform on (0, 1)

independent of (IQ
j ).

• (Q -frag)(p, ·) is the distribution of

rank(piQi,j , i, j ≥ 1) (5.12)

where (Qi,j)j≥1 has distribution Q for each i, and these sequences are
independent as i varies.

For a probability measure P on P↓
1 , let R := P (Q -coag). That is the prob-

ability measure on P↓
1 defined by

R(·) :=

∫

P↓

1

P (dr)Q -coag(r, ·), (5.13)

which may be called P coagulated by Q. Notice that (5.13) is equivalent to

R -coag = (P -coag)(Q -coag)

in the usual sense of composition of Markov kernels. The same remark applies
to fragmentation kernels too.
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The space P↓
1 does not have a group structure, but these operations on prob-

ability measures P and Q on P↓
1 to obtain P coagulated by Q, or P fragmented

by Q, are similar to the more familiar operation of convolution of measures on
a group. For instance there is a representation of both coagulation and frag-
mentation semigroups, analogous to a Lévy-Khintchine representation, as has
been shown by Schweinsberg [396] and Bertoin [45]. The following Lemma re-
duces the notion of composition of coagulation operators to the operation of
composition of increasing processes, commonly known as subordination, which
was considered by Kallenberg [228] for increasing processes with exchangeable
increments of the kind involved here. This is seen by associating each probability
distribution P on P↓

1 with its corresponding exchangeable random discrete dis-
tribution on [0, 1], defined as in (5.9) by putting mass Pj at Uj ∈ [0, 1], for some
sequence of independent and identically distributed uniform (0, 1) variables (Uj)
independent of (Pj) with distribution P . Now R in (5.13) is the distribution of
the ranked rearrangement of the terms

τP (IQ
j ) :=

∞∑

i=1

Pi1(Ui ∈ IQ
j ), j = 1, 2, . . . , (5.14)

where (IQ
j ) is Q partition of (0, 1), assumed independent of (Pi) and (Ui). The

terms in (5.14) are the masses assigned by τP to the intervals IQ
j . Think of Q

as determining the sizes of bins IQ
j , and P as determining the sizes of masses

to be sprinkled into the bins by uniform random allocation. Then P coagulated
by Q is the distribution of ranked P -masses collected in the bins. Note that the
locations of the intervals IQ

j in [0, 1] have no effect in this construction, due to

the assumed independence of (IQ
j ), τP , and (Ui).

For 0 ≤ u ≤ 1 let (τP (u), 0 ≤ u ≤ 1) as in (5.10) be the process with
exchangeable increments whose ranked jumps have distribution P , that is the
cumulative distribution function of the random discrete distribtion τP . Recall
that the distribution P on P↓

1 determines that of (τP (u), 0 ≤ u ≤ 1) on D[0, 1],
and vice versa.

Lemma 5.18. For each pair of probability distributions P and Q on P↓
1 , the

distribution R = P (Q -coag) is the unique probability distribution on P↓
1 such

that
(τR(u), 0 ≤ u ≤ 1)

d
= (τP (τQ(u)), 0 ≤ u ≤ 1),

where it is assumed that (τP (u), 0 ≤ u ≤ 1) and (τQ(u), 0 ≤ u ≤ 1) are indepen-
dent.

Proof. It may be assumed that the Q-partition (IQ
j ) in (5.14) is exchangeable.

The union of intervals IQ
j is then almost surely identical to the union of open

intervals (τQ(u−), τQ(u)) as u ranges over [0, 1]. The process (τP (τQ(u)), 0 ≤ u ≤
1) is easily seen to be increasing with exchangeable increments, and its collection
of jumps is almost surely identical to the collection of strictly positive increments
of τP over the non-empty intervals (τQ(u−), τQ(u)). So the conclusion follows
from (5.14). �
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Lemma 5.18 generalizes the connection pointed out in [54] between the coag-
ulation operators of the Bolthausen-Sznitman coalescent [72] and the operation
of subordination of stable increasing processes. To see this connection, let Qα :=
PD(α, 0). According to Theorem 4.3, Qα is the distribution of ranked jumps of
(Tα(s)/Tα(S), 0 ≤ s ≤ S), for arbitrary fixed S > 0, where (Tα(s), s ≥ 0) is a
stable(α) subordinator. For two independent stable subordinators (Tα(t), t ≥ 0)
and (Tβ(s), s ≥ 0) there is the well known subordination identity

(Tα(Tβ(s)), s ≥ 0)
d
= (Tαβ(s), s ≥ 0). (5.15)

By application of Lemma 5.18, Qα(Qβ -coag) is the distribution of ranked
jumps of the process

(
Tα(Tβ(u)/Tβ(1))

Tα(1)
, 0 ≤ u ≤ 1

)

d
=

(
Tαβ(u)

Tαβ(1)
, 0 ≤ u ≤ 1

)

(5.16)

where the identity in distribution is justified by (5.15) and the scaling property

(Tα(ct), t ≥ 0)
d
= (c1/αTα(t), t ≥ 0). That is to say, Qα(Qβ -coag) = Qαβ ,

which is equivalent to the identity of coagulation kernels

(Qα -coag)(Qβ -coag) = Qαβ -coag (0 < α, β < 1). (5.17)

If we set Pt := Qexp(−t) -coag then (5.17) reads

PsPt = Ps+t (s, t > 0). (5.18)

Thus we deduce:

Theorem 5.19. Bolthausen-Sznitman [72] The family of Markov kernels

(PD(e−t, 0) -coag, t > 0), is a semigroup of Markov kernels on P↓
1 . (5.19)

See [72, 357, 50, 54] for further analysis of the corresponding coalescent pro-
cess, which may be constructed for all t ≥ 0 with state space PN, or just for t > 0
with state space P↓

1 . Bertoin and Le Gall [51] show that the correspondence be-
tween operations of coagulation and subordination, described by Lemma 5.18,
can be extended in a natural way to associate Schweinsberg’s coalescent pro-
cesses with multiple collisions (Definition 5.8) with a class of stochastic flows of
bridges with exchangeable increments. See also [52] for further developments.

Coagulation by PD(0,1) The PD(0, 1) distribution on P↓
1 has some unique

properties implied by the fact that it is the asymptotic distribution of ranked
relative lengths of cycles of a uniform random permutation of [n], as discussed
in Section 3.1. This gives the uniform stick-breaking representation of the size-
biased presentation of PD(0, 1), which is the simplest possible description of the

size-biased presentation of any probability measure on P↓
1 which concentrates on

infinite partitions. Moreover, the entire structure of random partitions generated
by uniform permutations of [n], for every n, is embedded in a (0, 1) partition of
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N whose ranked frequencies have PD(0, 1) distribution. The following Theorem
5.21, presents a remarkable consequence of this intimate link between PD(0, 1)
and random permutations. First, a definition:

Definition 5.20. [17, 24] Let (Ij)j=1,2,... be a random interval partition of
[0, 1]. The D-partition derived from (Ij) is the interval partition (ID

j ) defined as
follows. Let U1, U2, . . . denote a sequence of independent uniform (0, 1) variables,
independent of (Ij). Let ID

j := (DVj−1 , DVj
) where V0 = DV0 = 0 and Vj is

defined inductively along with the DVj
for j ≥ 1 as follows: given that DVi

and
Vi have been defined for 0 ≤ i < j, let

Vj := DVj−1 + Uj(1−DVj−1),

so Vj is uniform on [DVj−1 , 1] given (Vi, DVi
) for 0 ≤ i < j, and let DVj

be the
right end of the interval Ik(j) which contains Vj .

This definition was first introduced in [17] for (Ij) the exchangeable interval
partition defined by excursions of a standard Brownian bridge, when (Ij) is a
PD( 1

2 ,
1
2 ) partition Corollary 4.9. It was shown in [17], in connection with the

asymptotics of partitions of [n] generated by trees and basins in the digraph of
a uniform random mapping of [n], that the D-partition derived from excursion
intervals of Brownian bridge is a PD(0, 1

2 ) partition, with intervals in length-
biased order. See the next section for further discussion of this example. It
was shown in [24] that many of the properties of the D-partition derived from
intervals of Brownian bridge are in fact shared by the D-partition derived from
any exchangeable interval partition of [0, 1]. Following is a formulation of one
such property:

Theorem 5.21. For each probability distribution P on P↓
1 , the sequence of

lengths of the D-partition derived from an exchangeable P -partition of [0, 1] is
a size-biased presentation of P coagulated by PD(0, 1). In particular, the distri-
bution of ranked lengths of this D-partition is P (PD(0, 1) -coag).

Proof. Let (Pi) be distributed according to P . By conditioning, it is enough
to consider one of the following two cases: either

• Pi > 0 for all i almost surely, or
• Pi > 0 for 1 ≤ i ≤ n and

∑n
i=1 Pi = 1 almost surely.

But in the first case, the conclusion can be read from [24, Theorem 25], and in
the second case, the conclusion can be read from [24, Lemma 26]. �

Corollary 5.22. In the setting of Theorem 5.21 with (Ij) an infinite exchange-
able interval partition of [0, 1], for each k = 1, 2, . . . the interval (GVk

, DVk
) that

contains Vk is a length-biased pick from the restriction of (Ij) to [DVk−1
, DVk

].
In particular, (GV1 , DV1) is a length-biased pick from the restriction of (Ij) to
[0, DV1 ].
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Exercises

5.4.1. (Proof of Theorem 5.21)

5.4.2. (Proof of Corollary 5.22)

5.4.3. (Problem) Is there a generalization of Theorem 5.21 to some other law
Q instead of PD(0, 1), for instance PD(0, θ) or PD(α, θ)?

5.5. Coagulation – fragmentation duality

Let us start with some general considerations. For two random variables X :
Ω→ ΩX and Y : Ω→ ΩY , with values in arbitrary measurable spaces (ΩX ,FX)
and (ΩY ,FY ), and a Markov transition kernel Q : (ΩX ,FX)→ (ΩY ,FY ), either
of the displays

X
Q
−→ Y or Y ←−

Q
X (5.20)

means that P(Y ∈ · |X) = Q(X, ·). Assuming this, and that (ΩX ,FX) is a
nice measurable space, the general theory of regular conditional distributions
[122] provides an essentially unique Markov transition kernel Q̂ : (ΩY ,FY ) →
(ΩX ,FX), such that

X ←−
Q̂

Y (5.21)

The dual pair of relations (5.20) and (5.21) can then be indicated by a single
diagram

X

Q
−→
←−
Q̂

Y (5.22)

which should be read clockwise starting from X . Some things to keep in mind
here:

• the notation is simplistic: Q̂ depends on both Q and the law of X .
• If P(X ∈ dx) = fX(x)µ(dx) and Q(x, dy) = q(x, y)ν(dy) for some ref-

erence measures µ and ν, then P(Y ∈ dy) = fY (y)ν(dy) with fY (y) =
∫

x q(x, y)fX(x)µ(dx), and there is Bayes rule Q̂(y, dx) = fX(x)q(x, y)µ(dx)/fY (y).
• Without densities with respect to some reference measures, the abstract

theory gives you existence of Q̂. But when it comes to approximating or
computing it, or identifying it with some other kernel you might have seen
before, you are on your own.

So when X and Y have values in some infinite dimensional space like P↓
1 , where

there is no natural reference measure, given some law of X and some Markov
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kernel Q for the law of Y given X , the problem of identifying the law of Y and
the inverse kernel Q̂ is usually a non-trivial one. A useful general method for
handling such situations is the following:

Finessing Bayes rule

• Find some manageable class of jointly measurable functions f such that
a joint law of (X,Y ) of the kind under consideration is determined by
Ef(X,Y ) for all f in the class.

• Compute Ef(X,Y ) for all f in the class, using the law of X and

P(Y ∈ · |X) = Q(X, ·).

• Now anticipate or guess some parametric form for what the law of Y and
Q̂ might be. Recompute Ef(X,Y ), using your guess for the law of Y , and

P(X ∈ · |Y ) = Q̂(Y, ·).

• If you can find values of the parameters which get you the same value of
Ef(X,Y ) as you got the other way, for all f in your class, the problem is
solved.

This method is well illustrated by the following example. Suppose X has
PD(α0, θ0) distribution on P↓

1 , and Q is the (α, θ)-coagulation kernel, meaning
the kernel p -coag derived from p = PD(α, θ). It is not at all obvious how to

describe the distribution of Y on P↓
1 in any direct way, let alone how to find the

family of conditional laws Q̂ of X given Y . The kernel Q̂ must obviously be some
kind of fragmentation kernel, meaning that Q̂(y, ·) should concentrate on real
partitions obtained by shattering each part of y into fragments in some way, then
re-ranking all the fragments. But the exact form of this kernel is unknown except
in the special case, discovered using the above method, and discussed in more
detail below, when the distribution of Y is PD(α1, θ1), and the inverse kernel is

PD(α̂, θ̂)-fragmentation for some (α1, θ1) and (α̂, θ̂) determined by (α0, θ0) and
(α, θ).

Example: partitions generated by random mappings The first indica-
tion of such a duality relation is provided by the combinatorial structure asso-
ciated with random mappings. The digraph of a uniform random mapping from
[n] to [n] partitions [n] coarsely into connected components called basins, each
of which is further partitioned into tree components. See Section 9.1 for further
discussion. The partition of [n] by tree components is thus obtained by a com-
binatorial fragmentation operation on the partition of [n] by basins. Moreover,
given the tree components, they are tied together into cycles by the action of
a uniform permutation of their root vertices, which provides a combinatorial
coagulation of trees. In the large n limit, the various partitions involved have
weak limits in the sense of Section 2.4, all of which can be identified as members
of the two-parameter family of random partitions Section 3.2 parameterized by
(α, θ) as indicated below. See Chapter 9 for further discusssion. As n→∞,
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• the weak limit of the partition of [n] by tree components is a ( 1
2 ,

1
2 ) par-

tition.
• the weak limit of the partition of tree roots, by cycles of the random

permutation of what is most likely a large number of cyclic points, is a
(0, 1) partition;

• the weak limit of the partition of [n] by basins is a (0, 1
2 ) partition;

• the weak limit of the partition of a large basin by its tree components is
a ( 1

2 , 0) partition.

Moreover, the combinatorial fragmentation and coagulation operators, which
relate the two random partitions generated by the mapping digraph, converge
weakly to their asymptotic counterparts, which are the (0, 1)-coagulation and

( 1
2 , 0)-fragmentation operators on P↓

1 . To summarize: the joint weak limit of the
tree and basin partitions generated by a random mapping is a ( 1

2 ,
1
2 )-partition

which is a refinement of (0, 1
2 )-partition, according to the following prescription,

where the symbol (α, θ) may represent

• either the law of an (α, θ) partition of N,

• or the corresponding law PD(α, θ) on P↓
1 :

( 1
2 ,

1
2 )

(0, 1) -coag

−−−−−−−−→
←−−−−−−−−
( 1
2 , 0) -frag

(0, 1
2 ) (5.23)

To read around the diagram, and review its interpretation in terms of laws
on P↓

1 . Starting on the left side, PD( 1
2 ,

1
2 ) is the limit distribution of ranked

relative sizes of tree components of the mapping. The PD(0, 1) -coag opera-
tion describes how the trees are bundled into basins, according to the PD(0, 1)
asymptotic distribution of relative sizes of cycles of the random permutation of
the roots. The result is the asymptotic basin partition, which is PD(0, 1

2 ). Fi-
nally, the asymptotic mechanism by which the basins are partitioned into trees
is a PD( 1

2 , 0)-fragmentation. The reader will find it instructive to read around
the diagram, interpreting each step instead in terms of the joint law of a nested
pair of random partitions of [n], where the joint laws are consistent in an obvious
sense as n varies. It should then become clear that the problem of discovering
or proving a duality relation like (5.23) is essentially combinatorial in nature,
as it reduces entirely to computations involving partitions of [n].

Brownian bridge interpretation Of course, the interesting thing about a
duality relation like (5.23) is that while it can be proved combinatorially, it has
meaning in the continuum limit as a fact about kernels on real partitions of
1. Recall from Corollary 4.9 that PD( 1

2 ,
1
2 ) and PD( 1

2 , 0) are the laws of the
partitions of 1 generated by the lengths of excursions away from 0 of Bbr and
B[0, 1] respectively, where B is standard Brownian motion and Bbr is B[0, 1]
conditioned on B(1) = 0. Consequently, the diagram (5.23) can be interpreted
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in terms of first coagulating and then fragmenting an ensemble of Brownian ex-
cursions, using the representation of PD(0, 1)-coagulation provided by Theorem
5.21. See Chapter 1 and [24] for details.

Generalization The coagulation/fragmentation duality (5.23) generalizes as
follows:

Theorem 5.23. [357] For 0 < α < 1, 0 ≤ β < 1,−β < θ/α

(α, θ)

(β, θ/α) -coag

−−−−−−−−→
←−−−−−−−−

(α,−αβ) -frag

(αβ, θ) (5.24)

Sketch of proof. As indicated in the discussion below the special case (5.23),

the key is that for any probability law Q on P↓
1 , the kernels Q -coag and

Q -frag, regarded as Markov kernels on PN rather than P↓
1 , act locally on the

partitions of [n] obtained by restriction of a partition of N, in the sense discussed
below Theorem 5.7 and Definition 5.10 . Moreover their action can be described
in terms of EPPFs by explicit combinatorial formulae [357, §4]. Consequently,
an identity such as (5.24), once guessed, can be proved by a computation with
EPPFs, according to the general method of finessing Bayes rule, discussed above.
See [357, §4] for details. �

Some special cases of (5.24) are worthy of note.
• (β = 0, 0 < α = θ < 1)

(α, α)

(0, 1) -coag

−−−−−−−−→
←−−−−−−−−
(α, 0) -frag

(0, α). (5.25)

This has an interpretation, developed in [24], in terms of excursions of the
bridge of a self-similar Markov process whose zero set is the range of a stable(α)
subordinator. An interpretation can also be given in terms of a discrete renewal
process derived from a stable(α) subordinator, as indicated in [351] and [440].

• (β = 0, 0 < α < 1, θ > 0). This generalization of the previous case can be
represented in an obviously equivalent way as follows:

(0, θ)

(α, 0) -frag

−−−−−−−−→
←−−−−−−−−

(0, θ/α) -coag

(α, θ). (5.26)

This presentation emphasises the construction of PD(α, θ) as PD(0, θ) frag-
mented by PD(α, 0), which was derived already in Proposition 3.16.



• (0 < α < 1, 0 < β < 1, θ = 0.) Now (5.24) reads

(α, 0)

(β, 0) -coag

−−−−−−−−→
←−−−−−−−−

(α,−αβ) -frag

(αβ, 0) (5.27)

Thus we recover the basic identity (5.17) underlying the semigroup of the
Bolthausen-Sznitman coalescent. But this time we get as well a recipe for con-
struction of the time-reversed process, which has numerous applications. For
instance:

Corollary 5.24. [357, Corollary 16] Let (X(t), t > 0) be the càdlàg P↓
1 -valued

Bolthausen-Sznitman coalescent such that X(t) has PD(e−t, 0) distribution, with
X(t) represented as the frequencies of Π(t), where (Π(t), t ≥ 0) is an exchange-
able PN-valued coalescent process such that Π(t) is an (e−t, 0) partition of N.
Let X̃1(t) be the frequency of the component of Π(t) containing 1, so X̃1(t) is
for each t a size-biased pick from the parts of X(t). Then

(X̃1(t), t ≥ 0)
d
=
(
Γ1−exp(−t)/Γ1, t ≥ 0

)

where Γ is a gamma subordinator. Equivalently, if ρ is the sequence of ranked
jumps of (X̃1(t), t > 0), and Ti is when ρi occurs, then ρ has PD(0, 1) distribu-
tion and the Ti are i.i.d. exponential(1) independent of ρ.

See [357] for the proof of this and other properties of the Bolthausen-Sznitman
coalescent which follow from the duality relation (5.27).

Notes and comments

It seems very difficult to describe the semigroup of the Bolthausen-Sznitman
coalescent on P↓

1 much more explicitly than has been done here. For the partic-
ular entrance law with the state at time t distributed according to PD(e−t, 0),
some descriptions can be read from [371]. But there are no known extensions of

these formulae to the case of a given initial state in P↓
1 .

121
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Chapter 6

Random walks and random

forests

This chapter is inspired by the following quotation from Harris’s 1952 paper
[193, §6]:

Walks and trees. Random walks and branching processes are both objects of
considerable interest in probability theory. We may consider a random walk as a
probability measure on sequences of steps-that is, on “walks”. A branching pro-
cess is a probability measure on “trees”. The purpose of the present section is to
show that walks and trees are abstractly identical objects and to give probabilistic
consequences of this correspondence. The identity referred to is nonprobabilistic
and is quite distinct from the fact that a branching process, as a Markov process,
may be considered in a certain sense to be a random walk, and also distinct
from the fact that each step of the random walk, having two possible directions,
represents a twofold branching.

This Harris correspondence between walks and trees has been developed and
applied in various ways, to enrich the theories of both random walks and branch-
ing processes. The chapter is organized as follows:

6.1. Cyclic shifts and Lagrange inversion This section presents a well-
known probabilistic interpretation of the Lagrange inversion formula in
terms of hitting times of random walks .

6.2. Galton-Watson forests The Lagrange inversion formula appears also
in the theory of Galton-Watson branching processes. This is explained by
Harris’s correspondence between random walk paths on the one hand, and
trees or forests on the other.

6.3. Brownian asymptotics for conditioned Galton-Watson trees The
Harris correspondence leads to results due to Aldous and Le Gall, accord-
ing to which the height profiles of suitably conditioned Galton-Watson
trees and forests converge weakly to Brownian excursion or reflecting
Brownian bridge, as the number n of vertices in the tree or forest tends
to ∞.
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6.4. Critical random graphs and the multiplicative coalescent Aldous
developed these ideas to obtain the asymptotic behaviour of component
sizes of the Erdős-Rényi random graph process G(n, p) in the critical
regime p ≈ 1/n as n → ∞. The multiplicative coalescent process gov-
erns mergers of connected components in the random graph process as
the parameter p increases.

6.1. Cyclic shifts and Lagrange inversion

For a sequence x := (x1, . . . , xn) the walk with steps x is the sequence s0 =

0, s1, . . . , sn with sj :=
∑j

i=1 xi. Say the walk first hits b at time n if si 6= b for
i < n and sn = b. For i ∈ [n] let x(i) denote the ith cyclic shift of x, that is the
sequence of length n whose jth term is xi+j with i + j mod n. The following
elementary lemma is a useful variant of the classical ballot theorem [409]:

Lemma 6.1. [409],[430, §3] Let x := (x1, . . . , xn) be a sequence with values in
{−1, 0, 1, 2, . . .}, and sum −k for some 1 ≤ k ≤ n. Then there are exactly k
distinct i ∈ [n] such that the walk with steps x(i) first hits −k at time n.

Proof. Consider i = m, the least i such that si = min1≤j≤n sj to see there is
at least one such i. By first replacing x by x(m), it may be assumed that the
original walk first hits −k at time n. But in that case, the walk with steps x(i)

first hits −k at time n if and only if i is one of the k strict descending ladder
indices of the walk, meaning the original walk first hits −` at time i for some
1 ≤ ` ≤ k. �

Kemperman’s formula Suppose now that a sequence of non-negative integer
random variables X := (X1, . . . , Xn) is cyclically exchangeable, meaning that

X(i) d
= X for each 1 ≤ i ≤ n. Define

Sj :=

j
∑

i=1

Xi, (6.1)

T−k := inf{j > 0 : Sj − j = −k} = inf{j > 0 : Sj = j − k}, (6.2)

Then, as observed by Takács [409], Lemma 6.1 implies Kemperman’s formula,

P(T−k = n) =
k

n
P(Sn = n− k) (1 ≤ k ≤ n). (6.3)

Kemperman [234],[235, (7.15)] gave this formula for independent steps Xi

with some arbitrary common distribution (p0, p1, . . .) on the non-negative inte-
gers. Continuing the discussion for independent and identically distributed Xi,
let

g(z) :=

∞∑

j=0

pjz
j = E(zXi) (|z| < 1) (6.4)
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be the probability generating function of the Xi, and for k = 1, 2, . . . let

hk(z) :=

∞∑

n=1

P(T−k = n)zn = E(zT−k). (6.5)

Because T−k is the first passage time to −k of the walk (Sn−n)n=0,1,2,... which
can move downward at most 1 at each step, T−k is the sum of k independent
copies of T−1. Thus

hk(z) = h(z)k (6.6)

where h(z) := h1(z). Moreover, by conditioning on X1, the generating function
h of T−1 solves

h(z) = zg(h(z)). (6.7)

In particular, it is well known [192] that the hitting probability

P(T−k <∞) = hk(1) = qk (6.8)

where q := h1(1) is the least non-negative root of q = g(q). So q = 1 or q < 1
according as µ ≤ 1 or µ > 1, where µ :=

∑

i ipi and it is assumed that p1 < 1.
This brings us to:

Theorem 6.2. (Lagrange inversion formula [103]) Let g(·) be analytic in a
neighbourhood of 0 with g(0) 6= 0. Then the equation h(z) = zg(h(z)) has a
unique analytic solution h(·) in a neighbourhood of 0 whose expansion in powers
of z is such that

[zn]h(z)k =
k

n
[zn−k]g(z)n. (6.9)

Remark. While stated here in an analytic form, it is known that the Lagrange
inversion formula can be regarded as an identity of formal power series. The
formula has numerous variants and generalizations. See [407, §5.4] and papers
cited there.
Sketch of proof. [380, 430] It is quite easy to establish existence and unique-
ness, and to see that if g(z) :=

∑∞
n=0 pnz

n, then both sides of (6.9) are polyno-
mials in p0, . . . , pn. In view of (6.6) and (6.7), Kemperman’s formula (6.3) yields
(6.9) for arbitrary non-negative p0, . . . , pn subject to

∑n
i=0 pi ≤ 1. The general

conclusion then follows by polynomial continuation. �

To make the previous proof more explicit, it is immediate from the proba-
bilistic interpretation that both [zn]h(z)k and [zn−k]g(z)n are polynomials in
p0, . . . , pn with non-negative integer coefficients, which can be interpreted as
follows. On the right side of (6.9), the coefficient of

∏

i p
ni

i in [zn−k]g(z)n is

#n0,...,nn
:=

(
n

n0, . . . , nn

)

1(Σini = n and Σiini = n− k) = (6.10)

#{lattice paths from (0, 0) to (n,−k) with ni steps of size i− 1, 0 ≤ i ≤ n}.
(6.11)
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Whereas on the left side of (6.9), the coefficient of
∏

i p
ni

i in [zn]h(z)k is the num-
ber of such paths which first hit −k at time n, say #n0,...,nn

{ first hit −k at n }.
So (6.9) reduces to the fact that the ratio of these two numbers is

#n0,...,nn
{ first hit −k at n }
#n0,...,nn

=
k

n
(6.12)

for every choice of non-negative integers n0, . . . , nn with
∑

i

ni = n and
∑

i

ini = n− k.

This combinatorial fact (6.12) can be seen directly from Lemma 6.1.

Summary The Lagrange inversion formula (6.9) can be interpreted either
probabilistically or combinatorially in terms of lattice paths. The key factor of
k/n, appearing in the Lagrange inversion formula and its combinatorial equiv-
alent (6.12), is interpreted by Kemperman’s formula (6.3) as the conditional
probability that the walk (Sj − j)j=0,1,2,... first hits −k at step n given that
Sn− n = −k, for any sequence of partial sums Sj of exchangeable non-negative
integer valued random variables. The same factor of k/n appears, but is not so
easy to interpret, in a number of other combinatorial expressions of the Lagrange
formula presented in the exercises of the next section.

Exercises

6.1.1. (Discrete form of Vervaat’s transformation) [355] Let Sj := X1 +
· · ·+Xj where (X1, . . . , Xn) is cyclically exchangeable with values in {−1, 0, 1, . . .},
and Sn = −1. Let Mn := min{i : Si = min1≤j≤n Sj}. Then

• Mn has uniform distribution on {1, . . . , n};
• the cyclically shifted walk with steps (XMn+j , 1 ≤ j ≤ n), with Mn + j

understood mod n, is distributed like the original walk given it first hits
−1 at time n;

• the cyclically shifted walk is independent of Mn.

6.1.2. (Vervaat’s transformation) [425, 57] Let Sj := X1+ · · ·+Xj for inde-
pendent and identically distributed integer-valued Xi with mean 0 and variance
1. Deduce from the previous exercise and the conditioned forms of Donsker’s the-
orem (0.2) and (0.5) that if µ is the a.s. unique time at which a Brownian bridge
Bbr attains its minimum, then the process (Bbr

µ+t −Bbr
µ , 0 ≤ t ≤ 1), with µ+ t

understood mod 1, is a standard Brownian excursion, independent of µ, which
has uniform distribution on [0, 1]. See [355] for a more elementary justification
of the passage to the limit, using almost sure instead of weak convergence.

6.1.3. (Vervaat’s transformation of a Lévy bridge) [95, 309] Generalize
the result of the previous exercise to bridges and excursions derived from a
suitable Lévy process with no negative jumps instead of Brownian motion.
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Notes and comments

See also [96],[91],[48] for further variations of Vervaat’s transformation. The
continuous analog of Kemperman’s formula (6.3) is Kendall’s formula [237]

daP(Ta ∈ dt) =
a

t
P(Xt ∈ da)dt

for Ta the first hitting time of a > 0 for a Lévy process (Xt) with no positive
jumps. See [74] and papers cited there.

6.2. Galton-Watson forests

It is well known to combinatorialists [380, 266, 101, 407] that the enumerations
of lattice paths related to the Lagrange inversion formula, like (6.11)-(6.12), can
also be expressed by suitable bijections as enumerations of various sets of trees
and forests.

The term forest will be used here for a finite rooted forest, that is a directed
graph F ⊆ V × V with a finite set of vertices V , such that each connected
component of F is a tree with edges directed toward some root vertex. A forest
with vertex set V = V (F ) is said to be labeled by V . For vertices v and w of a

forest F write v
f→ w, to show that (v, w) is a directed edge of F , and say v is

the child of w, or w is the parent of v. Note that the direction of edges is from
child to parent. In a plane forest F with k component trees, the set of roots of
the tree components is ordered, as is the set of children of w for each vertex w
of F . Regard a plane forest with k root vertices as a collection of family trees,
one for each of k initial individuals, with each vertex in the forest corresponding
to an individual, and with the order of the roots and the orders of children
corresponding to the order of birth of individuals.

A plane forest is often depicted without labels as on the top left panel of
Figure 6.1, and called an unlabeled plane forest. However, there is a natural
way to identify each vertex of a plane forest by a finite sequence of non-negative
integers which indicates the location of the vertex in the forest. So, following the
convention of [192] for labeling family trees, the set of vertices V (F ) of a plane
forest F can always be identified as a subset of the set of all finite sequences of
integers, as illustrated in the top right panel of Figure 6.1. For a plane forest F
with n vertices, two useful relabelings of V (F ) by [n] are provided by the depth-
first and breadth-first searches of V (F ), whose definition should be obvious from
the examples in the lower panels of Figure 6.1.

Following Otter [334] and subsequent authors [192, 248, 125], regard a Galton-
Watson process started with k individuals, with offspring distribution (p0, p1, . . .),
as generating a collection of k family trees, which combine to form a random
family forest Fk. Let #Fk be the total progeny of the branching process, mean-
ing the number of vertices of Fk. On the event (#Fk <∞) the random family
forest Fk can be defined in an elementary way as a random element of the count-
able set F of all plane forests. The distribution of Fk is then the sub-probability
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Figure 6.1: A plane forest, variously labeled. Top left: no labels needed. Top
right: natural labeling of vertices by finite sequence. Bottom left: labeling by
depth-first search. Bottom right: labeling by breadth-first search.
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distribution on F defined by the formula [334]

P(Fk = F ) =
∏

v∈V (F )

pc(v,F ) =
∏

i≥0

p
ni(F )
i ∀k ≥ 1, F ∈ Fplane

k (6.13)

with the following notation

• V (F ) is the set of vertices of F ;

• c(v, F ) := #{w : w
f→ v} is the number of children or in-degree of v in the

forest F ;
• ni(F ) :=

∑

v∈V (F ) 1(c(v, F ) = i) is the number of vertices of F with i
children ;

• Fplane
k is the set of plane forests with k root vertices.

The distribution of #Fk induced by this distribution of Fk on Fplane
k , with

total mass P(#Fk <∞) ≤ 1, was found by Otter [334] and Dwass [127]. Com-
bining their result with Kemperman’s formula (6.3), for 1 ≤ k ≤ n

P(#Fk = n) = P(T−k = n) =
k

n
P(Sn = n− k) (6.14)

where T−k as before is the first hitting time of −k by the walk (Sn − n)n=0,1,...

with increments Xi−1 for a sequence of independent offspring variables Xi with
distribution (p0, p1, . . .). Thus

#Fk
d
= T−k for each k = 1, 2, . . . . (6.15)

One way to see (6.14) is to argue that the sequence of probability generating
functions of #Fk must solve equations (6.6) and (6.7), which according to La-
grange is solved uniquely by the sequence of generating functions hk of T−k.
But more insight is gained from the following bijective proof of (6.15).

Bijection between plane forests and lattice walks The following lemma
is well known and easily checked. Harris [193] gave it for just a single tree, but
the extension to forests is immediate:

Lemma 6.3. Given a plane forest F of k trees with n vertices, let xi be the
number of children of vertex i of F in order of depth-first search. This coding of
F sets up a bijection

F ↔ (x1, . . . , xn) (6.16)

between Fplane
k and sequences of non-negative integers (x1, . . . , xn) such that the

lattice walk with steps xi − 1 first reaches −k at time n. Moreover, if the trees
of the forest are of sizes n1, . . . , nk, then for each 1 ≤ i ≤ k, the walk first
reaches −i at the time n1 + · · · + ni when the depth-first search of the ith tree
is completed.

The same is true with breadth-first instead of depth-first search of each tree of
F . Call the lattice walk with increments xi−1 so associated with a forest F , the
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depth-first walk or the breadth-first walk as the case may be. This transformation
from forests to walks has a well known interpretation in terms of queuing theory
[236, 409, 410]. Variations of the bijection then correspond to various queue
disciplines (last in – first out, first in – first out, etc).

To put the lemma in probabilistic terms, let X ′
i be the number of children

of the ith individual in the depth-first search order of a Galton-Watson family
forest Fk started with k individuals. Then provided #Fk < ∞ the sequence
(X ′

1, . . . , X
′
#Fk

) determines the plane forest Fk uniquely, and there is the fol-
lowing refinement of (6.15):

(X ′
1, . . . , X

′
#Fk

)1(#Fk <∞)
d
= (X1, . . . , XT−k

)1(T−k <∞) (6.17)

where on the right side the Xi are independent offspring variables, and T−k

is the first time j that
∑j

i=1(Xi − 1) = −k. Keep in mind that Fk and the
infinite sequence X1, X2, . . . might be defined on different probability spaces.
However, by use of the bijection, it is clear that provided p1 < 1 and

∑

i ipi ≤ 1,
so that P (#Fk < ∞) = P (T−k < ∞) = 1, there is defined on the same
probability space as X1, X2, . . . an a.s. unique sequence of Galton-Watson forests
Fk, k = 1, 2, . . . such that (6.17) holds with almost sure equality instead of
equality in distribution. Then Fj is the forest formed by the first j trees of Fk

for each j < k. The jth tree of Fk for every j < k is the unique tree whose
depth-first walk has steps XT−(j−1)+i − 1 for 1 ≤ i ≤ T−j − T−(j−1).

Exercises

6.2.1. (Enumeration of plane forests by type) [133, 137, 334, 379] The
type of a forest F is the sequence of non-negative integers (ni), where ni is the
number of vertices of F with i children. Let 1 ≤ k ≤ n and let (ni) be a sequence
of non-negative integers with

∑

i

ni = n and
∑

i

ini = n− k. (6.18)

A forest of type (ni) has n vertices and n − k non-root vertices, hence k root
vertices and k tree components. For 1 ≤ k ≤ n and (ni) subject to (6.18) the
number Nplane(n0, n1, . . .) of plane forests of type (ni) with k tree components
and n vertices is

Nplane(n0, n1, . . .) =
k

n

(
n

n0, . . . , nn

)

. (6.19)

6.2.2. (Enumeration of labeled forests by type) [407, Cor. 3.5], [354, Th.
1.5] For 1 ≤ k ≤ n and (ni) subject to (6.18), the number N [n](n0, n1, . . .) of
forests labeled by [n] of type (ni) with k tree components and n vertices is

N [n](n0, n1, . . .) =
k

n

(
n

k

)
(n− k)!
∏

i≥0(i!)ni

(
n

n0, . . . , nn

)

. (6.20)
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6.2.3. (Enumeration of labeled forests by numbers of children) [356],[407,
Thm. 3.4] For all sequences of non-negative integers (c1, . . . , cn) with

∑

i ci =
n− k the number N(c1, . . . , cn) of forests F with vertex set [n] in which vertex
i has ci children for each i ∈ [n] (and hence F has k tree components) is

N(c1, . . . , cn) =
k

n

(
n

k

)(
n− k

c1, . . . , cn

)

. (6.21)

6.2.4. (Cayley’s multinomial theorem) The enumeration (6.21) amounts
to the following identity of polynomials in n commuting variables xi, 1 ≤ i ≤ n:

∑

F∈Fk,n

n∏

i=1

x
c(i,F )
i =

k

n

(
n

k

)

(x1 + · · ·+ xn)n−k (6.22)

where the sum is over the set Fk,n of all forests with k tree components labeled
by [n], and c(i, F ) is the number of children of i in the forest F . Take the xi to
be identically 1 in (6.22) to recover the well known enumeration

#Fk,n = k

(
n

k

)

nn−k−1. (6.23)

This is equivalent to Cayley’s [88] formula

#{ forests with root set [k] and vertex set [n] } = knn−k−1 (6.24)

which was derived in (1.56). In particular, for k = 1 the number of rooted trees
labeled by [n] is nn−1. Equivalently, the number of unrooted trees labeled by
[n] is nn−2. For various approaches to these formulae of Cayley, see [315, 356,
378, 402, 407, 411, 383].

Notes and comments

This section is based on the work of Harris [193]. The exercises were suggested
by the treatment of tree enumerations in Stanley’s book [407]. Solutions can be
found in [354]. See also Chapter 10 for another approach to Cayley’s multinomial
theorem.

6.3. Brownian asymptotics for conditioned Galton-Watson trees

Recall that Fplane
k,n is the set of all plane forests of k trees with a total of n vertices.

For k = 1, 2, . . . and 0 < p < 1 let Gk,p be a Galton-Watson forest of k trees with

the geometric(p) offspring distribution pi := p(1−p)i. Since for each F ∈ Fplane
k,n

the total number of children of all vertices of F is
∑

v∈V (F ) c(v, F ) = n− k, the

general product formula (6.13) gives

P(Gk,p = F ) =
∏

v∈V (F )

p(1− p)c(v,F ) = pn(1− p)n−k ∀ F ∈ Fplane
k,n . (6.25)
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Hence, as observed by Harris [193], the conditional distribution of Gk,p given

(#Gk,p = n) is uniform on Fplane
k,n . If Sn,p is the sum of n independent geometric(p)

random variables, then by the general formula (6.14) for the distribution of the
size of a Galton-Watson forest of k trees, and the negative binomial formula
[150, VI.8] for the distribution of Sn,p,

P(#Gk,p = n) =
k

n
P(Sn,p = n− k) =

k

n

(
2n− k − 1

n− k

)

pn(1− p)n−k. (6.26)

Compare (6.25) and (6.26) to see that the number of plane forests of k trees
with n vertices is

#Fplane
k,n =

k

n

(
2n− k − 1

n− k

)

. (6.27)

In particular, for k = 1, the number of plane trees with n vertices is

#Fplane
1,n =

1

n

(
2n− 2

n− 1

)

(6.28)

which is the (n−1)th Catalan number [78, 197]. This is also the number of lattice
excursions of length 2n, that is sequences (sj , 0 ≤ j ≤ 2n) where s0 = s2n = 0,
and sj > 0 and sj+1 − sj ∈ {−1,+1} for all 0 ≤ j ≤ 2n − 1. As observed by

Harris [193], there is a natural bijection between Fplane
1,n and the set of lattice

excursions of length 2n. Given a plane tree with n vertices, start from the root
and traverse the plane tree as follows. At each step move away from the root
along the first edge that has not been walked on yet. If this is not possible then
step back along the edge leading towards the root. A walk with steps of ±1
is obtained by plotting the height at each step. Appending a +1 step at the
beginning and a −1 step at the end gives a lattice excursion of 2n steps, as
illustrated by Figure 6.2.
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1

Figure 6.2: Harris walk for a finite tree
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This bijection extends to one between Fplane
k,n and the set of non-negative

lattice walk paths from (0, 0) to (0, 2n) with increments of ±1 and exactly k
returns to 0.

Let T denote a Galton-Watson tree with some offspring distribution (pi),
and let Tn denote the random tree with n vertices defined by conditioning T to
have n vertices. To abbreviate, call Tn a GW(n) tree with offspring distribution
(pi). Such random trees are also called simply generated trees [305]. It follows
immediately from (6.13) that the distribution of a GW(n) tree is the same
for offspring distribution (pi) as for (piθ

i/g(θ)) for arbitrary θ > 0 such that
g(θ) :=

∑

i piθ
i <∞. Consequently, in consideration of GW(n) trees there is no

loss of generality in supposing that the offspring distribution has mean 1. Ac-
cording to the previous discussion, the Harris walk associated with a GW(n) tree
with geometric offspring distribution is the unsigned excursion of a simple sym-
metric random walk conditioned to have length 2n. By the conditioned form of
Donsker’s theorem (0.5), a suitable normalization of this uniform lattice excur-
sion converges in distribution to a standard Brownian excursionBex. For GW(n)
trees with other offspring distributions, the Harris walk is no longer the excur-
sion of a Markovian random walk. Rather it is some non-uniformly distributed
lattice excursion with increments of ±1 and a rather complicated dependence
structure. Nonetheless, according to the following theorem, with suitable scaling
the asymptotic behaviour of Harris walks of large Galton-Watson trees is the
same, no matter what the offspring distribution with finite variance.

Theorem 6.4. Aldous [5, 6] Let Tn be a GW(n) tree, with offspring distribution
with mean 1 and variance σ2 ∈ (0,∞). Let Hn(k), 0 ≤ k ≤ 2n be the Harris walk
associated with Tn. Then as n→∞ through possible sizes of the unconditioned
Galton-Watson tree,

(Hn(2nu)/
√
n, 0 ≤ u ≤ 1}) d→ (2σ−1Bex

u : 0 ≤ u ≤ 1) (6.29)

where Bex is the standard Brownian excursion and
d→ is the usual weak con-

vergence of processes in C[0, 1].

Since numerous features of Tn are encoded as continuous functionals of the
associated Harris walk, the asymptotic distributions of these features of trees
can be read from the distribution of the corresponding functional of Brownian
excursion. For instance, if H(T ) denotes the maximum height above the root
of any vertex of a tree T , so H(Tn) = max0≤u≤1Hn(2nu), then we read from
(6.29) that

H(Tn)/
√
n

d→ 2σ−1 max
0≤u≤1

Bex
u . (6.30)

See [60] for a review of properties of the distribution of max0≤u≤1 B
ex
u , whose

Mellin transform is related to the Riemann zeta function.
Marckert and Mokkadem [293] derive Theorem 6.4, under further moment

conditions, by showing that for large n the normalized Harris path on the left
side of (6.29) is with high probability close in C[0, 1] to

(2σ−2(Snu − nu)/
√
n, 0 ≤ u ≤ 1 |T−1 = n) (6.31)
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where (Sk − k, 1 ≤ k ≤ T−1) is the depth-first walk of Tn, as in (6.17). The
process in (6.31) converges in distribution to 2σ−1Bex by the conditioned form
of Donsker’s theorem (0.5). The appearance of the factor 2/σ2 in approximat-
ing the Harris walk by the normalized depth-first walk is nicely explained by
Bennies-Kersting [33]. Besides the geometric case discussed above, where the off-
spring distribution has standard deviation σ =

√
2, and Theorem 6.4 reduces to

the conditioned form of Donsker’s theorem (0.5), two other important examples
are as follows:

Poisson branching pi = e−1/i!, σ = 1. As indicated by Kolchin and Aldous,
a Poisson-GW(n) tree Tn may be constructed as follows, from Un with uniform
distribution on the set of nn−1 rooted trees labeled by [n]. First give the chil-
dren of each vertex of Un the order they acquire from the usual order on [n],
(or, equivalently, independent random orders), then ignore the labels to obtain
a plane tree. See [354, §7] for further discussion. This transformation allows nu-
merous asymptotic results for the uniform labeled tree Un to be deduced from
corresponding results for the non-uniform Poisson-GW(n) tree Tn, which can
be read from Theorem 6.4. For instance, the maximum height H(Un) is by con-
struction identical to H(Tn), whose asymptotic distribution is given by (6.30)
with σ = 1.

Binary branching [180] p0 = p2 = 1
2 , σ = 1. Now Tn is a uniform ordered

binary rooted tree on n vertices. Note that n must be odd. Similarly, for any
m = 2, 3, . . . one can realize a uniform ordered m-ary rooted tree on n vertices
as a conditioned Galton-Watson tree.

Concatenated Harris walks A result similar in spirit to Theorem 6.4 can be
obtained by considering a sequence of independent and identically distributed
critical Galton Watson trees. By concatenating the individual Harris walks (resp
depth-first walks) one gets an infinite walk which upon scaling converges to the
reflected Brownian motion.

Theorem 6.5. Le Gall [275] Let (H(t), t ≥ 0) be the continuous path obtained
by concatenation of the Harris walks of an infinite independent and identically
distributed sequence of critical GW trees with finite non-zero offspring variance
σ2. Then as n→∞

(H(2nt)/
√
n, t ≥ 0)

d→
(

2

σ
|Bt|, t ≥ 0

)

(6.32)

in the sense of weak convergence in C[0,∞), where B is a standard Brownian
motion.

The proof of this theorem again proceeds by using standard results for depth-
first walk and then relating the Harris walk to the depth-first walk. It is conve-
nient to use another walk associated with trees called the height process as an
intermediary in this comparison.
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The height process For a rooted tree labelled by [n] in depth-first order, the
associated height process is defined by

Hi = height of vertex i+ 1 for i = 0, 1 . . . , n− 1

H i

1

4

5

2

7

6

83

0 1 2 3 4 5 6 7

i

Figure 6.3: The height process for a rooted labeled tree of 8 vertices

For a sequence of GW trees T (1), T (2), . . . denote the associated(concatenated)
Harris walk, depth-first walk and height process by Hn, Yn and Hn, n ≥ 0, where
values of the processes at non-integer times are defined by linear interpolation.
The following lemma is well known:

Lemma 6.6. Let τ1, τ2, . . . be the ascending weak ladder points of the depth-
first walk Y . That is, τ0 = 0 and τi = inf{n > τi−1 : Yn = Mn} where
Mn = sup0≤k≤n Yk. Then Yτi+1 − Yτi

, i = 0, 1, . . . are independent and iden-
tically distributed, and

P(Yτ1 = k) =

∞∑

i=k+1

pi; E(Yτ1) =
σ2

2

Observing that Mn =
∑Kn

i=1(Yτi
− Yτi−1) where

Kn = #{k ∈ {1, . . . , n} : Yk = Mk},

and using Lemma 6.6, we deduce from the law of large numbers that

Mn

Kn

a.s→ E(Yτ1) =
σ2

2
(6.33)

as n→∞. Now for any fixed n the time reversed walk {Yn − Yn−i}ni=0 has the
same distribution as {Yi}ni=0. From Exercise 6.3.2 below it follows that the
corresponding Mn and Kn for the reversed walk are precisely Yn − inf0≤k≤n Yk

and Hn+1. By Donsker’s theorem, for any t1, . . . , tr

1

σ
√
n

(

Y[ntk ] − inf
0≤i≤[ntk ]

Yi

)

1≤k≤r

d→
(

Btk
− inf

0≤u≤tk

Bu

)

1≤k≤r
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d
= (|Btk

|)1≤k≤r

Hence by using (6.33) for the reversed walk, we get

σ

2
√
n

(H[nt1], . . . ,H[ntr ])
d→ (|Bt1 |, . . . , |Btr

|).

This shows convergence of finite dimensional distributions of the height pro-
cess to the reflected Brownian motion. One can further show tightness as in
[275], whence it follows that the rescaled height process converges to the re-
flected Brownian motion. To prove Theorem 6.5 one shows that the height pro-
cess and Harris walk (the latter run at twice the speed) are close to each other.
Details are in [275].

Exercises

6.3.1. Give bijective proofs of the identities

n∑

k=1

k

n

(
2n− k − 1

n− k

)

=
1

n+ 1

(
2n

n

)

(6.34)

where the sum is the nth Catalan number, and

n∑

k=1

k

n

(
2n− k − 1

n− k

)

2k =

(
2n

n

)

. (6.35)

6.3.2. (Depth-first and height processes)[277][33]
(a) Show that the depth-first walk of a tree is given by Yn−1 =

∑

v Rv , where
Rv is the number of younger siblings of v and the sum is over all ancestors v of
n(including v = n).
(b) Show that the height process H of a sequence of finite trees is related to the
depth-first walk Y by

Hn = #{k ∈ {0, 1, . . . , n− 1} : Yk = inf
k≤j≤n

Yj}

(Hint: Show that Yk = infk≤j≤n Yj if and only if k is an ancestor of n+ 1)

6.3.3. (Harris’s embedding in Brownian motion of inhomogeneous
random walks and associated geometric branching processes) [193]
Show how a random walk on the non-negative integers started at k > 0, with
transition probabilities pi for i → i + 1, and 1 − pi for i → i − 1, i > 0, and
absorption at 0, can be embedded in the path of a Brownian motion started at a
suitable zk > 0 and stopped when it first reaches 0. As Harris observed, the path
of such a walk, started at 1 and stopped when it first reaches 0, is bijectively
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equivalent to the family tree of a branching process, starting with 1 individual in
generation 0, in which each individual in the (k−1)th generation has probability
pr

kqk of having exactly r children, r = 0, 1, 2, . . .. Each birth in the (k − 1)th
generation of the branching process corresponds to a transition of the walk from
k to k+ 1, which corresponds to an upcrossing of the Brownian path from zk to
zk+1 before the path first reaches 0. Thus the random plane tree generated by
such a branching process, with geometric offspring distribution with parameter
qk in the kth generation, is embedded in the Brownian path in a natural way.
This idea was further exploited by Knight [254] to derive the Ray-Knight theo-
rems, whereby portions of the local time process (Lx

T (B), x ∈ R) are described
in terms of various continuous-state branching processes, commonly represented
as squares of Bessel processes, as discussed in Chapter 8.

Some refinements of the convergence of Harris walks Consider critical
GW trees with offspring variance σ2 ∈ (0,∞).

6.3.4. In the setting of Theorem 6.5, let N(t) be the number of zeros of H(·) in
(0, t], which is the number of complete trees encoded by the concatenated walk
up to time t. Then (6.32) holds jointly with

(N(2nt)/
√
n, t ≥ 0)

d→ (σLt, t ≥ 0) (6.36)

where (Lt, t ≥ 0) is the usual local time process of B at 0, normalized so that

Lt
d
= |Bt| for each t > 0.

6.3.5. [17] Let Fn,k be a forest of k critical GW trees conditioned to have total
size n. Let Hn,k(t), 0 ≤ t ≤ 2n be the Harris path associated with Fn,k, by
concatenation of the Harris paths of the k trees. It is to be anticipated from
(6.32) and (6.36) that as n→∞ and k varies with n

(Hn,k(2nu)/
√
n, 0 ≤ u ≤ 1} d→ (2σ−1|Bbr

` (u)| : 0 ≤ u ≤ 1) if
k

σ
√
n
→ ` (6.37)

where Bbr
` is Brownian bridge Bbr conditioned on L0

1(Bbr) = `, as defined in
Lemma 4.10. Show this is true for Poisson offspring distribution, with σ = 1.

6.3.6. (Problem) Does (6.37) hold for every critical aperiodic offspring distri-
bution with σ2 ∈ (0,∞)?

6.3.7. (Problem) In the same vein, let (H(t), t ≥ 0) be the continuous path
obtained by concatenation of the Harris walks of an infinite independent and
identically distributed sequence of critical GW trees. Then it is to be anticipated
that as n→∞

(H(2nu)/
√
n, 0 ≤ u ≤ 1) given H(2n) = 0

d→
(

2

σ
|Bbr(u)|, 0 ≤ u ≤ 1

)

,

(6.38)
where the event H(2n) = 0 is the event that after n steps the depth-first search
of the forest completes the search of some tree. This was argued in [17], jointly
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with the obvious variant of (6.36), in the Poisson case. Is it true for every critical
aperiodic offspring distribution with σ2 ∈ (0,∞)?

Notes and comments

See Duquesne [118] and Marckert and Mokkadem [293, 294] for some further
developments.

6.4. Critical random graphs and the multiplicative coalescent

Aldous [9] used a correspondence between trees and walks to study the asymp-
totic behaviour of component sizes in the Erdős-Rényi random graph process
G(n, p) in the critical regime p ≈ 1/n as n → ∞. Recall that G(n, p) is the
model of an undirected random graph on [n] in which each of

(
n
2

)
undirected

edges is present with probability p, independently. The random partition of [n]
generated the connected components of G(n, p) is clearly exchangeable. But the
asymptotic theory of exchangeable partitions is of little use in this example,
because the interesting behaviour in the critical regime lies beyond the reach of
Kingman’s theory. The key to understanding this behaviour is the following al-
gorithm for constructing the connected components of G(n, p) in the size-biased
order of their least elements.

The breadth first walk [9, §1.3] Start by considering a fixed undirected
graph G with vertex set [n]. So G is a subset of the set of

(
n
2

)
subsets of [n]

of size 2. Construct a rooted ordered spanning forest of G, say F [n](G), with
vertices labeled by [n], as follows. The root vertices (or zeroth generation of
the forest) are the least elements of components of G, with their natural order
from [n]. The children of a particular root vertex v are the vertices w such
that there is an edge from v to w in G. These children, which form the first
generation of the forest, are ordered firstly by the order of their parents, and
secondarily by their natural order from [n]. In general, for m ≥ 0, given that
the first m generations of the forest have been defined and the vertices of the
mth generation have been ordered, the (m + 1)th generation is the set of all
vertices w such that there is an edge from w to some v in the mth generation,
and w is not in generations 0, . . . ,m. Then w is the child of the first such v with
respect to the order on the mth generation, and the vertices in the the (m+1)th
generation are ordered firstly by the order of their parents, and secondarily by
their natural order from [n]. The breadth-first search of [n] induced by G is the
permutation βG : [n]→ [n] where βG(i) is the ith vertex in the list of vertices of
F [n](G), starting with the zeroth generation, then the first generation, then the
second generation, and so on, where the vertices of the mth generation are put
in the order they were given in the construction of F [n](G). Put another way,
βG(i) is the label of the ith vertex of F [n](G) visited in the usual breadth-first
search of F [n](G) regarded as a plane tree by ignoring the vertex labels. The
breadth first walk derived from G is the breadth first walk derived from F [n](G)
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and and βG. See [9, Fig. 1]. To be precise, the walk is (w0, w1, . . . , wn), where
w0 = 0, and for 1 ≤ i ≤ n

wi − wi−1 = ci − 1

where ci is the number of children of the vertex labeled βG(i) in F [n](G). Con-
sequently, by the variant of Lemma 6.3 for breadth-first search, the component
sizes of G, in order of least elements, say Ñ1, Ñ2, . . ., can be recovered from its
breadth first walk as

Ñj = T−j − T−(j−1)

where
T−j := min {i : wi = −j}.

To discuss the distribution of the walk induced by a random graph, one more
concept is needed. In the breadth-first search of [n] induced by G, after i steps,
call a vertex v marked at stage i if v is not in the set {βG(j), 1 ≤ j ≤ i} of
vertices searched in the first i steps, but v is a child of one of these vertices in
F [n](G), meaning there is an edge of G joining v to {βG(j), 1 ≤ j ≤ i}. Let Mi

denote the number of marked vertices at stage i. Note that Mi is determined by
the first i steps of the walk. Also Mi ≤ Nh(i)(Ti) +Nh(i)+1(Ti), where Ti is the

tree component of βG(i) in F [n](G), h(i) is the height of βG(i) in Ti, and Nj(Ti)
is the number of vertices of Ti at height j. Thus Mi is at most the number of
vertices in two slices through a tree component of F [n](G), which turns out to
be negligible relative to i in the asymptotic regimes discussed here. It follows
from these definitions and the definition of G(n, p) that the dynamics of the
breadth-first walk derived from G(n, p) can be described as follows:

Lemma 6.7. Fix n. Let (W1, . . . ,Wn) be the breadth-first walk derived from
G(n, p). Then for each i ≥ 1,

Wi+1 −Wi given (W1, . . . ,Wi)
d
= binomial(n− i−Mi, p)− 1 (6.39)

where binomial(m, p) denotes a binomial variable with parameters m and p,
and Mi is the number of marked vertices after i steps, which is some function
of (W1, . . . ,Wi).

Suppose now that n → ∞ and p = λ/n → 0. Then it is clear that for some
large finite number of steps the numbers Wi+1 −Wi + 1 of children of vertices
of F [n](G) in order of breadth-first search will be approximately independent
Poisson(λ) variables. Thus one easily obtains:

Lemma 6.8. Let T1(n, p) be the plane tree derived from the subtree rooted at
1 in the forest F [n](G) derived from G by breadth-first search, for G distributed
according to G(n, p). Let λ ∈ (0,∞) and h > 0. Then as n→∞, the restriction
of T1(n, λ/n) to levels below height h, converges in distribution to the restriction
to levels below h of a Galton-Watson tree with Poisson(λ) offspring distribution.

Recall that the limiting Poisson-Galton-Watson (λ) tree is sub-critical, super-
critical, or critical according to whether λ < 1 , λ > 1 or λ = 1. There is the
following well known result:
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Theorem 6.9. (Erdős-Rényi[134]) As n → ∞ with p = λ/n for some λ ∈
(0,∞),
If λ < 1, then the largest component of G(n, p) has size O(log n).
If λ > 1, then the largest component has size (1 + o(1))Pλn where Pλ with
exp(−λPλ) = 1− Pλ is the probability that a Poisson-Galton-Watson(λ) tree is
infinite in size, while the second largest component is of size at most O(log n).
If λ = 1, then the sizes of the largest and second largest components are both of
order n2/3.

Let Πn(p) be the partition of [n] determined by the components of G(n, p).
Note that as n→∞ with p = λ/n for λ > 1, the limit in distribution of Πn(λ/n)
is the partition of N with a single block whose frequency is Pλ ∈ (0, 1), and
all other components singletons. So this is an instance where an exchangeable
partition with improper frequencies arises naturally as a limit. But in the critical
case, the limit in distribution of Πn(1/n) is the trivial partition into singletons.
To obtain interesting limits in distribution around the critical stage p ≈ 1/n,
another scaling is necessary.

To this end, consider G(n, pn(r)) with pn(r) := 1/n+r/n4/3, for r ∈ R. From
Lemma 6.7, we find that after the ith step of the breadth-first walk, as n→∞

E(Wi+1 |W1 . . .Wi) = −1 + pn(r)(n − i−Mi)

≈ −1 + (1/n+ r/n4/3)(n− i) (6.40)

=
r − in−2/3

n1/3
. (6.41)

where the approximation is just to ignore the Mi marked vertices, and similarly

Var(Wi+1 |W1 . . .Wi) ≈ 1.

Now measure time in units of n2/3 and component sizes in units of n1/3, to
obtain, at rescaled time s, a conditional mean drift rate of r−s, and a conditional
variance rate that remains 1. Then we arrive at:

Theorem 6.10. Aldous [9, Theorem 3] Let (B(t), t ≥ 0) be standard Brownian
motion. Set

Br(t) := B(t) + rt − t2/2 for t ≥ 0

so Br(0) = 0 and dBr(t) = dB(t) + (r − t)dt, so Br is a Brownian motion
with drift r − t at time t. For r ∈ R let W r

n(i), 0 ≤ i ≤ n, with linear interpola-
tion between integer values i, be the breadth-first walk which is associated with
G(n, 1/n+ r/n4/3). Then

n−1/3(W r
n(n2/3t), t ≥ 0)

d→ (Br(t), t ≥ 0) (6.42)

in C[0,∞).

Sketch of proof. A minor perturbation of the breadth-first walk is presentable
as the sum of a martingale and a bounded variation process; the former rescales
to satisfy standard hypotheses for a martingale to converge in distribution to B,
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while the bounded variation term rescales to give the drift. See [9] for details.
�

Given that component sizes of G(n, pn(r)) are coded as the gaps between
successive drops to new lows of the corresponding walk, it is to be expected
that the distribution of the ranked component sizes should approximate the
excursions of the limit process. This is expressed rigorously as follows:

Theorem 6.11. Aldous [9, Corollary 2] For each fixed r ∈ R, the sequence of
ranked component sizes of G(n, 1/n+r/n4/3) converges in distribution in l2↓, the
l2-normed space of non-increasing sequences:

n−2/3 (N↓,r
n,j , j ≥ 1)

d→ (X
(∞)
j (r), j ≥ 1) (6.43)

where the limit (X
(∞)
j (r), j ≥ 1) has the same distribution as the sequence of

ranked lengths of excursions away from 0 of the reflected process Br−Br, where
Br is the Brownian motion with drift r−t at time t, and Br(t) := inf0≤s≤tB

r(s).

The multiplicative coalescent This discussion becomes more interesting if
we take the dynamic view of (G(n, p), 0 ≤ p ≤ 1) as a process in which edges
are born as the parameter p increases. If the edges are assumed to be born at
independent exponential(1) times, then G(n, p) describes the state of the graph
at time t with p = 1− e−t. Recall Definition 5.2 of a P[n]-valued, K-coalescent,
called a multiplicative coalescent for K(x, y) = xy.

Lemma 6.12. [79] The process (Πn(t), t ≥ 0), where Πn(t) is the partition of [n]
defined by connected components of G(n, 1− e−t), is a P[n]-valued multiplicative
coalescent, with mass defined by counting.

Proof. If a graph has two particular components of sizes a and b, there are ab
possible edges which when added to the graph would connect the two compo-
nents. Combined with standard properties of independent exponential variables,
this yields the conclusion. �

To compare the evolution of component sizes of (Πn(t), t ≥ 0) for different
values of n, consider the process X (n)(t) of ranked component sizes

X(n)(t) := (N↓
n,j(t), j ≥ 1) (6.44)

where N↓
n,j(t) is the size of the jth largest component of Πn(t) derived from

G(n, 1 − e−t). Then by Lemma 6.12, for each n the process (X (n)(t), t ≥ 0)
is a ranked multiplicative coalescent, with initial state a vector of n entries 1
padded by zeros. The ranked multiplicative coalescent has the following obvious
scaling property: if (X(t), t ≥ 0) is a ranked multiplicative coalescent, then so is
(cX(c2t), t ≥ 0) for arbitrary c > 0. In particular, the process

(n−2/3X(n)(t/n4/3), t ≥ 0) (6.45)
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is a ranked multiplicative coalescent with initial state a vector of n entries
n−2/3 padded by zeros. Theorem 6.11 suggests that to capture the evolution of
component sizes X(n)(t) around the critical time t ∼ n−1, the process (6.45)
should be considered at time t = n1/3+r for r ≥ −n1/3. This process is a ranked
multiplicative coalescent, with time parameter set [−n1/3,∞), and initial state
at time −n1/3 a vector of n entries n−2/3 padded by zeros. This brings us to
the following refinement of Theorem 6.11

Theorem 6.13. Aldous [9, Corollary 24] Let (X(n)(t), t ≥ 0) be the ranked
multiplicative coalescent defined by the component sizes of the random graph
process G(n, 1− e−t) for t ≥ 0, regarded as a process with values in l2↓. Then as
n→∞

(n−2/3X(n)(1/n+ r/n4/3), r ≥ −n1/3)
d→ (X(∞)(r), r ∈ R) (6.46)

in the sense of convergence of finite-dimensional distributions, where the limit
is the l2↓-valued multiplicative coalescent process such that the distribution of

X(∞)(r) is that of the ranked lengths of excursions away from 0 of the reflected
process Br −Br, where Br is the Brownian motion with drift r − t at time t.

Proof. This follows easily from the above discussion, once it is checked that
the transition kernel Pt(x, ·) of the ranked multiplicative coalescent on P↓

finite

admits a unique extension to l2↓, such that Pt(x, ·) is weakly continuous in x for
each fixed t. But that is much harder to prove than might be expected: see [9,
§4.2]. �

The process (X(∞)(r), r ∈ R) defined by (6.46) is the standard multiplicative
coalescent. A process with time-parameter set R may be called eternal. Theorem
6.13 raises the question of whether there exist other eternal multiplicative coa-
lescents besides shifts of the standard one. Indeed there are many of them. From
the standard multiplicative coalescent one can construct other multiplicative co-
alescents, the simplest of which is obtained by lumping together suitably-chosen
components to form a distinguished component of the new multiplicative coa-
lescent. It turns out [13], but is technically hard to prove, that the most general
extreme multiplicative coalescent can be obtained by such lumping procedures
and a weak convergence construction.

Exercises

6.4.1. Let Π(n, p) be the partition generated by components of G(n, p) and let
c(n, p) := P(Π(N, p) = {[n]}), that is the probability that G(n, p) is connected.

• Give an explicit formula for the EPPF of Π(n, p) in terms of c(j, p) for
1 ≤ j ≤ n.

• Deduce that Π(n, p) is not a Gibbs partition.
• Are the partitions Π(n, p) consistent in distribution as n varies?
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• Describe the weak limit of Π(n, p) as n→∞ for fixed p.
• Describe the weak limit of Π(n, λ/n) as n→∞ for fixed λ.

6.4.2. [70] Prove Lemma 6.8. Deduce that if λ ≤ 1, then as n→∞ the distribu-
tion of T1(n, λ/n) converges to that of a Poisson-Galton-Watson (λ) tree. Show
also that if λ > 1, and o(n) is some arbitrary sequence tending to infinity with
o(n)/n→ 0, then the conditional distribution of T1(n, λ/n), given that it has at

most o(n) vertices, converges to that of a Poisson-Galton-Watson (λ̂) tree, for

some λ̂ < 1, called the conjugate of λ, whose value should be determined.

6.4.3. (A tree-growth process) For each fixed n, regard T1(n, λ/n) as a
tree-valued process indexed by λ ≥ 0, with the convention that this process
jumps to some terminal state † as soon as its number of vertices exceeds o(n),
for some o(n) → ∞ with o(n)/n → 0. Show that this process has a limit
in distribution (T (λ), λ ≥ 0) as n → ∞, which is an inhomogeneous tree-
valued Markov chain studied in [4, 19]. Describe the transition mechanism of
the limiting tree-growth process as explicitly as possible. In particular, find the
distribution of the ascension time A := inf{λ : T (λ) = †}. Intuitively, this is
the asymptotic distribution of the time it takes for a single vertex in G(n, p) to
be a giant component whose size is O(n). Show also that T (A−) is a.s. finite,
and find its distribution. See [19] for further analysis, and generalizations.

6.4.4. [9, §5.1] As an immediate corollary of Theorem 6.11, the excursion
lengths of Br − Br are square summable. Derive this directly, by analysis of
Brownian paths.

6.4.5. [9, §1.5] Fix x ∈ l2↓. Let εi,j be independent exponential(1) variables
indexed by i, j ∈ N with i < j. Let G(x, t) be the graph on N with an edge (i, j)
if and only if εi,j ≤ txixj , and let X(x, t) be the vector of ranked x-masses of
connected components of G(x, t). Then (X(x, t), t ≥ 0) is a realization of the
l2↓-valued ranked multiplicative coalescent with initial state x.

6.4.6. (Problem) Theorems 6.11 and 6.13 strongly suggest that there exists a
C[0,∞)-valued process (Br, r ∈ R) such that Br is a Brownian motion with drift
r − t at time t, and if X(∞)(r) is the sequence of ranked lengths of excursions
of Br − Br, then (X(∞)(r), r ∈ R) is the standard multiplicative coalescent.
However, the results of Aldous [9] do not even establish existence of a joint
distribution of Br and Bs for r 6= s, let alone the finite-dimensional distributions
or path-properties of such a process. Does it exist, and if so what can be said
about it?

Notes and comments

I learned everything in this section from David Aldous. The book [216] surveys
the theory of random graphs. See also [215] and [9] for more detailed information
about the birth of the giant component around time t ≈ 1/n. There are striking
parallels between the theory of the multiplicative coalescent described here, and



that of the additive coalescent discussed in Chapter 10. Both processes arise nat-
urally from random graphs, their combinatorial structure is related to random
trees, and they admit eternal versions whose entrance laws are related to the
lengths of excursions of Brownian motion. Another important similarity, which
is the key to many deeper results, is that there is an essentially combinatorial
construction of the coalescent process with an infinite number of initial masses
subject to appropriate conditions: see Exercise 6.4.5 and Corollary 10.6. See
[18] for a more technical comparison of the similarities and differences between
these two processes.
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Chapter 7

The Brownian forest

The Harris correspondence between random walks and random trees, reviewed
in Section 6.3, suggests that a continuous path be regarded as encoding some
kind of infinite tree, with each upward excursion of the path corresponding to
a subtree. This idea has been developed and applied in various ways by Neveu-
Pitman [324, 323], Aldous [5, 6, 7] and Le Gall [271, 272, 273, 275]. This chapter
reviews this circle of ideas, with emphasis on how the Brownian forest can be
grown to explore finer and finer oscillations of the Brownian path, and how this
forest growth process is related to Williams’ path decompositions of Brownian
motion at the time of a maximum or minimum.

7.1. Plane trees with edge-lengths This section introduces the notion of
a finite plane tree with edge-lengths, and shows how the Harris correspon-
dence, between combinatorial plane trees and their Harris paths, extends
nicely to plane trees with edge-lengths.

7.2. Binary Galton-Watson trees A particular parametric family of
Galton-Watson trees with edge-lengths and binary branching is related
to the uniform distribution on the set of n-leaf reduced plane trees with a
given length.

7.3. Trees in continuous paths The notion of a tree embedded in a con-
tinuous function generalizes the correspondence between a reduced plane
tree with edge-lengths and its Harris path.

7.4. Brownian trees and excursions Brownian excursion theory shows
how the infinite tree embedded in a Brownian path may be identified as a
forest of subtrees, the Brownian forest. The distribution of these subtrees
is determined by Aldous’s description of the tree in a standard Brownian
excursion.

7.5. Plane forests with edge-lengths Such forests are naturally embed-
ded in a continuous path by a suitable sequence of sampling times. The
entire forest of Brownian trees may be regarded as a kind of projective
limit of such forests.
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7.6. Sampling at downcrossing times and 7.7. Sampling at Poisson
times These two sections present constructions of the Brownian forest
based on sampling the Brownian path at two differently defined sequences
of stopping times. In each case, the trees in the forest can be recognized as
critical binary Galton-Watson trees with exponentially distributed edge-
lengths, and increasing a parameter θ corresponds to growth of the forest
to explore finer and finer oscillations of the Brownian path. Both forest-
valued processes turn out to be Markovian, but their dynamics are differ-
ent.

7.8. Path decompositions This section explains how the structure of these
forest-valued processes is related to Williams’ path decompositions for
Brownian paths at the time of a maximum or minimum.

7.9. Further developments This is a brief survey of recent work on con-
tinuum random trees.

7.1. Plane trees with edge-lengths

This section describes in combinatorial and geometric terms the kinds of random
trees which turn out to be naturally embedded in Brownian paths. The reader
is assumed to be familiar with basic notions of plane trees and forests, such as
depth-first search, as summarized in Section 6.2 .

Definition 7.1. A finite plane tree with edge-lengths is a pair

T = (shape(T ), lengths(T ))

where shape(T ), the combinatorial shape of T , is a plane tree with a finite num-
ber of vertices, as in Section 6.2 and if shape(T ) has m edges then lengths(T )
is a sequence of m strictly positive numbers, to be interpreted as the lengths of
edges of shape(T ) in order of depth-first search.

From now on, the term plane tree will be used for a finite plane tree T with
edge-lengths. A combinatorial plane tree such as shape(T ) is treated as a plane
tree, all of whose edge-lengths equal 1. A plane tree T can be represented, as in
Figure 7.1, as a subset of the plane R2, formed by a union of line segments.

In such a graphical representation of T T is identified with a subset of R2.
The set of vertices of shape(T ) is then identified with a corresponding subset
of T , the set of vertices of T , in such a way that each edge of shape(T ) with
length ` corresponds to a line segment of length ` joining corresponding vertices
of T . These line segments, regarded as subsets of T ⊆ R2, are the edges of T .
Two edges of T may intersect only at a vertex of T , and T is the union of its
finite collection of edges.

Of course, each plane tree has many graphical representations. But it is easily
verified that various definitions made below in terms of a graphical representa-
tion do not depend on the choice of representation. So the same symbol T may
be used for a plane tree with edge-lengths, or one of its graphical representations,
as convenient.



146 Jim Pitman

l 3

l 9

l 6

l 8

l 7

l 5

l 1

l 4

l 2

root

1

2

3

4

5

Figure 7.1: Graphical representation of a finite rooted plane tree with 5 leaves
labeled by {1, 2, 3, 4, 5, }

The correspondence between a combinatorial plane tree and its Harris path
has a natural extension to plane trees T with edge-lengths. Let length(T ) be
the total length of all edges of T . Assuming that T is graphically represented as a
subset of the plane, there is a unique continuous map σT : [0, 2length(T )]→ T ,
the depth-first search of T , which runs along the edges of T at unit speed,
starting at the root, in order of depth-first search, in such a way that each edge
of T is traversed twice, first moving away from the root, then later moving back
towards the root. Define the Harris path of T to be the continuous function
HT (s), 0 ≤ s ≤ 2length(T ), which gives the distance from the root at time s
of the depth-first search of T at unit speed, with distance measured along edges
of T . More formally, the graphical representation of T is regarded as a metric
space with metric dT , where dT (x, y) for x, y ∈ T is the distance from x to y
measured along edges of T . Then

HT (s) := dT (σT (0), σT (s)) (0 ≤ s ≤ 2length(T )), (7.1)

where σT (0) is the root vertex of T . The following basic facts are easily verified:

• a function H(u), 0 ≤ u ≤ t, is the Harris path of some n-leaf plane tree
T iff H is non-negative and continuous, with H(0) = H(t) = 0, and the
graph of H is a union of 2n line segments of alternating slopes ±1; then
H has n local maxima, at the times si at which the depth-first search of
T visits the leaves vi of T , 1 ≤ i ≤ n.

• Corresponding to each such Harris path H , there is a unique n-leaf plane
tree T which is reduced, meaning that T has no non-root vertices of degree
2.

• Such a Harris path H , with n local maxima, is uniquely specified by the
sequence (wi, 1 ≤ i ≤ 2n− 1), where wi > 0 is the level at which the slope
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of H changes sign for the ith time.
• The set of n-leaf reduced plane trees is thereby identified with the set of

2n-step alternating excursions

{(wi, 1 ≤ i ≤ 2n− 1) ∈ R
2n−1
>0 : (−1)i−1(wi − wi−1) > 0} (7.2)

where w0 = w2n = 0.

Call w2m−1−w2m−2 the mth rise and w2m−1−w2m the mth fall of the 2n-step
alternating excursion (wi, 0 ≤ i ≤ 2n) associated with the Harris path H or
the reduced plane tree T . In particular, the last fall of a 2n-step alternating
excursion is w2n−1 > 0. So a 2n-step alternating excursion has n rises and n
falls, each strictly positive. The total length of a plane tree T is half the total
variation of its Harris path HT , which equals both the sum of the rises and the
sum of the falls of its alternating excursion:

length(T ) =

n∑

m=1

(w2m−1 − w2m−2) =

n∑

m=1

(w2m−1 − w2m). (7.3)

Exercises

7.1.1. (Another coding of plane trees) An n-leaf reduced plane tree T is
determined by the sequence of 2n− 1 distances

(dT (0, `i), 1 ≤ i ≤ n) and (dT (`i, `i+1), 1 ≤ i ≤ n− 1) (7.4)

where 0 is the root of T , and `i is the ith leaf of T in order of depth-first search.
The vector of 2n−1 distances (7.4) is a linear transformation of the alternating
excursion associated with T , subject to constraints implied by (7.2).

7.2. Binary Galton-Watson trees

Call T a planted binary plane tree if the root of T has degree 1, and every other
vertex of T is either a leaf or an internal vertex of degree 3. Every planted
binary plane tree with n leaves has n − 1 internal vertices and 2n − 1 edges.
The number of different possible shapes of such a tree is the (n− 1)th Catalan
number

Cn−1 =
1

n

(
2n− 2

n− 1

)

.

See (7.27) for a derivation.
The following definition introduces a standard model for random binary trees,

with a non-standard parameterization to be explained later.

Definition 7.2. For 0 ≤ λ < µ, a binary(λ, µ) tree, denoted Gλ,µ, is a random
planted binary plane tree such that the restriction of shape(Gλ,µ) to levels
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(a) C0 = 1 (b) C1 = 1 (c) C2 = 2 (d) C3 = 5 (3 trees not
shown)

Figure 7.2: The shapes of some planted binary plane trees

1, 2, 3, . . . is a Galton-Watson tree with a single individual at level 1 and offspring
distribution

p0 =
µ+ λ

2µ
and p2 =

µ− λ
2µ

,

and given shape(Gλ,µ) is some planted binary tree with n leaves, the 2n − 1
edge-lengths of Gλ,µ, enumerated by depth-first search, say, are independent
exponential(2µ) variables, with density 2µe−2µx, x ≥ 0.

The mean of the offspring distribution is (µ− λ)/µ, so binary(λ, µ) trees are
critical or subcritical according to whether 0 = λ < µ or 0 < λ < µ. The next
Lemma presents an alternative construction of a binary(λ, µ) tree Gλ,µ in terms
of exponential variables with rates β = µ − λ and δ = µ + λ, which can be
interpreted as birth rates and death rates in another well known construction
of Gλ,µ recalled in Exercise 7.2.1 . The non-standard parameterization of these
trees by (λ, µ) instead of (β, δ) = (µ−λ, µ+λ) is made to simplify later discussion
of associated random forests.

Lemma 7.3. For 0 ≤ λ < µ, a random reduced plane tree is a binary(λ, µ)
tree iff the succession of rises and falls of its Harris path, excluding the last
fall, is distributed like a sequence of independent exponential variables, with
exponential(µ+λ) rises and exponential(µ−λ) falls, stopped one step before the
sum of successive rises and falls first becomes negative.

Proof. In the critical case 0 = λ < µ, this was pointed out in [271] and [324,
p. 246]. See [271] for a proof in this case. The case 0 ≤ λ < µ can be handled
by a change of measure relative to the critical case. �

For each fixed t > 0 and n = 1, 2, . . . there is a natural uniform distribution on
the set of n-leaf reduced plane trees whose total length is t, which concentrates
on planted binary trees. A random tree Bn,t with this uniform distribution can
be described in three equivalent ways as follows:
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Lemma 7.4. Let Bn,t be a random reduced plane tree with n leaves and total
length t. Then the following conditions are equivalent.

(i) Bn,t d
= tBn,1, where the distribution of Bn,1 with total length 1 is defined

by

(Gλ,µ | Gλ,µ has n leaves )
d
=

Γ2n−1

2µ
Bn,1 (7.5)

for any fixed 0 ≤ λ < µ, where Γ2n−1 is a Gamma-distributed r.v. independent
of Bn,1.

(ii) shape(Bn,t) has uniform distribution on the set of all Cn−1 planted binary
plane trees with n leaves, and independently of shape(Tn) the sequence of edge-
lengths of Bn,t has distribution proportional to (2n − 2)-dimensional Lebesgue
measure on sequences of (2n−1) non-negative numbers with sum t. In particular,
the sequence of edge-lengths of Bn,1 with sum 1 has the Dirichlet distribution
with 2n− 1 parameters equal to 1.

(iii) the 2n-step alternating excursion, derived from the Harris path of Bn,t,
has distribution proportional to (2n− 2)-dimensional Lebesgue measure on the
set of all 2n-step alternating excursions whose total rising length is t.

Proof. Take (i) as the definition of Bn,t. Then (ii) follows from Definition 7.2
and the fact that a binary Galton-Watson tree conditioned to have n leaves has
the uniform distribution on the set of all n-leaf binary trees (see Gutjahr [180]).
(iii) follows from Lemma 7.3. That (ii) and (iii) characterize the distribution of
Bn,t is evident from the bijective equivalence of the various codings of reduced
plane trees. �

The classification of 2n-step alternating excursions according to the shape
of their associated plane tree corresponds to a decomposition of the polytope
of possible 2n-step alternating excursions into Cn−1 chambers of equal (2n −
2)-dimensional volume. Various shapes of non-binary trees then correspond to
various facets of the chambers. See [363] for more about polytopal subdivisions
related to plane trees.

Exercises

7.2.1. (Lifeline representation of binary Galton-Watson trees) A pop-
ulation starts with 1 individual at time 0. Each individual has an exponential(δ)
lifetime, and throughout its lifetime gives birth to new individuals according to
a Poisson process with rate β, assumed independent of its lifetime. These off-
spring continue to reproduce independently of each other in the same manner,
and so on. Assuming β ≤ δ, let T be the random family tree generated by this
process, regarded as a random plane tree, drawn so that

• each vertex of T corresponds to the moment of a birth or death in the
population;
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• the lifespan of each individual is represented by a path in T , its lifeline,
from the vertex on its parent’s lifeline representing its birth moment to a
leaf representing its death moment;

• the lifeline of each individual in T branches to the right of the lifeline of
its parent;

• each edge or segment of T represents the portion of the lifeline of some in-
dividual between some birth moment and the next birth or death moment
along the lifeline of that individual;

• each segment-length represents the length of the corresponding time in-
terval.

The segments of T are connected according to the binary Galton-Watson process
in which each segment either terminates with probability δ/(β+ δ) or branches
into two segments with probability β/(β + δ), and segments have independent
exponential(β + δ) lifetimes. So T is a binary(λ, µ) tree with λ = (δ − β)/2
and µ = (δ + β)/2. The collection of lifelines of individuals in T can also be
regarded in an obvious way as a Galton-Watson process with geometric(δ/(β+
δ)) offspring distribution with mass function pn = (β/(β+δ))n(δ/(β+δ)), whose
total progeny equals the number of leaves of the binary branching tree T .

7.2.2. (The linear birth and death process) [150, p. 456] For T a binary(λ, µ)
tree with λ = (δ − β)/2 and µ = (δ + β)/2 as above, let Zt be the number of
branches of T at distance t from the root. Then (Zt, t ≥ 0) is a Markovian birth
and death process on the non-negative integers with transition rates iβ for
i→ i+1 and iδ for i→ i−1. In particular, in the critical case λ = 0, β = δ = µ,

P(Zt = 0) =
µt

1 + µt
; P(Zt = n) =

(µt)n−1

(1 + µt)n+1
(n ≥ 1). (7.6)

Notes and comments

There are numerous natural generalizations of the binary branching trees con-
sidered in this section. See for instance Geiger [161, 162, 163, 164, 165].

7.3. Trees in continuous paths

Fix some graphical representation of a plane tree T with depth-first search path
σ : I → T and Harris path H : I → R≥0, where I := [0, 2 length(T )]. Then
for u, v ∈ I the height in T of the branch point at which the path from σ(0) to
σ(u) diverges from the path from σ(0) to σ(v) is evidently

H [u, v] := inf
t∈[u,v]

H(t). (7.7)

Let

dH(u, v) := (H(u)−H [u, v]) + (H(v)−H [u, v]) (u, v ∈ I). (7.8)
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so the distance from σ(u) to σ(v) in T is

dT (σ(u), σ(v)) = dH(u, v), (7.9)

as illustrated by Figure 7.3.

uσ(   )
σ(   )v

T

uH(   )

H(   )v

H(      )u , v−

H = HT

Figure 7.3: Depth-first search and Harris paths for a finite plane tree with edge-
lengths

For any subinterval I of R, and any locally bounded function H : I → R≥0 it
is obvious that formula (7.8) defines a pseudo-metric on I . Identify t and t′, and
write t ∼H t′ if dH(t, t′) = 0. Then the previous discussion can be summarized
as follows:

Proposition 7.5. Let H = HT be the Harris path of some graphically repre-
sented plane tree T , and let I := [0, 2 length(T )] be the domain of H. Then the
depth-first search of T at unit speed defines an isometry between (I/∼H , dH )
and (T , dT ).

A metric space (M,d) is called a tree if for each choice of u, v ∈M there is a
unique continuous path σu,v : [0, d(u, v)]→M which travels from u to v at unit
speed, meaning d(u, σu,v(t)) = t for 0 ≤ t ≤ d(u, v) and σu,v(d(u, v)) = v, and
for any simple continuous path f : [0, T ]→M with f(0) = u and f(T ) = v, the
ranges of f and σu,v coincide.

Definition 7.6. [272, 7] If H ∈ C[I ], the space of continuous functions from
I to R, then (I/ ∼H , dH) is a tree, to be denoted tree(H). If I = [G,D] or
I = [G,∞) the root of tree(H) is taken to be {t ∈ I : t ∼H G}.

In view of Proposition 7.5, this notion of tree(H) for H ∈ C[I ] generalizes
the correspondence between a reduced plane tree with edge-lengths T and its
Harris path H . Refer to Figure 7.4 for an example.

For a subset S of I , and H ∈ C[I ], the subtree of tree(H) spanned by S,
denoted subtree(H ;S) is the union over s, t ∈ S of the range of the path from
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s to t in tree(H), equipped with the tree metric dH . Let H ∈ C[I ] where I has
left end 0. Assume for simplicity that 0 = H(0) ≤ H(t) for all t ∈ I . Let T1 > 0.
Then subtree(H ; {0, T1}) is isometric to a line segment of length H(T1). For
0 < T1 < T2, let S1 be a time at which H attains its minumum on [T1, T2], and
suppose to avoid degenerate cases that H(S1) is strictly less than both H(T1)
and H(T2). Then subtree(H ; {0, T1, T2}) is isometric to a Y -shaped tree with 3
edges of lengths H(S1), H(T1)−H(S1), and H(T2)−H(S1) respectively, whose
root and leaves may be identified, in clockwise order from the bottom, as 0, T1

and T2 respectively, while the junction point is identified with S1. Continuing
in this way, it is clear that for any finite sequence of sample times T1, . . . , Tn.
the order and metric structure of subtree(H ; {0, T1, . . . , Tn}) will be encoded
by some plane tree. This can be made precise as follows, with some simplifying
assumptions to avoid annoying cases:

Lemma 7.7. Let X ∈ C[0, T ] and suppose X(t) ≥ X(0) = 0 for all t ∈ [0, T ].
Let 0 < T1 < · · · < Tn ≤ T , and for 1 < m ≤ n let Si be a time in [Ti−1, Ti] at
which X attains attains its minimum on [Ti−1, Ti], so

X(Si) := X[Ti−1, Ti],

and suppose that X(Si) < X(Ti−1)∧X(Ti). Then subtree(X ; {0, T1, . . . , Tn})
is isometric to the unique reduced plane tree T whose 2n-step alternating excur-
sion is

(0, X(T1), X(S2), X(T2), . . . , X(Sn), X(Tn), 0). (7.10)

Proof. It is easily seen that the assumptions on X and the Ti and Si imply
that subtree(X ; {0, T1, . . . , Tn}) has n leaves, that

0 < T1 < S2 < · · · < Tn

and that the lines joining consecutive points in the list

(0, X(0)), (T1, X(T1)), (S2, X(S2), (T2, X(T2)), . . . (Tn, X(Tn)). (7.11)

have slopes which are non-zero and alternate in sign. Let Y ∈ C[0, Tn] be the
function whose graph is the broken-line joining the points (7.11). Then

subtree(X ; {0, T1, . . . , Tn})

is evidently isometric to tree(Y ), hence also to tree(H) where H is the unique
continuous time-change of Y whose graph has slopes of ±1. But this is the Harris
path whose 2n-step alternating excursion is (7.10), and the conclusion follows
by Proposition 7.5. �

Now consider the construction of tree(X) for a random function X ∈ C[I ],
such as a Brownian path restricted to I . Intuitively, tree(X) should be regarded
as a random metric space. Technically however, for purposes of measure theory,
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let us simply identify tree(X) with the random element dX of C[I × I ]. So for

instance tree(X)
d
= tree(Y ) means dX

d
= dY which is the same as

(dX (u, v), u, v ∈ I)
d
= (dY (u, v), u, v ∈ I)

in the sense of equality of finite dimensional distributions. Now give the space
of reduced plane trees the measurable structure it acquires when identified as a
subset of C[0,∞) by using the Harris correspondence T ↔ HT . Here C[0, t] is
regarded as a subset of C[0,∞), by stopping paths at time t. Then it is clear
that subtree(X ; {0, T1, . . . , Tn}) may be regarded as a random reduced plane
tree for arbitrary I-valued random variables Ti defined on the same probability
space as a continuous path process X = (X(t), t ∈ I).

7.4. Brownian trees and excursions

Let B = (B(t), t ≥ 0) be a standard Brownian motion. An obvious geometric
feature of tree(B) is that this tree has a unique infinite branch, namely the
descending ladder set {t : B(t) = B[0, t]}. Except on an event with probability
zero, this branch of tree(B), regarded as a subset of R≥0/∼B, is traversed at
unit speed by the map `→ {T`−, T`} where

T` := inf{t : B(t) < −`}.
Let I` := [T`−, T`]. Then tree(B) is the union over ` ≥ 0 of subtree(B; I`),
which is I` equipped with a tree structure isometric by a shift to tree(B[I`])
on [0,∞), where

B[I`](t) := B((T`− + t) ∧ T`) (t ≥ 0).

Call the descending ladder set of B the floor line, to be identified with R≥0

by traversal at unit speed in tree(B), as above. Then tree(B) is identified
by a forest of subtrees attached to the floor line, with a copy of tree(B[I`])
attached to the point on the floor at distance ` from the root. Thus to de-
scribe the structure of tree(B) it is enough to describe the forest of subtrees
(tree(B[I`]), ` > 0).

Recall that if Bex is the standard excursion of length 1, then a Brownian
excursion Bex,t of length t can be defined by Brownian scaling. The distance
from u to v in tree(Bex,t) is just

√
t times the distance from u/t to v/t in Bex,

see Chapter 0.

Proposition 7.8. Let µ` := T`−T`−, which is the length of I`. Then the forest
of Brownian subtrees (tree(B[I`]), ` > 0) is such that

{(`, µ`,tree(B[I`])) : ` > 0, µ` > 0}, (7.12)

is the set of points of a Poisson point process on R≥0×R≥0×C([0,∞)2) whose
intensity measure is

d`
dt√

2πt3/2
P(tree(Bex,t) ∈ dτ), (7.13)
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where tree(Bex,t), the tree generated by a Brownian excursion of length t, is
identified by its distance function as a random element of C([0,∞)2).

Proof. According to the preceding discussion, tree(B[I`]) is a trivial tree
with only one vertex unless T`− < T`, in which case tree(B[I`]) is the tree
generated by the excursion of B − B over the interval I`. So the statement of
the proposition is just a push-forward of the Lévy-Itô description of excursions
of B above B, which is reviewed in (0.17) . �

To complete a description of the structure of tree(B), regarded as an infinite
forest of subtrees attached to the forest floor defined by the descending ladder
set, it remains to describe tree(Bex). This is done by the following theorem.
For ease of comparison with the work of Aldous [7], the theorem describes
tree(2Bex) = 2 tree(Bex), that is tree(Bex) with all distances doubled.

Theorem 7.9. Aldous [7]. Let U1, U2, . . . be a sequence of independent uniform
[0, 1] variables, independent of Bex. For each n = 1, 2, . . ., let

Tn = subtree(2Bex; {0, U1, . . . , Un}), (7.14)

regarded as a plane tree with edge-lengths, and let

Θn := length(Tn). (7.15)

Then (i)

Θn =
√

2
∑n

i=1 εi (7.16)

for a sequence of independent exponential(1) variables εi, and

Tn = ΘnBn,1 (7.17)

where (Θn, n ≥ 1) and (Bn,1, n ≥ 1) are independent, and Bn,1 has uniform
distribution on the set of planted binary plane trees whose total edge-length is 1,
as defined by Lemma 7.4.

(ii) (Poisson line-breaking construction) The distribution of the se-
quence of trees (Tn, n ≥ 1) is determined by the prescription (7.16) of their
lengths, and the following: for each n ≥ 1, conditionally given (Tj , 1 ≤ j ≤ n),
the new segment of length Θn+1 − Θn, which is added to Tn to form Tn+1, is
attached at a point of Tn picked independently of the new segment length ac-
cording to the uniform distribution on edges of Tn, with equal probability to the
left or the right, independently of the point of attachment and the new segment
length.

To rephrase the Poisson line-breaking construction: Let 0 < Θ1 < Θ2 < . . . be
the points of an inhomogenous Poisson process on R>0 of rate t dt. Break the line
[0,∞) at points Θn. Grow trees Tn by letting T1 be a segment of length Θ1, then
for n ≥ 2 attaching the segment (Θn−1,Θn] as a “twig” attached to a random
point of the tree Tn−1 formed from the first n − 1 segments. Aldous [7, §4.3]
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discovered this result via weak convergence of combinatorially defined random
trees, as indicated in Exercise 7.4.8 and Exercise 7.4.9 . This combinatorial
approach explains nicely why the Poisson line breaking construction of (Tn)
implies (7.17), which is otherwise not very obvious. But Aldous’s argument
identifying the laws of these trees with those embedded in Bex by (7.14) involved
an invariance principle implied by the invariance principle for conditioned Harris
walks Theorem 6.4 : Galton-Watson trees with Poisson offspring distribution or
with geometric offspring distribution converge in distribution to the same limit
“continuum tree”; this limit was identified with tree(2Bex) in the geometric
case via the Harris bijection ( Exercise 7.4.15 ) while Poisson line-breaking
arose in consideration of the Poisson offspring case ( Exercise 7.4.9 ). Le Gall
[273] gave another proof of (7.17)-(7.16) based on calculations with Itô’s σ-
finite excursion law. See also [275, Chapter 2]. A more elementary proof can be
given as follows, by relating Tn derived from Bex and U1, . . . , Un to the critical
binary(0, 1

2 ) Galton-Watson tree with exponential edge-lengths conditioned to
have n leaves. Let Γr denote a gamma variable with parameter r > 0. Refer to
Figure 7.5.

Lemma 7.10. Let T1 < T2 < . . . be the times of points of a Poisson process
with rate 1

2 on R≥0, assumed independent of B. Let [GT1 , DT1 ] be the excursion
interval of B −B straddling T1, and let

G := subtree(2B; {GT1 , T1, . . . , TN}) where N :=
∞∑

i=1

1(Ti ≤ DT1) (7.18)

is the number of Ti which happen to fall in [GT1 , DT1 ]. Then
(i) [399, 200] The tree G is a critical binary Galton-Watson tree, starting with
one initial segment, in which each segment branches into either 0 or 2 segments
with equal probability, and the segment lengths are independent exponential(1)
variables.
(ii) [355]

(G |N = n)
d
= Γ2n−1Bn,1 (7.19)

where Γ2n−1 is independent of Bn,1, which has uniform distribution on planted
binary trees with n leaves and total edge-length 1.
(iii) [355]

(G |N = n)
d
=
√

2Γn− 1
2
Tn (7.20)

where Γn− 1
2

is independent of Tn := subtree(2Bex; {0, U1, . . . , Un}).

Proof. Part (i) is obtained by application of Lemmas 7.3 and 7.7, using the
strong Markov property of B at the times Ti, and the consequence of Williams’
path decomposition of B at the time S1 ∈ [0, T1] when B(S1) = B[0, T1], that
−B(S1) and B(T1)−B(S1) are independent exponential(1) variables. Part (ii)
is then read from (7.5). As for (iii), it is clear by Brownian scaling that

(G |DT1 −GT1 = t,N = n)
d
=
√
t Tn.
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From (7.13), the rate of excursions with length in dt which contain exactly n
Poisson points is

1√
2π

t−3/2dt e−t/2(t/2)n/n! = cnt
n− 1

2−1e−t/2dt.

This implies that (DT1 −GT1 |N = n)
d
= 2Γn− 1

2
and the conclusion follows. �

Proof of Theorem 7.9 This is a translation in terms of trees of an argument
given in [355] in terms of alternating walks: by consideration of moments and
the gamma duplication formula,

Γ2n−1
d
=
√

2Γn−1/2

√

2Γ′
n (7.21)

where Γ′
n is assumed independent of Γn−1/2 with the same distribution as Γn.

Now (7.20) and (7.19) give
√

2Γn− 1
2
Tn

d
=
√

2Γn− 1
2

√

2Γ′
n Bn,1.

It is easily argued that the common factor of
√

2Γn− 1
2

can be cancelled [355,

Lemma 8] to yield (7.17) with
d
= instead of =. To check that the εi de-

fined implicitly by (7.17) are independent standard exponential, independent
of (Bn,1, n ≥ 1), takes a bit more work. But this is essentially elementary, be-
cause the conditional law of (Tj , 1 ≤ j ≤ n) given Tn is determined by a simple
process of random deletion of vertices and their incident edges. The same ele-
mentary considerations yield (ii). �

Alternative proof of Theorem 7.9(i) (Provided by J.-F. Le Gall.) Let
T λ

1 < T λ
2 < . . . be the times of points of a Poisson process with rate λ > 0,

independent of B, and

Gλ := subtree(2B; {GT λ
1
, T λ

1 , . . . , T
λ
Nλ
}) where Nλ :=

∞∑

i=1

1(T λ
i ≤ DT λ

1
).

By trivial extensions of (7.19)-(7.20),

(Gλ |N = n)
d
=

√

1

λ
Γn− 1

2
Tn

and

(Gλ |N = n)
d
=

1√
2λ

Γ2n−1Bn,1.

Thus, if F is any continuous function on the set of trees,

1

Γ(n− 1
2 )

∫ ∞

0

dt tn−3/2e−t
E

[

F

(√

t

λ
Tn

)]

=
1

Γ(2n− 1)

∫ ∞

0

ds s2n−2e−s
E

[

F

(
s√
2λ
Bn,1

)]

.
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Make the changes of variables t = λt′, s =
√

2λs′ and use the fact that

e−s
√

2λ =

∫ ∞

0

dt
s√

2πt3
e−s2/2te−λt.

It follows that

1

Γ(n− 1
2 )

∫ ∞

0

dt tn−3/2e−λt
E

[

F
(√

tTn

)]

=
2n− 1

2

Γ(2n− 1)
√

2π

∫ ∞

0

dt e−λtt−3/2

∫ ∞

0

ds s2n−1e−s2/2t
E
[
F
(
sBn,1

)]
.

By injectivity of the Laplace transform

E

[

F
(√

tTn

)]

=
21−n

Γ(n)
t−n

∫ ∞

0

ds s2n−1e−s2/2t
E
[
F
(
sBn,1

)]
.

Take t = 1 to conclude.

Exercises

7.4.1. (Identification of paths in trees derived from continuous func-
tions) Fix X ∈ C[I ]. Let t̃ := {u ∈ I : u ∼X t}. Note that if t is the minimal
element of t̃, then t̃ = {u : X(u) = X[t, u] = X(t)}. For s, u ∈ I the unique path
from s̃ to ũ at unit speed is determined by its range in I/∼X . This subset of
I/∼X is identified in the obvious way with a subset of [s, u], call it the segment
of tree(X) between s and u. This segment is the union of a falling segment
{v ∈ [s, u] : X(v) = X[s, v]}, of length X(s) − X [s, u], and a rising segment
{v ∈ [s, u] : X(v) = X [v, u]} of length X(u)−X[s, u], these segments intersect-
ing at the set of points {v ∈ [s, u] : X(v) = X [s, u] where X attains its minimum
on [s, u]. Each of these segments may also be regarded as a subset of I/ ∼X

which is isometrically parameterized by an interval. The falling segment is natu-
rally parameterized by [X [s, u], X(s)], the rising segment by [X[s, u], X(t)], and
the whole segment by [0, dX(s, u)].

7.4.2. Let t̃ be the equivalence class of t ∈ R≥0 equipped with the Brownian
tree metric dB . Deduce from the strong Markov property of B that

P( |t̃| = 1 or 2 or 3 for all t ≥ 0) = 1.

Check that {t : t̃ = 3} is a.s. equal to the countable set of all local minima of B
besides those in the descending ladder set. See [324] for further analysis of local
minima of B. Check that {t : t̃ = 2} is an uncountable set of Lebesgue measure
0. This is essentially the skeleton of tree(B), as discussed in Chapter 10. Both
sets are a.s. dense in R≥0, both in the usual topology and in the topology of
tree(B).
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7.4.3. (Different processes with the same tree)

tree(B) = tree(B − 2B)
d
= tree(R3) (7.22)

where the first equality holds for every path B ∈ C[0,∞), and second equality
in distribution, read from [345] , assumes B is a standard Brownian motion and
R3 is the 3-dimensional Bessel process. Hence for each fixed s,

(dB(s, s+ t), t ≥ 0)
d
= (R3(t), t ≥ 0)

but it seems there is no simple description of the joint law of dB(u, v) as both
u and v are allowed to vary. Note the implication of (7.22) that there is loss
of information in passing from X to tree(X). Except if X(t) ≥ X(0) for all
t ≥ 0, or if it is assumed that X has some particular distribution, the path of
X typically cannot be recovered from tree(X). Neither is the distribution of
X determined by that of tree(X).

7.4.4. (The filtration generated by the tree) Let Bt := σ(Bs, 0 ≤ s ≤ t)
be the Brownian filtration, and let Rt be the σ-field generated by the restriction
of tree(B) to [0, t]. Check that Rt = σ(Rs, 0 ≤ s ≤ t) where Rt = dB(0, t) as
in Exercise 7.4.3 , and hence that Bt is generated by Rt and B(t) where the
conditional law of B(t) given Rt is uniform on [−R(t), 0], see [345].

7.4.5. (Processes generating Brownian trees) Show that for each proba-
bility distribution F of a random variableM with values in [−∞, 0] there exists a

probability distribution on C[0,∞) for a processX such that tree(X)
d
= tree(B)

and X [0,∞)
d
= M . In particular, if M = −∞ then X

d
= B, and if M = 0 then

X
d
= R3. Describe the law of X by an explicit path decomposition in the case

M = m for some fixed m ∈ (−∞, 0), and hence give a construction of X corre-
sponding to an arbitrary distribution of M .

7.4.6. (Trees derived from paths falling below their initial value) See
Figure 7.4. Generalize Lemma 7.7 to the case when X may fall below its initial
value, when the 2n-step alternating walk is not an excursion, by considering
excursions of the alternating walk above its past minimum process. In general,
the subtree of tree(X) spanned by 0, T1, . . . , Tn is determined by the 2n-step
alternating walk derived from the X(Ti) and intermediate X(Si), but not con-
versely.

7.4.7. (Trees generated by bridges and meanders) Describe as explicitly
as possible the laws of the trees generated by each of the following processes
indexed by [0, 1]: Brownian motion, Brownian bridge from 0 to x, Brownian
meander, Brownian meander from 0 to x. (Nasty descriptions in terms of alter-
nating walks were given in [355]: there are much nicer descriptions, either in the
style of the Poisson line-breaking construction, or in terms of forests of trees
associated with excursions).
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7.4.8. (Aldous’s proof of Theorem 7.9) Let UN have uniform distribution
on the set of NN−1 rooted trees labeled by [N ]. For 1 ≤ n ≤ N let Un,N be
the subtree of UN spanned by the root and [n], let Tn,N be Un,N regarded as
an ordered plane tree (e.g. by imposing a random order), and let Rn,N be the
reduced plane tree derived from Tn,N by first giving each edge of Tn,N length

1/
√
N , then deleting all degree 2 vertices. Let Bn,N be the indicator of the

event that Rn,N is a planted binary tree with n leaves, and let Ln,N(i) be the
length of the ith branch of Rn,N , in order of depth first search. Check by direct
enumeration that for each fixed n, as N →∞,

(Ln,N(i), 1 ≤ i ≤ 2n− 1)1(Bn,N)
d→ (Xi, 1 ≤ i ≤ 2n− 1)

where the right side is the sequence of lengths of branches of Tn in Theorem 7.9.
Now deduce Theorem 7.9 from Theorem 6.4 . This method has proved effective
in characterizing other kinds of continuum random trees besides tree(Bex). See
[20, 21].

7.4.9. (Combinatorial view of the line-breaking construction) (Aldous

[5, 6, 7]) Take (ξ
(N)
i , i ≥ 1) independent uniform on [N ]. Make a tree on [N ]

by declaring 1 to be the root and, for i = 2, 3, . . . , N , put an edge from i to

min(i− 1, ξ
(N)
i ). Apply a uniform random permutation to the vertex-labels [N ].

The resulting tree UN is uniform on allNN−1 rooted labeled trees, as in Exercise
7.4.8 . (This fact is not obvious; it can be deduced from the Markov chain tree

theorem [292] applied to the Markov chain (ξ
(N)
i ); see also Definition 10.5 and

papers cited there). Let R
(N)
1 , R

(N)
2 , . . . be the successive values of i for which

ξ
(N)
i ≤ i− 1. Show that

N−1(R(N)
n , n ≥ 1)

d→ (Θn, n ≥ 1)

where the right side is defined by (7.16). Deduce that for fixed n, if we give length

N−1/2 to the edges of UN , then the subtrees comprised of the first R
(N)
n vertices

converge in distribution to Tn defined in the Poisson line-breaking construction
(Theorem 7.9 (ii)).

7.4.10. (The Poisson line-breaking construction of Bex) Let (Tn)n=1,2,...

be the sequence of random trees defined by the Poisson line-breaking construc-
tion, as in Theorem 7.9(ii), with Θn = length(Tn). Then there exists on the
same probability space an a.s. unique Brownian excursion Bex and a.s. unique
independent uniform Ui for 1 ≤ i ≤ n such that Tn is the subtree of tree(2Bex)
spanned by {0, U1, . . . , Un}. To be explicit, if Hn is the Harris path of Tn, then

Hn(2Θnu)→ 2Bex(u) (0 ≤ u ≤ 1) (7.23)

uniformly almost surely. Moreover, Un is the limiting fraction of times that
new edges are added to the left of the nth edge that was added to the tree.
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If (Wn,k , 0 ≤ k ≤ 2n) is the alternating excursion associated with Tn, then for
1 ≤ m ≤ n

Wn,2m−1 = 2Bex(Un,m) (1 ≤ m ≤ n) (7.24)

where Un,m is the mth smallest among U1, . . . , Un, and for 1 ≤ m ≤ n− 1

Wn,2m = 2Bex[Un,m, Un,m+1]. (7.25)

7.4.11. (An urn-scheme construction of Bex) Let (Sn)n=1,2,... be the se-
quence of shapes of the random trees (Tn)n=1,2,... defined by the Poisson line-
breaking construction, as in Theorem 7.9 (ii). So Sn ∈ binaryn, the set of
n-leaf combinatorial planted binary plane trees. Let S[n] be Sn with its n leaves
labeled by [n], according to their order of addition in the growth process. So
S[n] ∈ binary[n], the set of n-leaf binary plane trees with leaves labeled by [n],
with |binary[n]| = n!|binaryn|. Show that both (Sn)n=1,2,... and (S[n])n=1,2,...

are Markov chains, and describe their transition probabilities. Check in par-
ticular that given S[n], the next tree S[n+1] is equally likely to be any of the
2(2n − 1) trees which can be grown from S[n] by replacing one of the 2n − 1
edges of S[n], say the edge a → b, by two edges and a new internal vertex c to
form a→ c→ b, then attaching the leaf labeled (n+ 1) by an edge (n+ 1)→ c,
on one side or the other of a → c → b. Note the byproduct of this argument
that for n = 1, 2, . . .

|binary[n+1]| = 2n(1× 3× 5× · · · × (2n− 1)) =

(
2n

n

)

n!, (7.26)

and hence:

|binaryn+1| =
|binary[n+1]|

(n+ 1)!
=

1

n+ 1

(
2n

n

)

, (7.27)

which is the nth Catalan number Cn [407, Exercise 6.19]. Thus, a sequence
of trees distributed like (S[n])n=1,2,... can be grown by a simple urn scheme
construction, similar to the Chinese Restaurant Process described in Chapter 3,
and Sn is derived from S[n] by ignoring the labelling by [n]. Deduce from (7.23)

and Θn ∼
√

2n a.s. that if HSn
is the Harris path of Sn, then

HSn
(2(2n− 1)u)√

2n
→ 2Bex(u) (0 ≤ u ≤ 1) (7.28)

uniformly almost surely, where Bex is the same Brownian excursion as that
derived similarly from (Tn)n=1,2,... by (7.23). As a check on the normalization,

the weaker form of (7.28) with
d→ instead of almost sure convergence is the

instance of Aldous’s result Theorem 6.4 for binary branching, due to Gutjahr-
Pflug [181]. See also [261, 376, 418, 419, 247] for various other models for random
growth of binary trees.
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7.4.12. (Independent self-similar growth of subtrees) The combinatorial
tree growth process (Sn)n=1,2,... embedded in Bex as in the previous exercise
has the following remarkable property. Suppose that e is one of the 2m − 1
edges of Sm, for some fixed m. Then for each n ≥ m there is an obvious way
to identify a subtree of Sn formed by e and all its offshoots, which will be a
combinatorial planted binary plane tree. If this sequence of offshoots grows by
addition of leaves at random times m < N1(e) < N2(e) < . . . say, then Nk(e)
increases to∞ almost surely, and the sequence of offshoots of e, watched only at
the times m,N1(e), N2(e), . . ., and re-indexed by 1, 2, . . ., defines a tree growth
process, call it the sub-process generated by e, which has the same distribution
as the original growth process. Moreover, as e varies over the 2m − 1 edges of
Tm, these 2m− 1 sub-processes are independent.

7.4.13. (Dirichlet distribution of proportions of subtrees) Continuing
the previous exercise, for each fixed m, as n varies over n ≥ m, the process of
allocation of new leaves to the offshoots of edges e of Sm is equivalent to Pólya’s
urn scheme with 2m − 1 initial balls of different colors, governed by sampling
with double replacement. Hence, by Exercise 2.2.2 , as n→∞, the proportions
of edges in the 2m+ 1 subtrees converge almost surely to a random vector with
the symmetric Dirichlet distribution with 2m+ 1 parameters equal to 1

2 . Note
that the same is true of proportions of leaves, since a planted plane binary tree
with 2n−1 edges has n leaves. Both processes may be regarded as developments
of the Blackwell-MacQueen urn scheme [68, 350].

7.4.14. (An urn-scheme construction of Bbr) Recall that S[n] is Sn with
the leaves labeled by their order of appearance in the urn-scheme construction
of Bex. Let σ(t), 0 ≤ t ≤ 2(2n − 1) be the usual depth-first search of Sn, and
define the trunk of Sn to be the path from its root to the vertex labeled 1
in S[n]. For 0 ≤ u ≤ 1 let Rn(u) be the distance from σ(2(2n − 1)u) to the
trunk as measured along edges of Sn, and let Sn(u) be Rn(u) with a sign ±1
according to whether σ(2(2n−1)u) is to the left or the right of the trunk. Then,
as companions to (7.28), there is almost sure convergence of Sn/

√
2n to 2Bbr

and Rn/
√

2n to 2|Bbr|, where Bbr can be derived as a measurable function
of Bex and the independent uniform variable U1 which is the limiting fraction
of leaves of S[n] which are to the left of leaf 1 at the top of the trunk. This
is a variant of transformations between Bex and Bbr discussed in [53]. Note
how the uniform location of 1 among the leaves implies Lévy’s theorem that
∫ 1

0
1(Bbr

u > 0)du has uniform [0, 1] distribution. See Knight [257] and Kallenberg
[229] for generalizations to bridges with exchangeable increments, and related
results.

7.4.15. (Weak convergence of conditioned Galton-Watson trees) Con-
sider a critical Galton-Watson branching process with offspring variance σ2.
Write TN for this tree conditioned to have exactly N vertices, with each edge
given length N−1/2. Aldous [7] gave a sense, implied by Theorem Theorem 6.4,
in which TN converges in distribution to tree(2σ−1Bex). Check the scaling con-
stant 2/σ is consistent with what is known by other methods in the following
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three special cases.

• (a) For Poisson(1) offspring distribution. Here shape(TN ) is obtained by
randomly ordering the branches of the uniform tree UN of Exercise 7.4.8
.

• (b) For geometric(1/2) distribution. Here shape(TN ) is uniform on all
combinatorial plane trees, which by the Harris correspondence are bijective
with simple walk-excursions of length 2N .

• (c) For binary offspring distribution, i.e. uniform on 0 and 2. Now shape(TN ),
for N = 2M − 1, is uniform on binary plane trees with M leaves, as in
Exercise 7.4.11 .

Notes and comments

Neveu [320, 321] introduced a notion of marked trees, used also by Le Gall [273],
which is essentially equivalent to the notion of plane trees considered here. The
structure of subtree(B; {T0, T1, . . . , TN}) for suitable random T0, . . . , TN , was
first considered in [323, 324], where it was shown that some Ti defined in terms of
successive upcrossings and downcrossings by B induce a critical binary Galton-
Watson tree. Aldous ([7] and subsequent papers) calls tree(2Bex) the Brownian
continuum random tree (CRT). See also [8] regarding recursive self-similarity
properties of tree(2Bex), and random triangulations. Kersting [246] discusses
symmetry properties of binary branching trees implicit in Aldous’s description
of tree(2Bex).

7.5. Plane forests with edge-lengths

The idea of this section is to consider the tree

F := subtree(B; {0, T1, T2, . . .})

for B a Brownian motion, and suitable increasing sequences of random times Ti,
called sampling times. To avoid uninteresting complications, it will be assumed
throughout that

0 = T0 < T1 < T2 < · · · < Tn ↑ ∞ (7.29)

almost surely. The assumption that Tn ↑ ∞ implies infnB(Tn) = −∞, which
means that F will contain the entire infinite floor line of tree(B) corresponding
to the descending ladder set of B. Thus F may be regarded as a random locally
finite plane forest, that is an infinite sequence of plane trees, each with a finite
number of edges of finite length, with the roots of these trees located at some
strictly increasing sequence of points

0 < L1 < L2 < · · · < Lk ↑ ∞

where Lk is the common value of −B(t) for t in the kth excursion interval of
B −B that contains at least one Ti. Moreover, it is clear that with probability
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one, each of the tree components of F will be a planted binary plane tree, and
that F can be identified graphically when convenient as a subset of R2. The
definition of Harris paths is extended to such forests (including also subforests
with only a finite number of trees) as follows. If F0 is the trivial forest with no
trees, then HF0 is the trivial path, starting at 0, with constant slope −1. For
a non-trivial locally finite plane forest F , let HF(·) be defined by inserting the
Harris paths of the component subtrees of F into the trivial path, in such a way
that if Ti is the tree component of F whose root is located at `i, and

Ti := `i +
∑

j<i

2length(Tj) = inf{t : HF (t) = −`i}

then
HF (Ti + t) = HTi

(t) (0 ≤ t ≤ 2length(Ti))

and HF (·) is continuous with slope −1 on each of the intervals

(`i−1 +
∑

j<i

2length(Ti), `i +
∑

j<i

2length(Ti))

where `0 = 0 and `k =∞ if F has fewer than k trees. Refer to Figure 7.6.

Intuitively, for reasonable families of sampling times (Tm
i , i ≥ 1) whose inter-

vals become small as m→∞, we expect the forests

Fm = subtree(B; {0, Tm
1 , Tm

2 , . . .})

to converge to tree(B). It will be shown in Sections 7.6 and 7.7 that there
are two particular choices of sampling sequences for which the forest-valued
processes (Fm) have interesting autonomous descriptions, given in Definitions
7.16 and 7.21. To get started, note that various results presented in terms of
trees in the previous sections now have analogs in terms of forests. For instance,
here are the forest analogs of Proposition 7.5, Lemma 7.7, Definition 7.2, and
Lemma 7.3.

Proposition 7.11. Let H = HF be the Harris path of some locally finite graph-
ically represented plane forest F . Then the depth-first search of F at unit speed
induces a bijection from [0,∞)/∼H to F whereby the metric space [0,∞)/∼H

is isometric to (F , dF ).

Lemma 7.12. For m = 1, 2, . . . let Sm be a time in [Tm−1, Tm] at which B
attains its minimum on [Tm−1, Tm] so

B(Sm) := B[Tm−1, Tm].

Then subtree(B; {0, T1, T2, . . .}) is isometric to the unique locally finite forest
defined by a sequence of reduced plane trees attached to points along a floor
line, whose Harris path HF (·) is a time-change with alternating slopes ±1 of
the broken line joining the sequence of points

(0, 0), (S1, B(S1)), (T1, B(T1), (S2, B(S2)), (T2, B(T2)), . . . .
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The notation F(B; {0, T1, T2, . . .}) may now be used either for the locally
finite reduced plane forest defined by the Lemma, or for the isometric infinite
subtree of tree(B) spanned by the set of points {0, T1, T2, . . .}.
Definition 7.13. A binary(λ, µ) forest is a planted binary plane forest F with
edge-lengths whose trees are a sequence of independent and identically dis-
tributed binary(λ, µ) trees, which are rooted at the set of points of an indepen-
dent Poisson process on [0,∞) with rate µ− λ.

Lemma 7.14. A locally finite forest F of reduced plane trees is a binary(λ, µ)
forest if and only if the succession of falls and rises of its Harris path HF is a
sequence of independent exponential variables, with exponential(µ+λ) rises and
exponential(µ− λ) falls.

Proof. This follows from Lemma 7.3 and the fact that the exponential rate
µ − λ of the spacings between trees in a binary(λ, µ) forest is by definition
the same as the rate of the exponential falls of the alternating random walk
used to construct the binary(λ, µ) tree. This means that the absolute value of
the overshoot of the alternating exponential walk used to make the ith tree of
the forest has exactly the correct exponential(µ − λ) distribution to make the
spacing on the forest floor between the ith and (i+ 1)th trees. �

Note how the description of the binary(λ, µ) forest is simpler than the corre-
sponding description of the binary(λ, µ) tree by stopping the associated alter-
nating random walk when it first steps negative.

7.6. Sampling at downcrossing times

Throughout this section, let B denote a standard Brownian motion, with B0 = 0.
Following [324], consider for each θ > 0 the sequence of downcrossing times
{Dθ

m} defined inductively as follows. Let Dθ
0 = 0. Given that Dθ

m has been
defined, let

Uθ
m+1 := inf{t : Bt −B[Dθ

m, t] = θ−1},
Dθ

m+1 := inf{t : B[Uθ
m+1, t]−Bt = θ−1}. (7.30)

In words, Uθ
m+1 is the first time after Dθ

m that B completes an upcrossing of
some interval of length θ−1, and Dθ

m+1 is the next time after U θ
m+1 that B

completes a down-crossing of some interval of length θ−1. By construction, the
Dθ

m are stopping times relative to the filtration of B, and B[Dθ
m, D

θ
m+1) =

B(Uθ
m+1)−θ−1. The level θ−1 is chosen so that θ is the rate, per unit increment

of −B, of the Poisson process of excursions of B −B which reach level θ−1.

Theorem 7.15. [324] For each fixed θ > 0,

Fθ
B := F(B; {0, Dθ

1, D
θ
2 , . . .})

is a binary(0, θ) forest of critical binary trees, in which segments are attached
to the floor by a Poisson process with rate θ, each segment has either 0 or
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2 children with equal probability, and the lengths of segments are independent
exponential(2θ) variables.

Proof. This can be read from the Poisson character of Brownian excursions,
as shown in [324]. �

Two alternative viewpoints are useful. Firstly, the forest F θ
B may be regarded

as an infinite subtree of tree(B). From this perspective, the process (F θ
B)θ≥0

is a forest growth process, meaning that Fλ
B can be identified as a subforest of

Fµ
B whenever λ < µ. Secondly, to regard (Fθ

B)θ≥0 as a forest-valued process, the
space of locally-finite plane forests is identified as a subset of C[0,∞) via the
Harris correspondence, and C[0,∞) is given the topology of uniform convergence
on compacts. The forest growth process (Fθ

B)θ≥0 has the special property that
for each fixed λ > 0 the entire path (Fθ

B)0<θ≤λ can be recovered as a measurable

function of Fλ
B . Indeed, as h increases, the process (F1/h

B )h>0 is the deterministic
process of continuous erasure of tips, described by Neveu [321]. The law of the
whole forest growth process (Fθ

B)θ≥0 is determined by this observation and the
distribution of Fθ

B for fixed θ given by Theorem 7.15. The following definition
is suggested by these considerations and the work of Abraham [1, p. 382]:

Definition 7.16. A tip-growth process is a time inhomogeneous forest-valued
Markov process with continuous paths, (Fθ)θ≥0, which starts at the empty forest
at time θ = 0, and develops as follows:

• at each time θ, along each side of each edge of F θ, new tips of length 0
are born according to a Poisson process with unit rate per unit length of
side per unit time;

• each tip that is alive at time θ is growing away from the root of its tree at
speed θ−2.

In the description of these Poisson rates, each of the subintervals of [0,∞)
between the roots of trees of Fθ, including the interval before the first root, is
regarded as an edge of Fθ with only one (upward) side from which new tips
can sprout and then grow into larger trees by addition of further tips. All other
edges of Fθ are regarded as having two sides.

Now there is the following refinement of Theorem 7.15:

Corollary 7.17. The forest-valued process (F θ
B)θ≥0 is a tip-growth process such

that Fθ
B is a binary(0, θ) forest of critical binary trees. Conversely, if (F θ)θ≥0 is

such a forest growth process, there exists on the same probability space a unique
Brownian motion B such that (Fθ)θ≥0 = (Fθ

B)θ≥0 almost surely. Explicitly,

B(t) = lim
θ→∞

Hθ(θt) (0 ≤ t <∞) (7.31)

where Hθ is the Harris path associated with Fθ, and the convergence holds in
C[0,∞) almost surely.
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Proof. The first sentence can be read from the previous discussion, and Itô’s
excursion theory. See Abraham [1, p. 382], where the tip-growth evolution is
described just for a single tree born at time θ which is then destined to have
ultimate maximum height θ−1. The proof of the converse is similar to the proof
of the converse in Exercise 7.7.4 .
See also Abraham [1, V], where a variant of (7.31) is given for recovery of a
single excursion of B from a growing family of subtrees. �

To amplify the Brownian interpretation of the tip-growth process, a tip born
at time θ will have grown into a branch of total length θ−1−φ−1 at a subsequent
time φ, by which time other tips may have started growing from this branch
according to the Poisson process of birth of new tips. Thus each tip born at
time θ anticipates a local maximum of B at a level exactly θ−1 higher than the
level where the tip is born. See also Abraham [1] for further discussion.

7.7. Sampling at Poisson times

Let N be a homogeneous Poisson point process on (0,∞)2, with unit rate per
unit area, assumed independent of the Brownian motion B. Consider the forest-
valued process

Fθ
N,B := F(B; {0, T θ

1 , T
θ
2 , . . .})

generated by sampling B at the times

T θ
m := inf{t : N([0, t]× [0, 1

2θ
2]) = m}. (7.32)

To match the parameterizations of the two forest growth processes described
by Corollary 7.17 and Theorem 7.18, the level 1

2θ
2 is chosen in (7.32) because

θ is the rate per unit local time of Brownian excursions which contain at least
one point of N below 1

2θ
2. It follows that sample times T θ

m and Dθ
m have the

same mean 2/θ2, but these sample times have different variances. From the
definition (7.30), the distribution of Dθ

1 is that of the sum of two independent
copies of the first hitting time of θ−1 by |B|, whereas the distribution of T θ

1 is
exponential( 1

2θ
2).

Theorem 7.18. [399, §6.2],[200] For each fixed θ > 0, the infinite subtree Fθ
N,B

of the Brownian tree, obtained by sampling at Poisson times with rate 1
2θ

2, is a
binary(0, θ) forest of critical binary trees, hence identical in law to F θ

B obtained
by sampling at downcrossings of size θ−1.

Proof. In view of Lemma 7.3, and the coding of forests by alternating walks
discussed in Section 7.1, part (i) follows from the strong Markov property of

B at the times T θ
m, and Williams’ decomposition of B at the time S

(θ)
1 of its

minimum before the exponential( 1
2θ

2) time T θ
1 , whereby the random variables

B(Sθ
1 ) := B(T θ

1 ) and B(T θ
1 )−B(Sθ

1 ) are independent exponential(θ) variables.
See also [399, §6.2], [355], [200] for variations of this argument. �
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The parallel between Theorems 7.15 and 7.18 invites an analysis of the for-
est growth process (Fθ

N,B)θ≥0 analogous to Corollary 7.17. An analog for the
Poisson-sampled Brownian forest of Neveu’s process of erasure of tips is pro-
vided by the next lemma, which follows immediately from standard properties
of Poisson processes:

Lemma 7.19. For Fθ := Fθ
N,B, the forest growth process is such that for each

0 < λ < µ, conditionally given Fµ, the forest Fλ is derived from Fµ by taking
the subforest of Fµ spanned by a random set of leaves of Fµ picked by a process
of independent Bernoulli trials so for each i the ith leaf of Fµ in order of depth-
first search is put in the spanning set with probability λ2/µ2.

This lemma and Theorem 7.18 determine the joint distribution of Fλ and
Fµ for arbitrary 0 ≤ λ < µ. This in turn determines the distribution of the
whole forest-growth process (Fθ)θ≥0, because it turns out to be Markovian. This
Markov property is not obvious, but a consequence of the following theorem.

To formulate the theorem, consider more generally a forest growth process
(Fθ)θ≥0. Then for each choice of λ and µ with 0 ≤ λ ≤ µ, there exists a joint
graphical representation of Fλ and Fµ, as unions of line segments in the plane,
such that Fλ is contained in Fµ. The set-theoretic difference Fµ − Fλ is then
a disjoint union of subtrees of Fµ, each attached to some point on the sides of
Fλ. For each of these subtrees, if it is attached to point x on the side of Fλ, and
x is reached at time t(x) in the depth-first search of Fλ at unit speed, let the
subtree be detached from x and then rerooted on an empty forest floor [0,∞)
at distance t(x) from 0.

The result is a new forest Fλ→µ, the forest of innovations or increments in
the forest growth process between times λ and µ. Now Fλ can be understood
as derived from the earlier forest Fµ and the forest of innovations Fλ→µ by an
operation of composition of Fλ and Fλ→µ, whereby the forest Fλ→µ is wrapped
around the sides of Fλ according to the depth-first search of Fλ at unit speed.
Refer to Figure 7.7.

In terms of Harris paths, this means that the Harris path of Fµ is obtained
by inserting excursions defined by the Harris path of Fλ→µ into the Harris path
of Fλ at appropriate times. Two precedents for construction of processes by
this kind of insertion of excursions are the approximation of continuous time
countable state space Markov chains with instantaneous states [157], and the
construction of downwards skip free processes driven by a subordinator [3]. Say
that a forest growth process (Fθ)θ≥0 has independent growth increments if for
each choice of times 0 = θ0 < θ1 < . . . < θn the increments Fθi−1→θi for
1 ≤ i ≤ n are independent. Obviously, such a process is Markovian.

Theorem 7.20. [364] The Poisson-sampled Brownian forest (F θ)θ≥0 := (Fθ
N,B)θ≥0

has independent growth increments, such that for each 0 ≤ λ < µ the forest
of increments Fλ→µ is a binary(λ, µ) forest as in Definition 7.13. Moreover,
(Fθ)θ≥0 is a twig-growth process, in the sense of the following definition.

Proof. This is deferred to the next Section 7.8. �



168 Jim Pitman

Definition 7.21. cf. [5, p. 2, Process 2] A twig-growth process is a forest-valued
process (Fθ)θ≥0 such that, with the conventions discussed in Definition 7.16

• (Fθ)θ≥0 is a time inhomogeneous forest-valued Markov process with càdlàg
paths, which starts as the empty forest at time θ = 0, and develops as fol-
lows:

• at each time θ, along each side of each edge of F θ, twigs are attached to
that side according to a Poisson process with rate 1 per unit length of side
per unit time;

• given that a twig is attached to a point x on some side of F θ at time θ,
the length of that twig has exponential(2θ) distribution.

Note that the rule for generation of points of attachment of new twigs in the
twig-growth process is identical to the rule for generation of new tips in the
tip-growth process, according to Definition 7.16. But a tip that appears in the
tip-growth process at time θ grows continuously to an ultimate length of θ−1,
whereas a twig appearing at time θ in the twig-growth process grows instanta-
neously and hence discontinuously to its final length, which is exponential with
mean 1

2θ
−1.

The twig growth process is most easily motivated as the “local” (that is,
near the root) variant of a process implicit in the Poisson line-breaking con-
struction. To outline this connection, recall the description below Theorem 7.9
in terms of the inhomogenous Poisson process (Θi), with intensity tdt. Fix an
edge segment I of some initially fixed length ε near the root in some Tn, and
consider how twigs are subsequently attached to points within that edge seg-
ment. The ith such twig to be attached will be an interval of [0,∞) of the form
[Θ̂i, Θ̂i + η(Θ̂i)), where by Poisson thinning the (Θ̂i) are the points of a Pois-
son process with constant rate ε, and η(θ) is approximately exponential(θ) for
large θ. Now imagine traversing [0,∞) at speed 2/ε, so that at time θ we are at
position 2θ/ε, Then the times of attachments of twigs to segment I will be ap-
proximately Poisson, rate 2, and a segment attached at time θ will have length
with approximately exponential(2θ/ε) distribution. Now magnify all lengths by
a factor 1/ε; in particular the initial edge of T1 now has length of order 1/ε.
The above definition of the twig growth process is identical to the ε → 0 limit
of this process, except for the following subtle difference: Part of our convention
about forests is that the floor has only one side, while the edges of trees have
two sides. But in the above limiting argument, the floor arises as a limit of a
tree edge, so needs to be given two sides. Exercise 7.7.6 develops this variation
of the twig growth process, as originally defined by Aldous [5, p. 2, Process 2].

Exercises

7.7.1. Explain why a twig-growth process has independent growth increments.

7.7.2. Show that the first sentence of Theorem 7.20 implies the second one.
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7.7.3. (Problem) Theorem 7.20 implies that if (Fθ
twig)θ≥0 is a twig-growth

process, then

Fθ
twig is a binary(0, θ) forest of critical binary trees. (7.33)

It must be possible to check this by showing that this family of laws satisfies a
system of Kolmogorov forwards equations generated by the jump-hold descrip-
tion of suitable restrictions of the twig-growth process. Formulate the appropri-
ate equations, and show they are uniquely solved by this family of laws. That
done, it should be possible to complete a proof of Theorem 7.20 by a repetition
of the argument to show that the forest of increments between times λ and µ is
a binary(λ, µ) forest.

7.7.4. (Recovery of B and N from a twig-growth process) This corollary
of Theorem 7.20 sharpens the results of Aldous [5], who used the twig-growth
process to construct a random metric space isometrically equivalent to the self-
similar Brownian tree, without reference to Brownian motion. Given a twig-
growth process (Fθ)θ≥0, there exists on the same probability space a unique
Poisson process N and a unique Brownian motion B such that (F θ)θ≥0 =
(Fθ

N,B)θ≥0 almost surely. Moreover, both N and B are almost surely unique,

and they are independent. In particular, B(·) is recovered from (F θ)θ≥0 just as
in (7.31), and for each fixed m and λ > 0 the time T λ

m of the mth point of N in
(0,∞)× [0, 1

2λ
2] is recovered as the almost sure limit

T λ
m = lim

θ→∞
S(λ,θ)

m /θ (7.34)

where S
(λ,θ)
m is the a.s. unique time s at which the Harris path of Fθ has a local

maximum at the height above the forest floor of the mth leaf of Fλ.

7.7.5. (Almost sure identity of the two infinite forests) For each fixed
λ > 0 and each fixed ` > 0, there exists an almost surely finite random time
Θ(λ, `) such that

Fλ
B [0, `] ⊂ Fθ

N,B and Fλ
N,B[0, `] ⊂ Fθ

B for all θ ≥ Θ(λ, `) (7.35)

where F [0, `], the restriction of F to [0, `], is obtained by clear-cutting all trees
of F whose roots fall in (`,∞).

7.7.6. (The self-similar CRT) Write B± for two copies (B+(t), t ≥ 0) and
(B−(t), t ≥ 0) of standard Brownian motion, or equivalently the two sided mo-
tion (B±(t),−∞, t <∞). Interpret tree(B±) as the two-sided forest, in which
B+ defines trees “upwards” from the floor [0,∞) while B− defines trees “down-
wards” from the floor [0,∞). This is the limit tree suggested by the discussion
of Definition 7.21. The scaled tree tree(2B±), or equivalently the scaled tree
tree(2R±

3 ) for two-sided Bessel(3) R±
3 (cf. Exercise 7.4.3 ) is what Aldous [12]

called the self-similar CRT.
(a) Extend Bex to all real t by interpreting Bex(t) = Bex(t mod 1). Observe

that as ε ↓ 0

(ε−1/2Bex(εt),−∞ < t <∞)
d→ (R±

3 (t),−∞ < t <∞).
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In this sense, two-sided Bessel(3) is the “local limit” of Brownian excursion near
0.

(b) Combine the discussion of Definition 7.21 with Exercise 7.4.9 to argue
informally the following. Let UN be uniform on all NN−1 rooted labeled trees.
Let k(N)→ 0, k(N)/N−1/2 →∞. Give length k(N) to each edge of UN . Then
UN converges in distribution to the self-similar CRT [12].

7.7.7. (The forest generated by Brownian motion with drift.) For δ ∈ R

let Bδ(t) := B(t) + δt, t ≥ 0. This exercise is a reformulation in terms of trees
of David Williams’ path decompositions for Bδ , and their explanation in terms
of the transformation from Bδ to Bδ − 2Bδ. See [436, 270] for background.

• the distribution of tree(Bδ) depends only on |δ|.
• for δ > 0 the process tree(Bδ) is independent of −Bδ(∞), which has

exponential(2δ) distribution.
• for ` > 0 let T δ

` denote the subtree of tree(Bδ) which is attached to its
infinite branch at distance ` from 0, let µδ

` be the mass of T δ
` , meaning

the length of the corresponding excursion interval of Bδ, and identify T δ
`

with the isometric tree structure on [0, µδ
` ]. Then

{(`, µδ
` , T δ

` ) : µδ
` > 0}

is the set of points of a Poisson process with intensity

d`e−
1
2 δ2t dt√

2πt3/2
P(tree(Bex,t) ∈ dτ).

Notes and comments

Special thanks to David Aldous for help in writing this section, which bridges
the gap between descriptions of the Brownian forest given by Neveu-Pitman
[323, 324] and Aldous’s construction of a self-similar CRT by the twig growth
process.

7.8. Path decompositions

Definition 7.22. Given a path B and sampling times T1, T2, . . ., the alternating
lower envelope of B derived from T1, T2, . . . is the process with locally bounded
variation At := At(B, T1, T2, . . .) defined as follows:

At =

{
B[Tm, t] if t ∈ [Tm, Sm+1]
B[t, Tm+1] if t ∈ [Sm+1, Tm+1]

(7.36)

where T0 = 0 and Sm+1 is the time in [Tm, Tm+1] at which B attains its min-
imum on that interval. Note that Sm+1 = Tm or Sm+1 = Tm+1 may occur
here, causing degeneracy in the sequel. We therefore assume throughout that B
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and Tm are such that this does not happen, as is the case almost surely in our
applications to Poisson-sampled Brownian paths.

Call the reflected process Rt := Bt − At ≥ 0 the height of B above its
alternating lower envelope derived from T1, T2, . . . Define a random sign process
σt, with σt = −1 if t is in one of the intervals [Tm, Sm+1) when A is decreasing,
and σt = +1 if t is in one of the intervals [Sm+1, Tm+1) when A is increasing,
so the process

Lt :=

∫ t

0

σsdAs

is a continuous increasing process, call it the increasing process derived from B
and T1, T2, . . ..

Lemma 7.23. For an arbitrary continuous path B with inf tBt = −∞, let F be
the forest derived from B by sampling at some finite or infinite increasing se-
quence of times Tm, and let F ′′ be the forest derived from B by sampling at some
sequence of times T ′′

m, where {T ′′
m} = {Tm} ∪ {T ′

m} for some finite or infinite
increasing sequence of times T ′

m. Let At = At(B, T1, T2, . . .) be the alternating
lower envelope of B induced by the {Tm}, let Lt = Lt(B, T1, T2, . . .) be the in-
creasing process derived from B and the {Tm}. Then the forest of innovations
grown onto F to form F ′′ is identical to the forest derived from B − A − L by
sampling at the times {T ′

m}.
Proof. This is left as an exercise. �

Theorem 7.20 now follows easily from the construction of the forest growth
process (Fθ)θ≥0 by Poisson sampling of B, the previous Lemma, and the fol-
lowing lemma.

Lemma 7.24. For δ ≥ 0 let P−δ govern (Bt, t ≥ 0) as a Brownian motion with
drift −δ, meaning that the P−δ distribution of (Bt, t ≥ 0) is the P0 distribution
of (Bt − δt, t ≥ 0). Let P−δ also govern T θ

m for m = 1, 2, . . . as the points of a
Poisson process with rate 1

2θ
2 which is independent of B. For m = 1, 2, . . . let

F θ
m := B(T θ

m−1)− B(Sθ
m) be the mth fall and Hθ

m := B(T θ
m) − B(Sθ

m) the mth
rise of the alternating walk defined by the values B(T θ

m) and the intermediate
minima B(Sθ

m). Then under P−δ for each −δ ≤ 0:
(i) the random variables F θ

m and Hθ
m are independent, with

F θ
m

d
= exponential(

√

θ2 + δ2 − δ) (7.37)

Hθ
m

d
= exponential(

√

θ2 + δ2 + δ). (7.38)

(ii) Let Lθ be the increasing process and Aθ the alternating lower envelope de-
rived from B and the sample times {T θ

m}. Then the process B − Aθ − Lθ is a
Brownian motion with drift −

√
θ2 + δ2. Equivalently, B − Aθ is a Brownian

motion with drift −
√
θ2 + δ2 on (0,∞) and simple reflection at 0.

(iii) The Brownian motion B−Aθ−Lθ with drift −
√
θ2 + δ2 is independent of the

bivariate sequence of falls and rises (F θ
m, H

θ
m)m=1,2,..., hence also independent

of the Poisson-sampled Brownian forest F θ
N,B which they encode.
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Proof. The independence assertions in (i), and the exponential form of the
distributions of the falls and rises follow from Williams’ path decomposition of
B at the time Sθ

1 of its minimum on the interval [0, T θ
1 ], and repeated application

of the strong Markov property of B at the times T θ
m. See [436, 178]. Using

independence of F θ
1 and Hθ

1 , the parameters of the exponential distributions
are easily derived from the the first two moments of B(T θ

1 ).

Or see [73]. Also according to Williams [436], conditionally given F
(θ)
1 = f

and H
(θ)
1 = h, the fragments of the path of B on the intervals [0, Sθ

1 ] and
[Sθ

1 , T
θ
1 ] are independent, the first fragment is distributed like a Brownian motion

with drift −
√
θ2 + δ2, started at 0 and run until it first hits −f , while the

second fragment reversed is like a Brownian motion with the same negative
drift started at h − f and run until it first hits −f . It follows that with the
same conditioning, the two reflected path fragments (Bt − Aθ

t , 0 ≤ t ≤ Sθ
1) and

(BSθ
1+u −Aθ

Sθ
1+u

, 0 ≤ u ≤ T θ
1 − Sθ

1) are independent, the first fragment being a

reflected BM with drift −
√
θ2 + δ2, run until its local time at 0 reaches f , and

the second fragment reversed being a reflected BM with drift −
√
θ2 + δ2, run

until its local time at 0 reaches h. But from this description, and the well-known
reversibility of a one-dimensional diffusion stopped at an inverse local time, still
conditioning on F θ

1 = f and Hθ
1 = h, the process (Bt − Aθ

t , 0 ≤ t ≤ T θ
1 ) is

identified as a reflected BM with drift −
√
θ2 + δ2 run until its local time at 0

first reaches f + h. Now by repeated use of this argument, the entire process
(Bt − Aθ

t , t ≥ 0) conditional on all the rises and falls is a reflected BM with
drift −

√
θ2 + δ2 run forever, independent of the given values of the rises and

falls, provided they sum to ∞ which they obviously do almost surely. Since
B − Aθ − Lθ is by construction the Brownian motion driving this reflected
process, the conclusions (ii) and (iii) are evident. �

Exercises

7.8.1. (Proof of Lemma 7.23)

7.8.2. For 0 ≤ λ < µ let Fλ,µ be the forest derived from a BM with drift −λ by
Poisson ( 1

2θ
2) sampling with θ2 = µ2 − λ2. Then Fλ,µ is a binary(λ, µ) forest.

7.9. Further developments

Aldous [5, 6, 7] developed a general theory of continuum random trees, special
cases of which are the trees tree(B) and tree(Bex) discussed here. Aldous,
Camarri and Pitman [21, 20, 82] studied a large family of such trees, called
inhomogeneous continuum random trees which arise as weak limits from a family
of combinatorial trees naturally associated with Cayley’s multinomial expansion,
as discussed in Chapter 10.

Another interesting family of continuum random trees arises from the work
of Le Gall, Le Jan and Duquesne [277], [119] on continuous state branching



processes. These authors have obtained results on the convergence of trees asso-
ciated with a sequence of Galton-Watson processes with offspring distribution
µn under the assumption that these processes, when suitably rescaled, converge
in distribution towards a continuous-state branching process with branching
mechanism ψ. The corresponding Harris processes also converge in distribution
towards a limiting process called the ψ-height process. Informally, this means
that whenever a sequence of rescaled Galton-Watson processes converges in dis-
tribution, their genealogies also converge to a continuous branching structure
coded by the height process. The ψ-height process is constructed in [277, 119] as
a local time functional of the Lévy process with Laplace exponent ψ. It can be
used to investigate various asymptotic properties of Galton-Watson trees, such
as the structure of reduced trees corresponding to ancestors of individuals alive
at a fixed (large) time [119]. In the quadratic case ψ(u) = u2 (corresponding
to the case where µn = µ is critical with finite variance), the height process is
reflected Brownian motion.

Specializing to the case where µn = µ is in the domain of attraction of a stable
law, Duquesne [118] has shown that the contour process of the µ-Galton-Watson
tree conditioned to have exactly n vertices converges after rescaling towards the
normalized excursion of the (stable) height process, which should be interpreted
as coding a stable CRT. Finite-dimensional distributions of the stable CRT are
computed in [119]. The lecture notes [275] provide a survey of these results
and some applications to particle systems and models of statistical mechanics.
Another reference on spatial branching processes, random snakes and partial
differential equations is [274]. This work features Le Gall’s Brownian snake con-
struction of Markovian superprocesses, which is a natural development of the
branching structure of Brownian trees which has found many applications in the
derivation of sample properties of super-Brownian motion and its connections
with partial differential equations. Analogously to the Brownian snake approach
of quadratic superprocesses, the ψ-height process can be used to construct su-
perprocesses with a general branching mechanism and to study their properties
[119, 276]. For some other recent developments, see [94, 295, 217].

For different approaches to the forest growth procedure by sampling at Pois-
son times and related results see [364]. This approach is extended by Duquesne
and Winkel [121] to multiple branching and genealogies of general continuous-
state branching processes, including the supercritical case. An appropriate tech-
nical setup for tree-valued random processes was provided by Evans, Pitman and
Winter [142] who represent trees as (equivalence classes of) certain metric spaces
that form a Polish space when equipped with the Gromov-Hausdorff topology.
These ideas are applied and further developed in [120, 121, 142, 143].

173
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(a) (b)

(c) (d)

Figure 7.4: Construction of tree from a tame function, with a finite number of
local extrema. The whole tree is evidently isometric to a finite plane tree with
edge-lengths, as in the bottom right panel. Note from Definition 7.6 that the
root of this tree is its left-most extremity, not the node corresponding to the
minimal point. The angle between the two branches meeting at this node could
be straightened out, and this node disregarded as a vertex, to make an isometric
representation by a reduced plane tree.
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T1 T2 T3 T1
DT1

G

0

(a) (b)

Figure 7.5: subtree(2B; {GT1 , T1, . . . , TN}), as in Lemma 7.10
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Figure 7.6: A forest subtree(B; {0, t1, t2, . . . , t6}) and its Harris path. Note
si = arg minti−1≤s≤ti

B(s). Vertices of the forest are labeled in alternating order,
so vertex 2n corresponds to time tn and vertex 2n− 1 to time sn.
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(a)

(b)

(c)

Figure 7.7: Forest growth by wrapping one forest around another
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Chapter 8

Brownian local times,

branching and Bessel

processes

It is well known that the random occupation measure induced by the sample
path of a Brownian motion B = (Bt, t ≥ 0) admits a jointly continuous local
time process (Lx

t (B);x ∈ R, t ≥ 0) such that
∫ t

0

f(Bs)ds =

∫ ∞

−∞
Lx

t (B)f(x)dx.

See [304, 255, 384]. This chapter reviews the basic descriptions of Brownian
local times in terms of Bessel processes, due to Ray [381] and Knight [254],
and interprets these results in terms of random trees and forests embedded in
Brownian paths. Then various developments of these descriptions are discussed.

8.1. Stopping at first hitting times Here the Ray-Knight description of
the process (Lx

T (B);x ∈ R) is recalled for T the first hitting time of a level
by either B or by (L0

t (B), t ≥ 0).
8.2. Squares of Bessel processes These are involved in the Ray-Knight

theorems and their variants.
8.3. Stopping at fixed times By suitable conditioning, the Ray-Knight the-

ory provides access to the law of (Lx
t (B), x ∈ R) for fixed times t.

8.4. Time-changed local time processes Making a change of variable in
the space-parameter of these local time processes for fixed time t, so that
the quadratic variation in x becomes a new time parameter, leads to
Jeulin’s identity relating Brownian excursion and its local time process.

8.5. Branching process approximations This section offers some further
descriptions of local time processes in terms of branching process approx-
imations to squared Bessel processes and their bridges.
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8.1. Stopping at an inverse local time

Throughout this section let R denote a reflecting Brownian motion on [0,∞),
which according to Lévy’s theorem [384] may be constructed from a standard
Brownian motion either as R = |B|, or as R = B−B, where Bt := inf0≤s≤tBs.
Note that if R = |B| then for v ≥ 0

Lv
t (R) = Lv

t (B) + L−v
t (B) (8.1)

and in particular L0
t (R) = 2L0

t (B). For ` ≥ 0 let

τ` := inf{t : L0
t (R) > `} = inf{t : L0

t (B) > `/2}. (8.2)

For 0 ≤ v < w let

D(v, w, t) := number of downcrossings of [v, w] by R before t

From the structure of the Brownian forest described in Section 7.6 there is the
following basic description of the process counting downcrossings of intervals up
to an inverse local time. See also [426] for more about Brownian downcrossings
and their relation to the Ray-Knight theorems.

Corollary 8.1. [323] The process

(D(v, v + ε, τ`), v ≥ 0)

is a time-homogeneous Markovian birth and death process on {0, 1, 2 . . .}, with
state 0 absorbing, transition rates

n− 1
n
ε←− n

n
ε−→ n+ 1

for n = 1, 2, . . ., and initial state D(0, ε, τ`) which has Poisson(`/(2ε)) distribu-
tion.

Proof. According to Theorem 7.15 , applied to R := B − B run until B first
reaches −`/2, the number D(v, v+ ε, τ`) is the number of branches at level v in
a critical binary (0, ε) branching process started with a Poisson(`/(2ε)) number
of initial individuals, so the conclusion is immediate. �

From the Poisson distribution of D(0, ε, τ`), and the law of large numbers,

lim
ε↓0

εD(0, ε, τ`) = ` almost surely

and similarly, for each v > 0 and ` > 0, by consideration of excursions of R
away from level v

lim
ε↓0

2εD(v, v + ε, τ`) = Lv
τ`

(R) almost surely.
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According to Corollary 8.1, this process (2εD(v, v + ε, τ`), v ≥ 0), which serves
as an approximation to (Lv

τ`
(R), v ≥ 0), is a Markov chain whose state space is

the set of integer multiples of 2ε, with transition rates

x− 2ε
x

2ε2←− x
x

2ε2−→ x+ 2ε

for x = 2εn > 0. The generatorGε of this Markov chain acts on smooth functions
f on (0,∞) according to

(Gεf)(x) =
x

2ε2
f(x− 2ε) +

x

2ε2
f(x+ 2ε)− x

ε2
f(x)

= 4x
1

(2ε)2
[

1
2f(x− 2ε) + 1

2f(x+ 2ε)− f(x)
]

→ 4x
1

2

d2

dx2
f as ε→ 0.

Hence, appealing to almost any result on approximation of diffusions by Markov
chains [265, 264], we obtain:

Theorem 8.2. (Ray [381], Knight [254]) For each fixed ` > 0, and τ` := inf{t :
L0

t (R) > `}, where R = |B|,

(Lv
τ`

(R), v ≥ 0)
d
= (Q

(0)
`,v , v ≥ 0) (8.3)

where the process on the right hand side is the Feller diffusion on [0,∞) with
absorbtion at 0, and generator

4x
1

2

d2

dx2
(8.4)

acting on smooth functions vanishing in a neighbourhood of 0.

Exercises

8.1.1. (Ray-Knight) Let T` := τ2` := inf{t > 0 : L0
t (B) = `}. Then the pro-

cesses (Lv
T`

(B), v ≥ 0) and (L−v
T`

(B), v ≥ 0) are two independent copies of

(Q
(0)
`,v , v ≥ 0).

Notes and comments

Many proofs and extensions of the basic Ray-Knight theorems can be found in
the literature. See for instance [233, 384, 348, 426, 219] and papers cited there.
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8.2. Squares of Bessel processes

The Feller diffusion appearing on the right side of (8.3) is the particular case

δ = 0 of a squared Bessel with parameter δ started at ` ≥ 0, denoted (Q
(δ)
`,v , v ≥

0). This Markov process with state space [0,∞) can be defined [384, Ch. XI]
for each δ ≥ 0 as the unique non-negative strong solution of the Itô stochastic
differential equation (SDE)

Q0 = `; dQv = δ dv + 2
√

Qv dβv (8.5)

where (βv, v ≥ 0) is a BM. For δ < 0, such a process can be uniquely defined
up to its hitting time of 0 as the solution of this SDE, with either killing or

absorbtion at 0. Denote the law of (Q
(δ)
`,v , v ≥ 0) by BESQ

(δ)
` , and denote

by BESQ(δ) the Markov process with state space [0,∞) determined by this

collection of laws (BESQ
(δ)
` , ` ≥ 0). For an account of the basic properties of

these processes see [384]. The parameter δ, which simply represents a constant
drift coefficient, is often called the dimension of the squared Bessel process, due
to the following well known consequence of Itô’s formula: that if (Bi,v , v ≥ 0)
for i = 1, 2, . . . is a sequence of independent standard Brownian motions, then

(Q
(δ)
`,v , v ≥ 0)

d
=

(

(
√
`+B1,v)2 +

δ∑

i=2

B2
i,v , v ≥ 0

)

(δ = 1, 2, . . .). (8.6)

The squared Bessel processes and their bridges, especially for δ = 0, 2, 4, are
involved in the description of the local time processes of numerous Brownian
path fragments [254, 381, 436, 365]. For instance, if H1(X) := inf{t : Xt = 1},
then according to Ray and Knight

(Lv
H1(B)(B), 0 ≤ v ≤ 1)

d
= (Q

(2)
0,1−v, 0 ≤ v ≤ 1). (8.7)

The appearance of BESQ(δ) processes embedded in the local times of Brown-
ian motion is best understood in terms of the construction of these processes
as weak limits of Galton-Watson branching processes with immigration, and
their consequent interpretation as continuous state branching processes with
immigration [233].

For instance, there is the following expression of the Lévy-Itô representa-
tion of squared Bessel processes, and its interpretation in terms of Brownian
excursions [365], which are recalled in Exercise 8.2.4 .

Theorem 8.3. Le Gall-Yor [278] For R a reflecting Brownian motion on [0,∞),
with R0 = 0, let

Y
(δ)
t := Rt + L0

t (R)/δ (t ≥ 0).

Then for δ > 0 the process of ultimate local times of Y (δ) is a copy of BESQ
(δ)
0 :

(Lv
∞(Y (δ)), v ≥ 0)

d
= (Q

(δ)
0,v , v ≥ 0). (8.8)
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This has an immediate interpretation in terms of Brownian trees [2]. If R is
constructed as R = B −B, so L0

t (R) = −2B(t), then

tree(B) = tree(B − 2B) = tree(Y (2))

where Y (2) is a copy of the three-dimensional Bessel process R3. Thus Lv
∞(Y (2))

is the mass density of vertices in either tree(B) or tree(Y (2)) at distance v
from the root 0, where mass refers to Lebesgue measure on R≥0. That this
process should be regarded as a continuous state branching process with immi-
gration is intuitively obvious from the Poisson structure of the forest of subtrees
of tree(B) attached to its infinite branch Proposition 7.8 . Similarly Lv

∞(Y (δ))
is the mass density of vertices in tree(Y (δ)) at distance v from the root 0. By
construction of Y (δ), its tree is derived from tree(Y (2)) by simply stretching
distances along the infinite branch of tree(Y (2)) by a factor of 2/δ, and leaving
the same Poisson forest of subtrees attached to this branch. Thus δ is simply
a parameter governing the rate of appearance of Brownian subtrees of various
sizes along the infinite branch of Y (δ), that is to say a rate of immigration, or
rate of generation of new Brownian subtrees, in a continous state branching
process.

Exercises

8.2.1. (Knight) Use the well known construction of a copy of R from B, by
deletion of all negative excursions of B, to show that the process (Lv

H1(R)(R), 0 ≤
v ≤ 1) has the same distribution as the processes displayed in (8.7). See also
Knight [255], McKean [304].

8.2.2. (Williams [436]) Deduce (8.7) from (8.8) for δ = 2, and vice-versa, using
Williams’ time reversal identity [384] relating the path of B on [0, H1(B)] to
that of R3 on [0,K1], where K1 is the last time that R3 hits 1.

8.2.3. [384] Deduce from the SDE definition of BESQ
(δ)
` the additivity property

[401] that for all non-negative δ, δ′, ` and `′ the sum of a BESQ
(δ)
` process and

an independent BESQ
(δ′)
`′ process is a BESQ

(δ+δ′)
`+`′ process. For positive integer

δ, δ′ this is obvious from (8.6). Show that the law of BESQ
(δ)
` for all δ ≥ 0 and

` ≥ 0 is uniquely determined by the additivity property and the prescription
(8.6) for δ = 1.

8.2.4. [365] As a consequence of the additivity property, the family of BESQ
(δ)
`

processes can be constructed on a common probability space in such a way

that the path-valued process (Q
(δ)
`,v , v ≥ 0)δ≥0,`≥0 is increasing with stationary

independent increments. The C[0,∞)-valued processes

(Q
(δ)
0,v, v ≥ 0)δ≥0 and (Q

(0)
`,v , v ≥ 0)`≥0 (8.9)

are then two independent increasing processes with stationary independent in-
crements, the jumps of which are two independent Poisson processes of points
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in C[0,∞) governed by two σ-finite Lévy measures M and N , which may be
described as follows: M is the distribution of the ultimate local time process
(L∞,v(X), v ≥ 0) for the co-ordinate process X on C[0,∞) subject to Itô’s
σ-finite law ν of Brownian excursions, and N =

∫∞
0
Mudu where Mu is the

measure on C[0,∞) under which X [0, u] ≡ 0 and X [u,∞) has distribution M .
Under M the co-ordinate process X is Markovian with the BESQ(0) semigroup,
with almost every path starting at 0.

8.2.5. [278] (Proof of Theorem 8.3) Deduce (8.8) for general δ > 0 from its

special case δ = 2, using the additivity property of BESQ
(δ)
0 .

Notes and comments

See Le Gall [274] for developments of these ideas in the context of Markovian
super-processes. See [365, 348, 384] for descriptions of the infinitely divisible

distribution of
∫∞
0
Q

(δ)
`,vµ(dv), for suitable measures µ, in terms of the solutions

of Sturm-Liouville equations associated with µ, and treatment of the same prob-
lem for squared Bessel bridges. Carmona-Petit-Yor [86] found a construction of

BESQ
(δ)
x for δ < 0 < x which is similar to (8.8) See also [340, 343].

8.3. Stopping at fixed times

Features of the distribution of the Brownian local time process (Lx
t (B), x ∈ R),

for a fixed time t, are of interest in a number of contexts. In principle, the family
of distributions of these local time processes is determined by the Ray-Knight
description of the joint law of (Lx

T (B), x ∈ R) and BT for T an exponential time
independent of B, as considered in [63]. In practice, it is hard work to invert
the implicit Laplace transform to gain anything explicit from this description,
though this can certainly be done, as shown by Leuridan [283]. A simpler way
to access the structure of the process (Lx

t (B), x ∈ R) for fixed t is to exploit
the branching process approximation to do computations in a combinatorial set-
ting without technical complication, then appeal to some general approximation
technique to justify passage to the Brownian limit.

The effectiveness of this approach is well illustrated by the following prob-
lem, which arises naturally from the asymptotics of random forests and ran-
dom mappings. Let Bbr

` denote a standard Brownian bridge Bbr conditioned on
L0

1(Bbr) = `. The problem is to describe the law of the process (Lv
1(|Bbr

`/2|), v ≥
0) as explicitly as possible. Note that the conditioning on L0

1(Bbr) = `/2 makes
the process (Lv

1(|Bbr
`/2|), v ≥ 0) start at L0

1(|Bbr
`/2|) = `. The structure of excur-

sions of |Bbr
`/2| away from 0 can be described as follows: the excursion intervals

of |Bbr
`/2| define an exchangeable interval partition of [0, 1], whose law is defined

by conditioning the ( 1
2 ,

1
2 ) partition generated by Bbr to have 1

2 -diversity equal

to `/
√

2. By the switching identity (4.71) and the Ray-Knight description (8.3),
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for each ` > 0

(Lv
1(|Bbr

`/2|), v ≥ 0)
d
=

(

Q
(0)
`,v , v ≥ 0

∣
∣
∣
∣

∫ ∞

0

Q
(0)
`,vdv = 1

)

(8.10)

Note that for ` = 0 the left side of (8.10) has direct meaning as the local time
process of Bex, but the right hand side does not because 0 is an absorbing state
for BESQ(0). We will return to this point after stating the following theorem.

Theorem 8.4. [358] For each t > 0 and ` ≥ 0, a process Q = (Q`,t,v, v ≥ 0)
with continuous paths such that

(Lv
1(|Bbr

`/2|), v ≥ 0)
d
= (Q`,1,v, v ≥ 0), (8.11)

can be defined as the unique strong solution of the Itô SDE

Q0 = `; dQv = δv(Q)dv + 2
√

Qvdβv (8.12)

where β is a Brownian motion and

δv(Q) := 4−Q2
v

(
t−
∫ v

0 Qudu
)−1

(8.13)

with the convention that the equation for Q is to be solved only on [0, Vt(Q))
and that Qv = 0 for v ≥ Vt(Q) where

Vt(Q) := inf{v :
∫ v

0
Qudu = t}. (8.14)

Note that for each ` ≥ 0 and t > 0 the random time Vt(Q) is strictly positive
and finite a.s., and the left limit of Q at time Vt(Q) exists and equals 0 a.s..
A proof of this theorem will be sketched in Section 8.5 , based on a branching
process approximation.

It is easily seen by Brownian scaling how to interpret the process (Q`,t,v, v ≥
0) for all t > 0 and ` ≥ 0: if Bbr,t denotes a Brownian bridge from 0 to 0 of
length t, then

(Lv
t (|Bbr,t|), v ≥ 0 |L0

t (|Bbr,t|) = `)
d
= (Q`,t,v, v ≥ 0). (8.15)

Provided ` > 0 this process may also be interpreted as a BESQ
(0)
` process

(Q
(0)
`,v , v ≥ 0) conditioned on

∫∞
0 Q

(0)
`,vdv = t. Call (8.15) the local time inter-

pretation of Q. The SDE (8.12) defining Q in (8.15) is a generalization of the
BESQ(δ) SDE (8.5) in which the drift δv at level v is a path dependent function
of the unknown process Q, namely δv := 4 − Q2

v(t −
∫ v

0 Qudu)−1, which may
be of either sign. It is well known that for fixed δ < 0 and any initial value
` > 0 the BESQ(δ) SDE has a pathwise unique solution on a stochastic interval
[0, V0) such that the solution approaches 0 at time V0. The BESQ(δ) process for
δ ≤ 0 is known [365] to arise as a Doob h-process by conditioning a BESQ(4−δ)

process to hit 0. To get some feeling for the effect of the path dependent drift
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δv, keep in mind that the local times process (Lv
t (|Bbr,t|), v ≥ 0) is subject to

the constraint ∫ ∞

0

Lu
t (|Bbr,t|)du = t

so the random variable

t−
∫ v

0

Lu
t (|Bbr,t|)du =

∫ ∞

v

Lu
t (|Bbr,t|)du,

representing the time spent by |Bbr,t| above v, is determined as a function of
the local times of |Bbr,t| at levels below v. According to the theorem, given
the local times at all levels below v, the local time process evolves over the
next infinitesimal level increment like a squared Bessel process of dimension
δv := 4− βv , where βv is the square of the local time at level v relative to the
time above v. Note that if the local time at level v is close to zero, but the time
above v is not, then β is close to zero, so the local time process is forced away

from 0 in much the same way as a BESQ
(4)
0 escapes from 0. For ` > 0 it is

known [384] that the BESQ
(δ)
` process hits zero in finite time only if δ < 2.

So the expression δv = 4− βv implies that the local time process cannot reach
zero before a level v such that βv > 2, meaning the square of the local time at
v exceeds twice the time above v. Much sharper results could be given in the
same vein.

As remarked below (8.10), this formula has no direct meaning for ` = 0,
and t > 0, even though the process (Q0,t,v, v ≥ 0) is a well defined process
identical in law to the process of local times of Bex,t, a Brownian excursion of
length t. However, formula (8.10) amounts to the following identity of probability
measures on C[0,∞):

BESQ
(0)
` =

∫ ∞

0

BESQ
(0)
`,t P(τ` ∈ dt) (` > 0) (8.16)

where BESQ
(0)
` denotes the law of C[0,∞) of a BESQ

(0)
` process (Q

(0)
`,v , v ≥ 0),

τ` :=

∫ ∞

0

Q
(0)
`,vdv

d
= (`/2)2/B2

1

and BESQ
(0)
`,t is the law of (Q

(0)
`,v , v ≥ 0) given τ` = t. Here we exploit the

Ray-Knight theorem (8.3) to suppose for convenience that the entire family

of BESQ
(0)
` processes (Q

(0)
`,v , v ≥ 0) is defined on the same probability space

(Ω,F ,P) as a basic Brownian motion B, according to the formulaQ
(0)
`,v := Lv

τ`
(R)

where R = |B| and (τ`, ` ≥ 0) is the inverse local time process of R at 0, as in
(8.2). If this form (8.16) of formula (8.10) is divided by `, and the limit taken as
` ↓ 0, the result is the following formula for the Lévy measureM of the increasing
path valued process with stationary independent increments (Q`,t,v, v ≥ 0)`≥0,
as further interpreted in Exercise 8.2.4 :

M =

∫ ∞

0

BESQ
(0)
0,t

t−3/2dt√
2π

(8.17)
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where BESQ
(0)
0,t is the law on C[0,∞) of

(Q0,t,v, v ≥ 0)
d
= (Lv

t (Bex,t), v ≥ 0).

Thus M is in many respects like a law of excursions of BESQ(0) away from 0.
But it is not possible to concatenate such excursions to form a process, because
if µ denotes the M distribution of H0, the return time to 0, then µ fails to satisfy
the necessary condition

∫∞
0

(1 − e−x)µ(dx) < ∞ for µ to be the Lévy measure
of an inverse local time process.

Notes and comments

This section is based on [358].

8.4. Time-changed local time processes

Keep in mind that the “time” parameter of the local time process (Q`,t,v, v ≥ 0)
is actually a level v, so perhaps we should speak instead of “space-changed”
local time processes. Consider some reformulations of Theorem 8.4 which can
be made by stochastic calculus. For a non-negative process Y := (Ys, 0 ≤ s ≤ 1)
admitting a continuous occupation density process (Lv

1(Y ), v ≥ 0), define a

process L̂(Y ) := (L̂u(Y ), 0 ≤ u ≤ 1) by L̂u(Y ) := L
v(u)
1 (Y ) where v(u) :=

sup{y ≥ 0 :
∫∞

y Lx
1dx > u}. So L̂u(Y ) is the local time of Y at a level v(u)

above which Y spends time u. This definition is suggested by the remarkable
results of Jeulin [220, p. 264] that

L̂(Bex)
d
= 2Bex (8.18)

and Biane-Yor [61, Th. (5.3)] that

L̂(|Bbr|) d
= 2Bme (8.19)

where Bex and Bme are standard Brownian bridge and meander, respectively.
If we recall that Bme conditioned on Bme(1) = r is a BES(3) bridge from 0 to
r, say R0→r

3 , then (8.19) implies

L̂(|Bbr
`/2|)

d
= 2R

0→`/2
3 . (8.20)

Conversely, (8.19) is recovered from (8.20) and the fact that L0
1(Bbr)

d
= Bme(1).

Moreover, (8.18) is the special case ` = 0 of (8.20). Now either of the descriptions
(8.20) and (8.11) can be derived from the other, using the fact that Rx→y

3 is the
time reversal of Ry→x

3 , the description of these bridges as solutions of an SDE,
and the computation of Lemma 8.5 below, which transforms the SDE solved by
(Lv

1(|Bbr
`/2|), v ≥ 0) into that solved by (L̂u(|Bbr

`/2|), 0 ≤ u ≤ 1).
The transformation between the two SDEs is done by the following Lemma.

This corrects [358, Lemma 14], where the process R should obviously be started
at `/2 instead of `.
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Lemma 8.5. For ` ≥ 0, t > 0 let R` be the process derived from (Q`,1,v, v ≥ 0)
via the formula

2R`
s := Q`,t,v for the least v :

∫ v

0

Q`,1,udu = s, where 0 ≤ s ≤ 1 (8.21)

Then R` d
= R

`/2→0
3 and (Q`,1,v, v ≥ 0) can be recovered from R` via the formula

Q`,1,v = 2R`
s for the least s :

∫ s

0

dr

2R`
r

= v. (8.22)

Consequently, if R` d
= R

`/2→0
3 , then Q defined by (8.22) has the same distribu-

tion as Q defined by the SDE (8.12).

Proof. Starting from three independent standard Brownian bridges Bbr
i , i =

1, 2, 3, for x, y ≥ 0 let

Rx→y
3 (u) :=

√

(x+ (y − x)u+Bbr
1,u)2 + (Bbr

2,u)2 + (Bbr
3,u)2 (0 ≤ u ≤ 1).

(8.23)
Itô’s formula implies that the process Rx→y

3 can be characterized for each x, y ≥
0 as the solution over [0, 1] of the Itô SDE

R0 = x; dRs =

(
1

Rs
+

(y −Rs)

(1− s)

)

ds + dγs (8.24)

for a Brownian motion γ. The recipe (8.22) for inverting the time change (8.21)
is easily checked, so it suffices to show that if R := (R`

s, 0 ≤ s ≤ 1) solves
the SDE (8.24), for (x, y) = (`/2, 0) and some Brownian motion γ, then Q :=
(Q`,1,v, v ≥ 0) defined by (8.22) solves the SDE (8.12) for some Brownian motion
β. But from (8.21) and (8.22)

dQv = 2 dRs where s =

∫ v

0

Qudu

A level increment dv for Q corresponds to a time increment ds = Qvdv for R,
and Rs = Qv/2, so

dQv = 2

(

1

Qv/2
− Qv/2

(1−
∫ v

0 Qudu)

)

Qvdv + 2
√

Qvdβv (8.25)

for some other Brownian motion β, where the factor
√
Qv appears in the diffu-

sion term due to Brownian scaling, and the equation (8.25) simplifies to (8.12).

As a technical point, the definition of β above the level
∫ t

0
dr/2R`,0,t

r when Q
hits 0 may require enlargement of the probability space. See [384, Ch. V] for a
rigorous discussion of such issues. �
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Exercises

8.4.1. Show that

sup
v≥0

Lv
1(|Bbr|) d

= 2 sup
0≤u≤1

Bme
u

d
= 4 sup

0≤u≤1
|Bbr

u | (8.26)

where Bme is a Brownian meander of length 1, the second equality is due to
Kennedy [238], and the distribution of sup0≤u≤1 |Bbr

u | is given by the well known
Kolmogorov-Smirnov formula. Also

(L0
1(|Bbr|), sup

v≥0
Lv

1(|Bbr|)) d
= 2(Bme

1 , sup
0≤u≤1

Bme
u ) (8.27)

the joint density of which can be read from known results for the Brownian
meander [209].

8.4.2. [358, Corollary 18] Conditionally given

L0
1(Bbr) = ` and

∫ 1

0

1(Bbr
u > 0)du = a,

the processes (Lv
1(Bbr), v ≥ 0) and (L−v

1 , v ≥ 0) are independent copies of
(Q`,a,v, v ≥ 0) and (Q`,1−a,v, v ≥ 0) respectively.

Notes and comments

This section is based on [358]. Perkins [338] showed that for each fixed t > 0
the process of local times of B at levels v up to time t is a semi-martingale as v
ranges over all real values, and he gave the semi-martingale decomposition of this
process. Jeulin [220] gave a version of Perkins results that allows conditioning on
Bt. See [167] and [168] for more information regarding the distribution of local
times of Bex and |Bbr|. Knight [258, 259] treats the related problem of describing

the distribution of
∫ 1

0 |Bbr
` (u)|du. See also [342]. Norris-Rogers-Williams [326,

Th. 2]showed that the distribution of a local time process derived from another
kind of perturbed Brownian motion, with a drift depending on its local time
process, can be characterized by a variation of the Bessel square SDE like (8.12),
but with a different form of path dependent drift coefficient δv(Q). See also
[438] and papers cited there for various other Ray-Knight type descriptions of
Brownian local time processes, and further references on this topic.

8.5. Branching process approximations

The following result in the theory of branching processes, first indicated by
Feller [149] and further developed by Lamperti [269, 268] and Lindvall [285],

generalizes the approximation of (Q
(0)
`,v , v ≥ 0) by a continuous time branching
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process which was made in the previous section. See also [386]. Let Zk(h) for
h = 0, 1, 2, . . . be the number of individuals in generation h of a Galton-Watson
process started with k individuals in which the offspring distribution has mean
1 and finite variance σ2 > 0, and let Zk(h) be defined for all h ≥ 0 by linear
interpolation between integers. Then as both m→∞ and k →∞

(
2

σm
Zk(2mv/σ), v ≥ 0

)

d→ (Q
(0)
`,v , v ≥ 0) if

2k

σm
→ `, (8.28)

where the limit is BESQ
(0)
` . To check the normalizations in (8.28), observe

that if the process on the left side has value x at v such that 2mv/σ equals an
integer h, then Zk(h) = xσm/2. The number Zk(h+1) in the next generation of
the branching process therefore has variance (xσm/2)σ2. The increment of the
process on the left side over the next v-increment of σ/(2m) has this variance
multiplied by (2/σm)2. So along the grid of multiples of σ/(2m), the variance
of increments of the normalized process on the left side per unit v-increment,
from one grid point to the next, given the normalized process has value x at the
first grid point, is

(xσm

2

)

σ2

(
2

σm

)2 ( σ

2m

)−1

= 4x = (2
√
x)2

in accordance with the BESQ(0) SDE. Let (Zk,n(h), h ≥ 0) defined by condi-
tioning (Zk(h), h ≥ 0) on the event that its total progeny

∑∞
h=0 Zk(h) equals n,

so by definition

(Zk,n(h), h ≥ 0)
d
= (Zk(h), h ≥ 0 |∑∞

h=0 Zk(h) = n) (8.29)

where it is assumed now that the offspring distribution is aperiodic, so the
conditioning event has strictly positive probability for all sufficiently large n.
Then it is to be anticipated from (8.28) and (8.29) that as n→∞
(

2

σ
√
n
Zk,n(2

√
nv/σ), v ≥ 0

)

d→ (Q`,1,v, v ≥ 0) provided
2k

σ
√
n
→ ` (8.30)

for some ` ≥ 0 where (Q`,1,v, v ≥ 0) may be identified by conditioning the limit

BESQ
(0)
` process in (8.28) on its integral being equal to 1, as implied by (8.10),

and the definition is extended to ` = 0 by weak continuity. This intuitively
obvious identification of the limit can be justified by regularity of the solution
of the basic SDE (8.12) as a function of its parameters, provided it is shown that
the weak convergence (8.30) holds with the limit defined as the pathwise unique
solution of the SDE (8.12). So let us now see how to derive the basic SDE (8.12)
directly from combinatorial considerations. Note that if Zk,n(h) is interpreted
as the number of vertices at level h in a forest with n vertices defined by a
collection of k family trees, one for each initial individual in the Galton-Watson
process, then for h = 0, 1, . . . the random variable

Ak,n(h) := n−
h∑

i=0

Zk,n(h) (8.31)
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represents the number of vertices in the forest strictly above level h.

Lemma 8.6. Fix 1 ≤ k < n. A sequence (Z(h), h = 0, 1 . . .) has the same
distribution as a Galton-Watson process with a Poisson offspring distribution
started with k individuals and conditioned on its total progeny being equal to n,
if and only if the sequence evolves by the following mechanism: Z(0) = k and
for each h = 0, 1 . . .

(Z(h+1) |Z(i), 0 ≤ i < h, Z(h) = z, A(h) = a)
d
= 1+binomial(a−1, z/(a+z)),

(8.32)

where A(h) := n −∑h
i=0 Z(i) and binomial(m, p) is a binomial(m, p) random

variable, with the conventions binomial(−1, p) = −1 and binomial(0, p) = 0.

See the exercises for a proof and variations of this lemma. Granted the lemma,
consider the rescaled process on the left side of (8.30) in the Poisson case,
so σ = 1, in an asymptotic regime with n → ∞ and 2k/

√
n → ` for some

` ≥ 0. Let Wk,n(h) := (Zk,n(h), Ak,n(h)). From (8.32), in the limit as n, z
and a tend to ∞ with 2z/

√
n → x and a/n → p, for integer h the increment

∆k,n(h) := Zk,n(h + 1) − Zk,n(h) is such that the corresponding normalized
increment ∆∗

k,n(h) := 2∆k,n(h)/
√
n has the following conditional mean and

variance given a history (Zk,n(i), 0 ≤ i ≤ h) with Wk,n(h) = (z, a):

E(∆∗
k,n(h) |Wk,n(h) = (z, a)) =

2√
n

(

1 +
(a− 1)z

a+ z
− z
)

≈
(

4− x2

p

)
1

2
√
n

V ar(∆∗
k,n(h) |Wk,n(h) = (z, a)) =

4

n

(a− 1)za

(a+ z)2
≈ 4x

1

2
√
n

where the relative errors of approximation are negligible as n → ∞, uniformly
in h, provided x < 1/ε and p > ε which can be arranged by a localization
argument, stopping the normalized process when either its value exceeds x or
its integral exceeds 1 − p. Since ∆∗

k,n(h) is the increment of the normalized

process over a time interval of length 1/(2
√
n), and the value of p ≈ Ak,n(h)/n

can be recovered from the path of the normalized process with a negligible error
via

p ≈ Ak,n(h)

n
= 1− 1

n

h∑

i=0

Zk,n(h) ≈ 1−
∫ h/(2

√
n)

0

2√
n
Zk,n(2

√
nv) (8.33)

these calculations show that the normalized process is governed asymptotically
by the SDE (8.12)-(8.13) presented in Theorem (8.4). It can be shown by stan-
dard arguments [384] that the SDE has a unique strong solution. So the pre-
ceding argument, combined with known results regarding the approximation of
a Markov chain by the solution of an SDE [265] [264, Theorem 5.4], shows that
the weak limit of the normalized and conditioned branching process solves the
SDE (8.12)-(8.13).
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Exercises

8.5.1. (Proof of Lemma 8.6) [358, Lemma 8] Let X1, X2, . . . be a sequence
of independent random variables with some distribution p on {0, 1, 2, . . .}, and
set Sj = X1 + · · · + Xj . Fix 1 ≤ k < n with P (Sn = n − k) > 0. Let
(Zk,n(h), h = 0, 1, 2, . . .) be a Galton-Watson branching process with offspring
distribution p started with k individuals and conditioned to have total progeny
n, and define Ak,n(h) by (8.31), and set Wk,n(h) := (Zk,n(h), Ak,n(h)). Show
that Wk,n(h), h = 0, 1, 2, . . . is a Markov chain, with initial state (k, n− k), and
the following transition probabilities which do not depend on n and k: given
Wk,n(h) = (z, a) the distribution of Zk,n(h+1) is obtained by size-biasing of the
distribution of Sz given Sz+a = a, and Ak,n(h+1) = a−Zk,n(h+1). In particular,
for a Poisson distribution the law of Sz given Sz+a = a is binomial(a, z/(z+a)).
A size-biased binomial(n, p) variable is 1 plus a binomial(n− 1, p) variable, and
Lemma 8.6 follows.

8.5.2. (Combinatorial interpretation of Lemma 8.6) Fix k and n with
1 ≤ k ≤ n and for h = 0, 1, . . . let Lh := Lh(Fk,n) be the number of vertices at
level h of Fk,n, a uniformly distributed random forest of k rooted trees labeled by
[n]. Then L0 = k and the distribution of the sequence L1, L2, . . . is determined
be the following prescription of conditional laws: for each h = 0, 1, . . .

dist(Lh+1 |L0, . . . , Lh) = dist(1 + binomial(Ah − 1, Lh/(Ah + Lh) (8.34)

where Ah := n−∑h
i=0 Li and binomial(n, u) denotes a binomial random variable

with parameters n and u ∈ (0, 1).

8.5.3. (Further combinatorial interpretation of Lemma 8.6) The pre-
vious exercise shows that for each (k, n) the bivariate sequence ((Lh, Ah), h =
0, 1, . . .) has the Markov property. The transition probabilities are inhomoge-
neous, but they have a recursive property, reflecting the fact that for any given
h the random variable Ah represents the number of vertices of the forest strictly
above level h, while Ah + Lh is the number of vertices at or above level h. The
simplifying feature of a uniform forest that given the forest at levels up to and
including h leaves room for Ah vertices above h, the number Lh+1 of these ver-
tices at level h + 1 are selected as the children of Lh roots in a uniform forest
of Lh trees with given roots in a set of size Lh +Ah. This basic recursive prop-
erty, which can be seen by a direct combinatorial argument, can be expressed
as follows. Let Ln,h denote the number of vertices at level h of a random forest
which given Ln,0 = k is uniformly distributed on all forests of k trees labeled

by [n], and set An,h := n−∑h
i=0 Ln,i Then for each h ≥ 0 and j ≥ 0

(Ln,h+j , j ≥ 0 |Ln,i, 0 ≤ i ≤ h with Ln,h = m,An,h = a)

has the same distribution as

(La+m,j , j ≥ 0 |La+m,0 = m).



8.5.4. [358] What is the Brownian analog of the property of uniform random
forests described in the previous exercise?

8.5.5. (Problem) Does (8.30) require any further conditions on the offspring
distribution of the critical branching process besides finite non-zero variance?

Notes and comments

The basic Ray-Knight theorems for Brownian local times have been extended
from Brownian motion to real-valued diffusions, using Feller’s representation of
such diffusions by space and time changes of Brownian motion. These results
were extended in [131, 298] to a large class of Markov processes admitting local
times. But for these extensions to discontinuous Markov processes, the Markov
property of local times in the space variable is lost. See also [282, 348, 130]
regarding local times of processes indexed by circles, trees, and graphs.

The properties of the local time processes of Brownian excursion and reflect-
ing Brownian bridge discussed here are closely related to the interval fragmen-
tation process (Yv, v ≥ 0) derived from one of the processes X = Bex, |Bbr| or
|Bbr

` | by letting Yv be the collection of ranked lengths of the random open set
{t : Xt > v}. It is clear from the present discussion that each of these processes
(Yv , v ≥ 0) is Markovian, with the same transition mechanism, whereby differ-
ent interval lengths are fragmented independently according to rescaled copies
of the interval fragmentation induced by a single excursion Bex. This process
is a basic example of the general class of self-similar fragmentations studied by
Bertoin [46], which illustrates the phenomenon of “erosion” or loss of mass in
the fragmentation process, since the total mass of the process after time v is

∫ 1

0

1(Xt > v) dt =

∫ ∞

v

Lx
1(X) dx.

Thus the local time Lv
1(X), which is a measurable function of the sequence of

ranked lengths Yv, is the rate of erosion of mass at time v in the fragmentation
process, and the SDE (8.12) may be interpreted as describing the dynamics of
erosion in the fragmentation process. One can also think of Lv

1(X) as the density
of mass at level v in a forest of Brownian trees of mass

∫∞
v
Lx

1(X)dx. As the
level v rises, the fragmentation process describes how trees rooted on a valley
floor disappear beneath a rising tide as the valley is flooded.

192
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Chapter 9

Brownian bridge

asymptotics for random

mappings

This chapter reviews Brownian bridge asymptotics for random mappings, first
described in 1994 by Aldous and Pitman. The limit distributions as n→∞, of
various functionals of a uniformly distributed random mapping from an n ele-
ment set to itself, are those of corresponding functionals of a Brownian bridge.
Similar results known to hold for various non-uniform models of random map-
pings, according to a kind of invariance principle. A mapping Mn : [n] → [n]
can be identified with its digraph {i→Mn(i), i ∈ [n]}, as in Figure 1.

Note how the mapping digraph encodes various features of iterates of the
mapping. A mapping digraph can be decomposed as a collection of rooted trees
together with some extra structure (cycles, basins of attraction). If each rooted
tree is regarded as a plane tree and encoded by its Harris walk, defined by depth-
first search following Harris [193], then given some ordering of tree-components,
one can concatenate these Harris walks to define a mapping-walk which encodes
numerous features of Mn.

From now on, we shall be interested in a uniformly distributed random map-
ping Mn. The connection between random mappings and Brownian bridge, first
developed in [17], can be summarized as follows.

• For a uniform random mapping, the induced distribution on tree-components
is such that the tree-walks, suitably normalized, converge to Brownian ex-
cursion as the tree size increases to infinity. So it is to be expected that
the mapping-walks, suitably normalized, should converge to a limit process
defined by some concatenation of Brownian excursions.

• With an appropriate choice of ordering of tree components, the weak limit
of normalized mapping walks is reflecting Brownian bridge.
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Figure 9.1: Digraph of a mapping M50 : [50]→ [50]

The subtle issue is how to order the tree components so that both

a) the mapping-walk encodes structure of cycles and basins of the mapping,
and

b) the limit in distribution of the normalized mapping-walk can be explicitly
identified.

How this can be done is discussed in some detail in the following sections,
which are organized as follows:

9.1. Basins and trees deals with the definitions of basins and trees.
9.2. Mapping walks introduces two variants of the mapping walk.
9.3. Brownian asymptotics contains the main result: the scaled mapping-

walk derived from a uniform random mapping Mn, with 2n steps of size
±1/
√
n per unit time, converges in distribution to 2|Bbr| where Bbr is a

standard Brownian bridge.
9.4. The diameter As an application of the main result, the diameter of the

digraph of Mn, normalized by
√
n, is shown to converge in distribution to

an unusual functional of Bbr.
9.5. The height profile The normalized height profile of the forest derived

from Mn converges weakly to the process of local times of |Bbr|.
9.6. Non-uniform random mappings This section collects references to

extensions of these asymptotics to various kinds of non-uniform random
mappings.
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9.1. Basins and trees

Fix a mapping Mn. It has a set of cyclic points

Cn := {i ∈ [n] : Mk
n(i) = i for some k ≥ 1},

where Mk
n is the kth iterate of Mn. Let Tn,c be the set of vertices of the tree

component of the digraph with root c ∈ Cn. Note that Tn,c might be a trivial tree
with just a single root vertex. The tree components are bundled by the disjoint
cycles Cn,j ⊆ Cn to form the basins of attraction (connected components) of the
mapping digraph, say

Bn,j :=
⋃

c∈Cn,j

Tn,c ⊇ Cn,j with
⋃

j

Bn,j = [n] and
⋃

j

Cn,j = Cn (9.1)

where all three unions are disjoint unions, and the Bn,j and Cn,j are indexed in
some way by j = 1, . . . , |Cn|. Note that each tree component Tn,c is regarded here
just as a subset of [n], which is given the structure of a rooted tree by the action
of Mn. The precise meaning of Bn,j and Cn,j now depends on the convention
for ordering the cycles, which turns out to be of some importance. Two possible
conventions are the cycles-first ordering, meaning the Cn,j are put in order of
their least elements, and the basins-first ordering meaning the Bn,j are put in
order of their least elements. Rather than introduce two separate notations for
the two orderings, the same notation may be used for either ordering, with an
indication of which is meant. Whichever ordering, the definitions of Bn,j and
Cn,j are always linked by Bn,j ⊇ Cn,j , and (9.1) holds.

The following basic facts are easily deduced from these definitions, and results
of Sections Section 2.4 and Section 4.5.

Structure of the basin partition Let Πbasins
n be the random partition of

[n] whose blocks are the basins of attraction of uniform random mapping Mn.
Then Πbasins

n is a Gibbs[n](1
•, w•) partition, for wj the number of mappings of

[j] whose digraph is connected. As remarked below Theorem 2.4, that implies
the result of Aldous [14] that

Πbasins
n

d→ Π
(0, 1

2 )
∞ (9.2)

where the limit is a (0, 1
2 ) partition of positive integers.

Structure of the tree partition Let Πtrees
n be the random partition of [n]

whose blocks are the tree components of the uniform random mapping Mn.
So Πtrees

n is a refinement of Πbasins
n , with each basin split into its tree compo-

nents. Note that the number of components of Πtrees
n equals the the number

of cyclic points of Mn: |Πtrees
n | = |Cn|. From the structure of a mapping di-

graph, Πtrees
n is a Gibbs[n](v•, w•) partition for vk = k!, the number of different

ways that the restriction of Mn can act as a permutation of a given set of k
cyclic points, and wj = jj−1 the number of rooted trees labeled by a set of
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size j. Let qj := e−jjj−1/j!, so (qj , j = 0, 1, . . .) is the distribution of total
size of a critical Galton-Watson tree with Poisson offspring distribution. Since
qj ∼ (2π)−1/2j−3/2, Theorem 2.5 gives for each ` > 0, as n→∞

(Πtrees
n given |Πtrees

n | = [`
√
n])

d→ Π
( 1
2 |
√

2`)
∞ (9.3)

where the limit is the partition of positive integers generated by lengths of
excursions of a standard Brownian bridge Bbr conditioned on Lbr

1 = `, where
Lbr

1 := L0
1(Bbr). It is well known that Lbr

1 has the Rayleigh density

P(Lbr
1 ∈ d`) = ` exp(− 1

2`
2)d` (` > 0). (9.4)

As a consequence of Cayley’s result that knn−k−1 is the number of forests labeled
by [n] with a specified set of k roots,

P(|Cn| = k) =
k

n

k−1∏

i=1

(

1− i

n

)

(9.5)

and hence that

|Cn|/
√
n

d→ Lbr
1 (9.6)

jointly with

Πtrees
n

d→ Π
( 1
2 , 1

2 )
∞ (9.7)

where Π
( 1
2 , 1

2 )
∞ is the random partition of positive integers generated by sam-

pling from the interval partition defined by excursions of the standard Brownian
bridge Bbr, whose distribution is defined by the ( 1

2 ,
1
2 ) prediction rule. Recall

from (4.45) that Lbr
1 is encoded in Π

( 1
2 , 1

2 )
∞ as the almost sure limit as n → ∞

of |Πn( 1
2 ,

1
2 )|/
√

2n, where |Πn( 1
2 ,

1
2 )| is the number of distinct excursions of Bbr

discovered by n independent uniform points on [0, 1].

Joint distribution of trees and basins As a check on (9.2) and (9.7), and
to understand the joint structure of tree and basin partitions generated by a
uniform random mapping Mn, it is instructive to compute the joint law of the
random variables

#Tn(1) := size of the tree containing 1 in the digraph of Mn (9.8)

and

#Bn(1) := size of the basin containing 1 in the digraph of Mn. (9.9)

Note that #Tn(1) and #Bn(1) are size-biased picks from the block-sizes of Πtrees
n

and Πbasins
n respectively. So their limit distributions as n → ∞, with normal-

ization by n, are the structural distributions of the weak limits of Πtrees
n and

Πbasins
n respectively.
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To expose the combinatorial structure underlying the joint law of #Tn(1)
and #Bn(1), introduce new variables

Nn,1 := #Tn(1)− 1; Nn,2 := #Bn(1)−#Tn(1); Nn,3 := n−#Bn(1). (9.10)

Then for each possible vector of integers

(n1, n2, n3) with ni ≥ 0 and n1 + n2 + n3 = n− 1, (9.11)

there is the formula

P(Nn,i = ni, i = 1, 2, 3) =

(
n− 1

n1, n2, n3

)
(n1 + 1)n1nn2

2 nn3
3

nn
. (9.12)

The multinomial coefficient appears here for obvious reasons. For each particular
choice n1 + 1 possible elements of the set Tn(1), the factor (n1 + 1)n1 is the
number of possible rooted trees induced by the action of Mn on this set, by
Cayley’s formula (6.24). For each choice n3 possible elements of [n]\Bn(1), the
factor nn3

3 is the number of possible actions of Mn restricted to this set. This
reflects part (i) of the following lemma. Part (ii) of the lemma explains the
symmetry of formula (9.12) in (n2, n3) for fixed n1. See also [359] for similar
joint distributions derived from random mappings, known as Abel multinomial
distributions.

Lemma 9.1. For a uniform random mapping Mn,
(i) Conditionally given the restriction of Mn to Bn(1) with Bn(1) = B, the

restriction of Mn to [n]−B is a uniform random mapping from [n]−B to [n]−B.
(ii) Conditionally given that Tn(1) is some subset T of [n] with 1 ∈ T , the

restriction of Πtrees
n to Bn(1)\T and the restriction of Πtrees

n to [n]− Bn(1) are
exchangeable.

Proof. The first statement is obvious. To clarify statement (ii), given Tn(1) =
T , each restriction of Πtrees

n is regarded as a random partition of a random subset
of [n], with some notion of a trivial partition if the subset is empty. According to
(i), given also Bn(1) = B, the restriction of Πtrees

n to [n]−B is the tree-partition
generated by a uniform random mapping from B to B. On the other hand, the
restriction of Πtrees

n to B − T is the tree partition generated by a uniformly
chosen composite structure on B − T , whereby B − T is partitioned into tree
components, and the roots of these components are assigned a linear order. But
this is bijectively equivalent to a mapping from B − T to B − T , hence the
conclusion. �

By Stirling’s formula, the probability in (9.12) is asymptotically equivalent
to

1

n2

1

2π

1
√

n1/n
√

n2/n
√

n3/n
as ni →∞, i = 1, 2, 3, (9.13)

hence as n→∞

(Nn,1, Nn,2, Nn,3)/n
d→ Dirichlet( 1

2 ,
1
2 ,

1
2 ). (9.14)
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Recalling the definitions (9.10) of the Nn,i, this implies

#Bn(1)

n

d→ β1, 12
and

#Tn(1)

n

d→ β 1
2 ,1 (9.15)

where βa,b has beta(a, b) distribution. As a check, according to Theorem 3.2,
β1, 12

and β 1
2 ,1 are the structural distributions of (0, 1

2 ) and ( 1
2 ,

1
2 ) partitions

respectively. So (9.15) agrees with (9.2) and (9.7). As indicated by Aldous [14],
Lemma 9.1 (i) allows recursive application of the second convergence in (9.15)
to show that the size-biased frequencies of Πbasins

n approach the GEM(0, 1
2 )

frequencies (3.8), hence the convergence (9.2) of Πbasins
n to a (0, 1

2 ) partition.

Exercises

9.1.1. Develop a variation of the above argument to show that the size-biased
frequencies of Πtrees

n approach the GEM( 1
2 ,

1
2 ) frequencies, hence the convergence

(9.7) of Πtrees
n to a ( 1

2 ,
1
2 ) partition.

Notes and comments

This section is based on [17, 24]. The theory of random mappings has a long
history. See [260, 17, 191] and papers cited there.

9.2. Mapping walks

The construction in [17] encodes the restriction of the digraph of Mn to each
tree component Tn,c of size k by the Harris walk of 2k steps associated with this
tree, which was defined in Section 6.3. This tree-walk derived from Tn,c, with
increments of ±1 on the non-negative integers, makes an excursion which starts
at 0 and returns to 0 for the first time after 2k steps, after reaching a maximum
level 1 + hn(c), where hn(c) is the maximal height above c of all vertices of the
tree Tn,c with root c, that is

hn(c) = max{h : ∃i ∈ [n] with Mh
n (i) = c and M j

n(i) /∈ Cn for 0 ≤ j < h}.
(9.16)

Given that c is a cyclic point such that the set of vertices Tn,c equals K for some
subset K of [n] with c ∈ K and |K| = k, the restriction of the digraph of Mn to
K has uniform distribution on the set of kk−1 trees labeled by K with root c.
According to a basic result of Aldous, Theorem 6.4, as k →∞, the distribution
of this tree-walk when scaled to have 2k steps of ±1/

√
k per unit time, converges

to the distribution of 2Bex, for Bex a standard Brownian excursion.
We now define a mapping-walk (to code Mn) as a concatenation of its tree-

walks, to make a walk of 2n steps starting and ending at 0 with exactly |Cn|
returns to 0, one for each tree component of the mapping digraph. To concate-
nate the tree-walks, an order of tree-components must be specified. To retain
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useful information about Mn in the mapping-walk, we want the ordering of
tree-walks to respect the cycle and basin structure of the mapping. Here are
two orderings that do so.

Definition 9.2. (Cycles-first ordering) Fix a mapping Mn from [n] to [n].
First put the cycles in increasing order of their least elements, say cn,1 < cn,2 <
. . . < cn,|Cn|. Let Cn,j be the cycle containing cn,j , and let Bn,j be the basin
containing Cn,j . Within cycles, list the trees around the cycles, as follows. If the
action of Mn takes cn,j → cn,j,1 → · · · → cn,j for each 1 ≤ j ≤ |Cn|, the tree
components Tn,c are listed with c in the order

(

Cn,1
︷ ︸︸ ︷
cn,1,1, . . . , cn,1,

Cn,2
︷ ︸︸ ︷
cn,2,1, . . . , cn,2, . . . . . . ,

Cn,|Cn|
︷ ︸︸ ︷
cn,|Cn|,1, . . . , cn,|Cn|). (9.17)

The cycles-first mapping-walk is obtained by concatenating the tree walks de-
rived from Mn in this order. The cycles-first search of [n] is the permutation
σ : [n]→ [n] where σj is the jth vertex of the digraph of Mn which is visited in
the corresponding concatenation of tree searches.

Definition 9.3. (Basins-first ordering)[17] First put the basins Bn,j in in-
creasing order of their least elements, say 1 = bn,1 < bn,2 < . . . bn,|Cn|; let
cn,j ∈ Cn,j be the cyclic point at the root of the tree component containing
bn,j . Now list the trees around the cycles, just as in (9.17), but for the newly
defined cn,j and cn,j,i. Call the corresponding mapping-walk and search of [n]
the basins-first mapping-walk and basins-first search.

Let us briefly observe some similarities between the two mapping-walks. For
each given basin B of Mn with say b elements, the restriction of Mn to B is
encoded in a segment of each walk which equals at 0 at some time, and returns
again to 0 after 2b more steps. If the basin contains exactly c cyclic points, this
walk segment of 2b steps will be a concatenation of c excursions away from 0.
Exactly where this segment of 2b steps appears in the mapping-walk depends on
the ordering convention, as does the ordering of excursions away from 0 within
the segment of 2b steps. However, many features of the action of Mn on the
basin B are encoded in the same way in the two different stretches of length
2b in the two walks, despite the permutation of excursions. One example is the
number of elements in the basin whose height above the cycles is h, which is
encoded in either walk as the number of upcrossings from h to h + 1 in the
stretch of walk of length 2b corresponding to that basin.

9.3. Brownian asymptotics

The idea now is that for either of the mapping walks derived above from a uni-
form mapping Mn, a suitable rescaling converges weakly in C[0, 1] as n→∞ to
the distribution of the reflecting Brownian bridge defined by the absolute value
of a standard Brownian bridge Bbr with Bbr

0 = Bbr
1 = 0 obtained by conditioning

a standard Brownian motion B on B1 = 0. Jointly with this convergence, re-
sults of [17] imply that for a uniform random mapping, the basin sizes rescaled
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by n, jointly with corresponding cycle sizes rescaled by
√
n, converge in dis-

tribution to a limiting bivariate sequence of random variables (λIj
, Lbr

Ij
)j=1,2,...

where (Ij)j=1,2,... is a random interval partition of [0, 1], with λIj
the length

of Ij and Lbr
Ij

the increment of local time of Bbr at 0 over the interval Ij . For

the basins-first walk, the limiting interval partition is (Ij) = (ID
j ), according to

the following definition. Here U,U1, U2, . . . denotes a sequence of independent
uniform (0, 1) variables, independent of Bbr, and the local time process of Bbr

at 0 is assumed to be normalized as occupation density relative to Lebesgue
measure.

Definition 9.4. (The D-partition [17]) Let ID
j := [DVj−1 , DVj

] where V0 =
DV0 = 0 and Vj is defined inductively along with the DVj

for j ≥ 1 as follows:
given that DVi

and Vi have been defined for 0 ≤ i < j, let

Vj := DVj−1 + Uj(1−DVj−1),

so Vj is uniform on [DVj−1 , 1] given Bbr and (Vi, DVi
) for 0 ≤ i < j, and let

DVj
:= inf{t ≥ Vj : Bbr

t = 0}.

On the other hand, for the cycles-first walk, the limits involve a different
interval partition. This is the partition (Ij) = (IT

j ) defined as follows using the

local time process (Lbr
u , 0 ≤ u ≤ 1) of Bbr at 0:

Definition 9.5. (The T -partition) Let IT
j := [Tj−1, Tj ] where T0 := 0, V̂0 :=

0, and for j ≥ 1
V̂j := 1−∏j

i=1(1− Ui), (9.18)

so V̂j is uniform on [V̂j−1, 1] given Bbr and (V̂i, Ti) for 0 ≤ i < j, and

Tj := inf{u : Lbr
u /L

br
1 > V̂j}.

The main result can now be stated as follows:

Theorem 9.6. [24] The scaled mapping-walk (M
[n]
u , 0 ≤ u ≤ 1) derived from

a uniform random mapping Mn, with 2n steps of ±1/
√
n per unit time, for

either the cycles-first or the basins-first ordering of excursions corresponding to
tree components, converges in distribution to 2|Bbr| jointly with (9.6) and (9.7),

where (Lbr
u , 0 ≤ u ≤ 1) is the process of local time at 0 of Bbr, and Π

( 1
2 , 1

2 )
∞ is

the random partition of positive integers generated by sampling from the interval
partition defined by excursions Bbr. Moreover,
(i) for the cycles-first ordering, with the cycles Bn,j in order of their least ele-
ments, these two limits in distribution hold jointly with

( |Bn,j |
n

,
|Cn,j |√
n

)

d→ (λIj
, Lbr

Ij
) (9.19)

as j varies, where the limits are the lengths and increments of local time of Bbr

at 0 associated with the interval partition (Ij) := (IT
j ); whereas
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(ii) [17] for the basins-first ordering, with the basins Bn,j listed in order of
their least elements, the same is true, provided the limiting interval partition is
defined instead by (Ij) := (ID

j ).

The result for basins-first ordering is part of [17, Theorem 8]. The variant
for cycles-first ordering can be established by a variation of the argument in
[17], exploiting the exchangeability of the tree components in the cycles-first
ordering. See also [58] and [15] for alternate approaches to the basic result of
[17].

The random set of pairs {(|Bn,j |/n, |Cn,j |/
√
n) , 1 ≤ j ≤ |Cn|} is the same,

no matter what ordering convention is used. So Theorem 9.6 implies that the
distribution of the random set of limit points, {(λIj

, Lbr
Ij

), j ≥ 1}, regarded as

a point process on R2
>0, is the same for (Ij) = (ID

j ) or (Ij) = (IT
j ). This fact

about Brownian bridge is not at all obvious, but can be verified by application
of Brownian excursion theory. See [24] for further discussion.

To gain useful information about large random mappings from Theorem 9.6,
it is necessary to understand well the joint law of Bbr and one or other of the
limiting interval partitions (Ij) whose definition depends on the path of Bbr. To
be definite, assume from now on that the ordering convention is basins first. One
feature of natural interest is the maximal height above the cycle of the tallest
tree in the basin. Let this maximal height be Hn,j for the jth basin. Theorem
9.6 implies

( |Bn,j |
n

,
|Cn,j |√
n
,
Hn,j√
n

)

d→ (λj , Lj , 2M j)j=1,2,... (9.20)

where we abbreviate λj := λIj
, Lj := Lbr

Ij
, and M j := |Bbr|(DVj−1 , DVj

) is the

maximal value of |Bbr| on Ij . It follows easily from Definition 9.4, the strong
Markov property of Bbr at the times DVj

, and Brownian scaling, that

λj = Wj

j−1
∏

i=1

(1−Wi) (9.21)

for a sequence of independent random variables Wj with beta(1, 1
2 ) distribution,

and that
(Lj ,M j) =

√

λj(L̃j , M̃j) (9.22)

for a sequence of independent and identically distributed random pairs (L̃j , M̃j),

independent of (λj). The common distribution of (L̃j , M̃j) is that of

(L̃1, M̃1) :=

(

Lbr
DU√
DU

,
Mbr

DU√
DU

)

(9.23)

where DU is the time of the first zero of Bbr after a uniform[0, 1] random time U
which is independent of Bbr, Lbr

t := L0
t (Bbr), and and Mbr

t := max0≤u≤t |Bbr
u |

for 0 ≤ t ≤ 1. It is known [341] that for (λj) as in (9.21), assumed indepen-
dent of B1, the B2

1λj are the points (in size-biased random order) of a Poisson
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process on R>0 with intensity measure 1
2 t

−1e−t/2dt which is the Lévy measure
of the infinitely divisible gamma( 1

2 ,
1
2 ) distribution of B2

1 . Together with stan-
dard properties of Poisson processes, this observation and the previous formulae
(9.21) to (9.23) yield the following lemma. See also [24] for related results.

Lemma 9.7. If B1 is a standard Gaussian variable independent of the sequence
of triples (λj , Lj ,Mj)j=1,2,... featured in (9.20), then the random vectors

(B2
1λj , |B1|Lj , |B1|M j)

are the points of a Poisson point process on R3
>0 with intensity measure µ defined

by

µ(dt d` dm) =
e−t/2 dt

2t
P (
√
tL̃1 ∈ d`,

√
tM̃1 ∈ dm) (9.24)

for t, `,m > 0, where (L̃1, M̃1) is the pair of random variables derived from a
Brownian bridge by (9.23).

For a process X := (Xt, t ∈ J) parameterized by an interval J , and I =
[GI , DI ] a subinterval of J with length λI := DI −GI > 0, we denote by X [I ]
or X [GI , DI ] the fragment of X on I , that is the process

X [I ]u := XGI+u (0 ≤ u ≤ λI). (9.25)

Denote by X∗[I ] or X∗[GI , DI ] the standardized fragment of X on I , defined by
the Brownian scaling operation

X∗[I ]u :=
XGI+uλI

−XGI√
λI

( 0 ≤ u ≤ 1). (9.26)

The process B̃br := B∗[0, τ1], where τ1 is an inverse local time at 0 for the
unconditioned Brownian motion B, is known as a Brownian pseudo-bridge, and
there is the following absolute continuity relation between the laws of B̃br and
Bbr found in [59]: for each non-negative measurable function g on C[0, 1],

E[g(B̃br)] =

√

2

π
E[g(Bbr)/Lbr

1 ].

See Exercise 4.5.2 . It follows from [366, Theorem 1.3] and [17, Proposition 2]
that the process Bbr

∗ [0, DU ], obtained by rescaling the path of Bbr on [0, D1] to
have length 1 by Brownian scaling, has the same distribution as a rearrangement
of the path of the pseudo-bridge B̃br. Neither the maximum nor the local time
at 0 are affected by such a rearrangement, so there is the equality in distribution

(L̃1, M̃1)
d
= (L̃br

1 , M̃
br
1 ) (9.27)

where L̃br
1 := L0

1(B̃br) M̃br
1 := max0≤u≤1 |B̃br

u |. So (9.27) yields the formula

P (
√
tL̃1 ∈ d`,

√
tM̃1 ≤ y) =

√

2

π

√
t

`
P (
√
tLbr

1 ∈ d`,
√
tMbr

1 ≤ y), (9.28)
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for t, `, y > 0. Now the joint law of Lbr
1 and Mbr

1 is characterized by the following
identity: for all ` > 0 and y > 0

∫ ∞

0

e−t/2

√
2πt

dt P (
√
tLbr

1 ∈ d`,
√
tMbr

1 ≤ y) = e−`d` exp

( −2`

e2y − 1

)

(9.29)

which can be read from [374, Theorem 3, Lemma 4 and (36) ], with the following
interpretation. Let (Lt, t ≥ 0) be the local time process of the Brownian motion
B at 0, let T be an exponential random variable with mean 2 independent of B,
and let GT be the time of the last 0 of B before time T . Then (9.29) provides
two expressions for

P

(

LT ∈ d`, sup
0≤u≤GT

|Bu| ≤ y
)

,

on the left side by conditioning on GT , and on the right side by conditioning on
LT . See also [384, Chapter XII, Exercise (4.24)].

Using (9.24), (9.28) and (9.29), we deduce that in the Poisson point process
of Lemma 9.7,

E[number of points (|B1|Lj , |B1|Mj) with |B1|Lj ∈ d` and |B1|Mj ≤ y] =
(9.30)

∫ ∞

0

e−t/2 dt

2t
P (
√
tL̃1 ∈ d`,

√
tM̃1 ≤ y) = `−1e−`d` exp

( −2`

e2y − 1

)

. (9.31)

A significant check on these calculations can be made as follows. By further
integration, the expected number of points j with |B1|Mj greater than y is

η(y) :=

∫ ∞

0

`−1e−`d`

[

1− exp

( −2`

e2y − 1

)]

. (9.32)

Now the probability of no point greater than y is e−η(y), so

P(|B1|max
j
M j ≤ y) = e−η(y). (9.33)

But the event (|B1|maxj Mj ≤ y) is identical to the event (Mbr
1 ≤ y), where

Mbr
1 := max0≤u≤1 |Bbr

u |. And e−η(y) = 1
1+2/(e2y−1) = tanh y by application of

the Lévy-Khintchine formula for the exponential distribution, that is

1

1 + λ
= exp

[

−
∫ ∞

0

`−1e−`(1− e−λ`)d`

]

,

for λ = 2/(e2y − 1). Thus for B1 standard Gaussian independent of Bbr and
y > 0, there is the remarkable formula

P(|B1|Mbr
1 ≤ y) = tanh y (y ≥ 0) (9.34)

which is a known equivalent of Kolmogorov’s formula

P(Mbr
1 ≤ x) =

∞∑

n=−∞
(−1)ne−2n2x2

(x ≥ 0) (9.35)
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As observed in [60], formula (9.34) allows the Mellin transform of Mbr
1 to be

expressed in terms of the Riemann zeta function. See also [339, 371, 373] for
closely related Mellin transforms obtained by the technique of multiplication
by a suitable independent random factor to introduce Poisson or Markovian
structure.

Notes and comments

This section is based on [17] and [24].

9.4. The diameter

The diameter of Mn is the random variable

∆n := max
i∈[n]

Tn(i)

where Tn(i) is the number of iterations of Mn starting from i until some value
is repeated:

Tn(i) := min{j ≥ 1 : M j
n(i) = Mk

n(i) for some 0 ≤ k < j}

where M0
n(i) = i and M j

n(i) := Mn(M j−1
n (i)) is the image of i under j-fold

iteration of Mn for j ≥ 1. Since by definition ∆n = maxj(|Cn,j | + Hn,j), it
follows from (9.20) that as n→∞

∆n√
n

d→ ∆ := max
j

(Lj + 2M j). (9.36)

So we obtain the following corollary of Theorem 9.6:

Corollary 9.8. [22] Let B1 be a standard Gaussian variable independent of ∆.
Then the distribution of ∆ in (9.36) is characterized by

P (|B1|∆ ≤ v) = e−E1(v)−I(v) (v ≥ 0) (9.37)

where

E1(v) :=

∫ ∞

v

u−1e−udu

I(v) :=

∫ v

0

u−1e−u

[

1− exp

( −2u

ev−u − 1

)]

du.

Proof. From (9.36) and Lemma 9.7, the event |B1|∆ ≤ v is the event that
there is no j with |B1|Lj + 2|B1|Mj > v. But from (9.30) - (9.31), E1(v) is the
expected number of j with |B1|Lj ≥ v, while I(v) is the expected number of j
with |B1|Lj < v and |B1|Lj + 2|B1|Mj > v. �
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Integration of (9.37) gives a formula for E(∆p) for arbitrary p > 0, which is
easily shown to be the limit as n→∞ of E((∆n/

√
n)p). This formula was first

found for p = 1 by Flajolet-Odlyzko [156, Theorem 7] using singularity analysis
of generating functions. See also [408, 289, 97] for related asymptotic studies of
the diameter of undirected random trees and graphs.

Exercises

9.4.1. (Problem: the diameter of a Brownian tree) Szekeres [408] found
an explicit formula for the asymptotic distribution of the diameter of a uniform
random tree labeled by [n], with normalization by

√
n. Aldous [6, 3.4] observed

that this is the distribution of the diameter of T (2Bex), and raised the following
problem, which is still open: can this distribution be characterized directly in
the Brownian world?

Notes and comments

This section is based on [22]. The technique of characterizing the law of some
Brownian functional X by first considering the law of |B1|X for B1 a standard
Gaussian variable independent of X , and the related idea of random Brownian
scaling have found numerous applications [439, 374, 372].

9.5. The height profile

We continue to suppose that Mn is a uniform random mapping from [n] to [n].
For v ∈ [n] let h(v,Mn) be the least m ≥ 0 such that Mm

n (v) ∈ Cn. So h(v,Mn)
is the height of v in the forest derived from Mn whose set of roots is the random
set Cn of cyclic points of Mn. For h = 0, 1, 2, . . . let Z∗,n(h) be the number of
v ∈ [n] such that h(v,Mn) = h. Call this process (Z∗,n(h), h ≥ 0) the height
profile of the mapping forest. Let (Zk,n(h), h ≥ 0) be the height profile of the
mapping forest conditioned on the event (Z∗,n(0) = k) that Mn has exactly
k cyclic points. Then (Zk,n(h), h ≥ 0) has the same distribution as the height
profile generated by a uniform random forest of k rooted trees labeled by [n],
to which the limit theorem (8.30) applies, by inspection of (8.34) and (4.9). To
review:

Lemma 9.9. If (Zk,n(h), h ≥ 0) is either
(i) the height profile of a uniform random forest of k rooted trees labeled by [n],
or
(ii) the height profile of the forest derived from a random mapping from [n] to
[n] conditioned to have k cyclic points,
then the distribution of the sequence (Zk,n(h), h ≥ 0) is that described by Lemma
8.6, and in the limit regime as n→∞ and 2k/

√
n→ ` ≥ 0

(
2√
n
Zk,n(2

√
nv), v ≥ 0

)

d→ (Q`,1,v, v ≥ 0) (9.38)



where the law of (Q`,1,v, v ≥ 0) is defined by Theorem 8.4.

The following result is now obtained by mixing the result of the previous
lemma with respect to the distribution of the number Z∗,n(0) = |Cn| of cyclic

points of Mn. According to (9.6), |Cn|/
√
n

d→ L0
1(Bbr), so the result is:

Theorem 9.10. Drmota-Gittenberger [116] The normalized height profile of
the forest derived from a uniform random mapping Mn converges weakly to the
process of local times of a reflecting Brownian bridge of length 1:

(
2√
n
Z∗,n(2

√
nv), v ≥ 0

)

d→ (Lv
1(|Bbr|, v ≥ 0) (9.39)

Notes and comments

This section is based on [358]. Presumably the convergence in distribution of
height profiles (9.39) holds jointly with all the convergences in distribution de-
scribed in Theorem 9.6. This must be true, but seems difficult to establish.
Corresponding results of joint convergence in distribution of occupation time
processes and unconditioned walk paths to their Brownian limits, for simple
random walks, can be read from Knight [254]. Presumably corresponding re-
sults are known for simple random walks with bridges or excursions as limits,
but I do not know a reference.

9.6. Non-uniform random mappings

Definition 9.11. Let p be a probability distribution on [n]. Call Mn p-mapping
from [n] to [n] if the images Mn(i) of points i ∈ [n] are independent and iden-
tically distributed according to p.

Combinatorial properties of p-mappings, and some elementary asymptotics
are reviewed in [359]. Further asymptotic features of p-mappings were studied
in [327]. In [23, 16] it is shown that Brownian bridge asymptotics apply for
models of random mappings more general than the uniform model, in particular
for p-mapping model under suitable conditions. Proofs are simplified by use of
Joyal’s bijection between mappings and trees, discussed in Exercise 10.1.4 .
Another important result on p-mappings is Burtin’s formula which is presented
in Exercise 10.1.5 . But these results for p-mappings are best considered in
connection with p-trees and p-forests, which are the subject of Chapter 10.

207



208 Jim Pitman

Chapter 10

Random forests and the

additive coalescent

This chapter reviews how various representations of additive coalescent pro-
cesses, whose state space may be either finite or infinite partitions, can be con-
structed from random trees and forests. These constructions establish deep con-
nections between the asymptotic behaviour of additive coalescent processes and
the theory of Brownian trees and excursions. There are some close parallels with
the theory of multiplicative coalescents and the asymptotics of critical random
graphs, described in Section 6.4.

10.1. Random p-forests and Cayley’s multinomial expansion For each
probability distribution p on a set S of n elements, Cayley’s multinomial
expansion allows the definition of a random p-forest Fn,k of k trees labeled
by S. There is a natural way to realize these forests as a forest-valued
fragmentation process (Fn,k, 1 ≤ k ≤ n) where one edge of the forest is
lost at each step by uniform random selection from all remaining edges.
Time-reversal of this process yields a forest-valued coalescent process. The
corresponding sequence of random partitions of S coalesces in such a way
that two blocks Ai and Aj merge at each step with probability propor-
tional to p(Ai) + p(Aj).

10.2. The additive coalescent A continuous time variant of this construc-
tion yields a partition-valued additive coalescent process in which blocks
Ai and Aj merge at rate p(Ai) + p(Aj). This is compared with other
constructions of additive coalescent processes with various state spaces.

10.3. The standard additive coalescent This continuous time process, pa-
rameterized by R, with state space the set P↓

1 of sequences x = (xi)i≥1

with x1 ≥ x2 ≥ · · · ≥ 0 and
∑

i xi = 1, is obtained as the limit in distri-
bution as n→∞ of a time-shifted sequence of ranked additive coalescent
processes, starting with n equal masses of size 1/n at time − 1

2 logn. It is
known that there are many other such “eternal” additive coalescents.
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10.4. Poisson cutting of the Brownian tree An explicit construction of
the standard additive coalescent is obtained by cutting the branches of
a Brownian tree by a Poisson point process of cuts along the skeleton of
the tree at rate one per unit time per unit length of skeleton. This yields
the Brownian fragmentation process, from which the standard additive
coalescent is recovered by a non-linear time reversal.

10.1. Random p-forests and Cayley’s multinomial expansion

It is hard to overemphasize the importance of Cayley’s discovery that in the
expansion of (x1 + · · · + xn)n−2 the multinomial coefficient of

∏

i x
ni

i is the
number of unrooted trees labeled by [n] in which each vertex i has degree ni−1.
Many variations of Cayley’s expansion are known. One of the most useful can be
presented as follows. For a finite set S and R ⊆ S, let for(S,R) be the set of all
forests labeled by S, whose set of roots is R. And for F ∈ for(S,R) and s ∈ S
let Fs denote the set of children of s in F . So |Fs| is the number of children, or
in-degree of s in F . Recall that edges of F are assumed to be directed towards
the roots, and note that for each F ∈ for(S,R) the sets Fs as s ranges over S
are disjoint, possibly empty sets, whose union is S−R. Then there is the forest
volume formula

∑

F∈for(S,R)

∏

s∈S

x|Fs|
s =

(
∑

r∈R

xr

) (
∑

s∈S

xs

)|S|−|R|−1

. (10.1)

For |R| = 1 this amounts to Cayley’s expansion of (
∑

s∈S xs)|S|−2, and for
xs ≡ 1 it yields Cayley’s formula

|for(S,R)| = |R| |S||S|−|R|−1. (10.2)

See [360] for various proofs of the forest volume formula (10.1), and [359] for a
number of probabilistic applications. Taking S = [n] and summing (10.1) over
all subsets R of [n] with |R| = k gives the cruder identity

∑

F∈for[n,k]

n∏

s=1

x|Fs|
s =

(
n− 1

k − 1

)( n∑

s=1

xs

)n−k

(10.3)

where for[n, k] is the set of all forests of k trees labeled by [n]. This was ob-
tained earlier in formula (6.22) as one of several enumerations equivalent to the
Lagrange inversion formula Section 6.1.

Take xs = ps for a probability distribution p := (ps) on [n], or any other set
S with |S| = n, to see that for each k ∈ [n] the formula

P(Fn,k = F ) =

(
n− 1

k − 1

)−1 ∏

s∈S

p|Fs|
s (10.4)
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defines the distribution for a random forest Fn,k of k trees labeled by S with
|S| = n, call it a p-forest of k trees labeled by S. In particular, call Fn,1 a p-tree.
Several natural constructions of p-trees from a sequence of independent and
identically distributed random variables with distribution p are recalled in the
exercises. The next theorem is fundamental to everything which follows.

Theorem 10.1. [356, Theorem 11] Let p be a probability distribution on S with
|S| = n, and let (Fn,k, 1 ≤ k ≤ n) be a sequence of random forests labeled by S.
The following two descriptions are equivalent, and imply that Fn,k is a p-forest
of k trees labeled by S with distribution (10.4):

• Fn,1 is a p-tree labeled by S, and given Fn,1, for each 1 ≤ k ≤ n − 1 the
forest Fn,k+1 is derived from Fn,k by deletion of a single edge ek, where
where (ek, 1 ≤ k ≤ n− 1) is a uniform random permutation of the set of
n− 1 edges of Fn,1;

• Fn,n is the trivial forest with n roots and no edges, and for each n ≥ k ≥ 2,
given Fn,j for n ≥ j ≥ k, the forest Fn,k−1 is derived from Fn,k by addition
of a single directed edge Xk−1 → Yk−1, where Yk−1 has distribution p, and
given also Yk−1 the vertex Xk−1 is picked uniformly at random from the set
of k−1 roots of the tree components of Fn,k other than the one containing
Yk−1.

Proof. Starting from either description of the sequence, the formula (10.4) for
the distribution of Fn,k can be established by induction. Then the time-reversed
description follows by Bayes rule. �

Corollary 10.2. For a forest-valued process (Fn,k, 1 ≤ k ≤ n) as in Theorem
10.1, let Πn,k be the partition of S with |S| = n generated by the k tree compo-
nents of Fn,k. Then the sequence (Πn,n,Πn,n−1, . . . ,Πn,1) develops according to
the following dynamics: given Πn,n,Πn,n−1, . . . ,Πn,k with Πn,k = {A1, . . . , Ak}
say, the next partition Πn,k−1 is obtained from {A1, . . . , Ak} by merging blocks
Ai and Aj with probability (p(Ai) + p(Aj))/(k − 1).

Exercises

10.1.1. (A probabilistic derivation of Cayley’s expansion) [356] In Theo-
rem 10.1, starting from Description 2 of a sequence of coalescent random forests,
the proof shows that formula (10.4) defines a probability distribution on forests
of k trees labeled by S with |S| = n, which is equivalent to the form (10.3) of
Cayley’s multinomial expansion.

10.1.2. (Cayley’s expansion over rooted trees.) According to (10.3) for
k = 1, in the expansion of (x1 + · · · + xn)n−1, the multinomial coefficient of
∏

i x
ni

i is the number of rooted trees labeled by [n], with edges directed towards
the root, in which vertex i has in-degree ni for all i ∈ [n]. Deduce (10.3) for
general k from this special case of (10.3). Harder [360]: deduce the forest volume
formula (10.1) from this case of (10.3).
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10.1.3. (Distribution of the root of a p-tree). Show that the root of a
p-tree has distribution p.

10.1.4. (Joyal’s bijection and p-mappings) [223], [359, §4.1] In the expan-
sion of (x1 + · · · + xn)n, the multinomial coefficient of

∏

i x
ni

i is the number
of mappings from [n] to [n] in whose digraph vertex i has in-degree ni for all
i ∈ [n]. Deduce Cayley’s expansion over rooted trees from this, by a suitable
bijection between mappings m and marked rooted trees (t, i), where t is a rooted
tree labeled by [n] and i ∈ [n]. To construct the bijection, observe that if the
range of the directed path from i to the root of t is a set C of c elements, the
path defines a map from [c] to C, which is bijectively equivalent to one from
C to C; now rearrange the digraph of t to make a mapping digraph whose set
of cyclic points is C. Deduce that if Fn,1 is a p-tree, and X is independent of
Fn,1 with distribution p, then the number of vertices of Fn,1 on the path from
X to the root of Fn,1 has the same distribution as the number of cyclic points
of a p-mapping Mn : [n]→ [n] where the Mn(i) are independent and identically
distributed according to p. See [82, 359] for more in this vein.

10.1.5. (Burtin’s formula for p-mappings) [80, 25, 359] Derive the following
probabilistic equivalent of the forest volume formula: if Mn is a p-mapping from
[n] to [n], as defined in the previous exercise, then for each subset R of [n], the
probability that [n]−R contains no cycle of Mn is p(R).

10.1.6. (Restrictions of p-forests) [359, Theorem 19] Let a random forest F
labeled by S be a p-forest, meaning that F is a p-forest of k trees given that
F has k trees. For each non-empty subset B of F , the restriction of F to B
is a p(·|B) forest. Find an explicit formula for the distribution of the number
of edges of the restricted forest in terms of |S|, |B|, p(B) and the distribution
of the number of edges of F . In particular, if the number of edges of F has
binomial(|S| − 1, q) distribution, then the number of edges of F contained in B
has binomial(|S| − 1, p(B)q) distribution. Note the special case q = 1, when F
is a p-tree.

10.1.7. (A symmetry of uniform random forests) [356] Starting with a
forest of m + 1 trees defined by random deletion of m edges from a uniform
random tree over [n], given that the tree containing vertex 1 has a particular set
V of j vertices, the remaining random forest labelled by [n] − V has the same
distribution as if m edges were deleted at random from a uniformly distributed
random tree labelled by [n]− V .

Notes and comments

This section is based on [356, 359, 360]. See [34, 359] for further properties of
p-forests, p-mappings, and connections with other polynomial expansions due
to Hurwitz. See [93, 92] for another representation of the additive coalescent
related to parking functions.
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10.2. The additive coalescent

This section assumes some familiarity with the notion of a coalescent process,
as introduced in Section 5.1. Let P↓

1 denote the space of sequences x = (xi)i≥1

with x1 ≥ x2 ≥ · · · ≥ 0 and
∑

i xi = 1. Think of each x ∈ P↓
1 as describing

the ranked masses in some unlabeled collection of masses. Let D(R≥0,P↓
1 ) be

the Skorokhod space for P↓
1 -valued càdlàg processes (with the l1 metric on P↓

1 )

For x ∈ P↓
1 let µK(x, dx′) be the σ-finite discrete measure on P↓

1 with a weight
of K(xi, xj) at x⊕(i,j), where x⊕(i,j) is derived from x by first merging the two
masses xi and xj to form a single mass of size xi + xj , then re-ranking. Write
µ+ instead of µK for the additive kernel K(x, y) = x+ y.

Theorem 10.3. [141] There exists a unique family (Px, x ∈ P↓
1 ) of distributions

on D(R≥0,P↓
1 ) and a unique transition semigroup (Pt, t ≥ 0) on P↓

1 , such that if

Px governs (Xx
t , t ≥ 0) as the Markov process with Xx

0 = x ∈ P↓
1 and semigroup

(Pt, t ≥ 0), called the ranked additive coalescent, then

• If x is a finite partition of 1 then the process (Xx
t , t ≥ 0) is the additive

coalescent defined as a jump-hold process with transition rates µ+(x, dx′).
• Xx is a binary coalescent, meaning that collisions of more than two clus-

ters at one time do not occur.
• µ+(x, dx′) is a jump kernel for Xx, in the usual sense of a Lévy system.
• Xx is a càdlàg Hunt process and both x 7→ Pt(x, ·) and x 7→ Px are weakly

continuous mappings from P↓
1 to the spaces of probability measures on P↓

1

and D(R≥0,P↓
1 ) respectively.

Intuitively, it is to be expected that a result like this should hold for more
general collision kernels than the additive kernel K(x, y) = x + y. But this
does not seem easy to prove. Aldous [9] gave a variant of this result for the
multiplicative kernel K(xy) = xy, working in the larger statespace of ranked
decreasing square-summable sequences. As discussed in [356], both the additive
and multiplicative kernels have natural interpretations in terms of the evolution
of random graphs. This means that the existence and uniqueness of both addi-
tive and multiplicative coalescents, with very general initial conditions, can be
established by direct combinatorial constructions. Such constructions also allow
a much deeper analysis of these coalescents than has yet been provided for any
other stochastic coalescent processes.

The essentially combinatorial nature of the additive coalescent is exposed by
the following continuous time variant of Theorem 10.1 and Corollary 10.2:

Theorem 10.4. [356] Let p be a probability distribution on S with |S| = n. Let
εi, 1 ≤ i ≤ n−1 be a sequence of independent standard exponential variables. Let
(Fn(t), t ≥ 0) be the forest-valued process, with state-space the set of all forests
labeled by S, whose jump times are the εi, and which may be described in either
of the following equivalent ways, according to whether time is run forwards or
backwards:
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• Fn(0) is the forest of n trivial trees with n root vertices, and Fn(εi) is
derived from and Fn(εi−) for each 1 ≤ i ≤ n − 1 by adding an edge
Ri → Xi, where X1, X2, , Xn−1 are independent random variables with
distribution p on [n], independent of ε1, ε2, , εn−1, and conditionally given
Fn(t), 0 ≤ t < εi the vertex Ri is picked uniformly at random from the set
of root vertices of trees of Fn(εi−) other than the tree that contains Xi;

• Fn(∞) is a p-tree, and Fn(εi−) is derived from Fn(εi) for each i by delet-
ing an edge Ri → Xi, which conditionally given εi and Fn(t), t ≥ εi, is
picked uniformly at random from the edges of Fn(εi).

Let Πn(t) be the partition of [n] generated by components of Fn(t). Then the
process (Πn(t), t ≥ 0) an additive coalescent with mass distribution p, meaning
that at each time t, each pair of blocks say A and B of Πn(t) is merging to form
a block A ∪ B at transition rate p(A) + p(B), as in Definition 5.2

Observe that the forest Fn(t) constructed in the above theorem contains
precisely those edges Ri → Xi of Fn(∞) whose birth times εi are such that
εi ≤ t. To generalize this construction to yield a ranked additive coalescent
whose initial state is some infinite partition (pi) of 1, the idea is to derive
a similar family of coalescing random forests by cutting up a suitable infinite
random tree whose distribution is determined by p. The key is to find a definition
of p-trees which makes sense for infinitely supported p, and which reduces to
the previous definition for finitely supported p. The definition which works is
the following:

Definition 10.5. [141, 82] Let p = (pj , j ∈ J) be a non-degenerate probability
distribution on a finite or infinite set J . Call a random directed graph T with
vertex set J a p-tree if the random set of edges of T has the same distribution
as those of the birthday tree

T (Y0, Y1, . . .) := {Yn → Yn−1 : Yn /∈ {Y0, . . . , Yn−1} ⊆ J × J}
derived from a sequence of independent and identically distributed random vari-
ables Yn with distribution p on J , where i→ j := (i, j) ∈ J × J .

By construction, the root of the birthday tree is Y0, which has distribu-
tion p on J . The term birthday tree is suggested by the close relation between
T (Y0, Y1, . . .) and the classical birthday problem, concerning the number of re-
peated values among the first n values of an independent and identically dis-
tributed sequence Y0, . . . , Yn−1. For instance, the construction of the birthday
tree starts with a line of n− 1 edges directed from Yn−1 towards the root Y0 iff
there are no repeated values in the first n terms Y0, . . . , Yn−1. Thinking of J as
the set of days of the year, and pj the probability that someone has day j as their
birthday, the first n− 1 edges of the construction of the birthday tree fall in a
line iff no repeat birthday is observed in a sample of n individuals. The fact that
T (Y0, Y1, . . .) is just a p-tree according to the previous definition (10.4) when J
is finite is not obvious, but it is a consequence of the Markov chain tree theorem
[76, Theorem 1],[292] which identifies the distribution of T (Y0, Y1, . . .) for a sta-
tionary ergodic Markov chain (Yn) with finite state space, up to a normalization
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constant. For an independent and identically distributed sequence, the fact that
the normalization constant is 1 is equivalent to Cayley’s multinomial expansion
over trees.

A ranked additive coalescent with arbitrary initial state can now be con-
structed according to the following consequence of Theorem 10.3 and Definition
10.5:

Corollary 10.6. [141, Corollary 20] Let x ∈ P↓
1 have x1 < 1, and let T =

T (Y0, Y1, . . .) be the p-tree derived from independent random variables Yn with
some distribution p on a countable set, such that the sequence of ranked atoms
of p is x. Let (Wi → Xi, i = 1, 2, . . .) be a list of the directed edges of T , let
(εi)i≥1 be a sequence of independent standard exponential variables independent
of (Yn)n≥0, let F(t) be the random forest

F(t) := {Wi → Xi : εi ≤ t, i = 1, 2, . . .} (10.5)

and let X(t) be the ranked p-masses of tree components of F(t). Then (X(t), t ≥
0) is a realization of the ranked additive coalescent with initial state X(0) = x
and càdlàg paths.

Exercises

10.2.1. (Semi-group of the additive coalescent) [356, 141] Let (Π(t), t ≥ 0)
be the P[n]-valued additive coalescent starting with the partition into singletons,
with masses p1, . . . , pn. Then the distribution of |Π(t)| − 1 is binomial with
parameters n− 1 and e−t:

P(|Π(t)| = k) =

(
n− 1
k − 1

)

(1− e−t)n−ke−(k−1)t (1 ≤ k ≤ n) (10.6)

and for any partition {A1, . . . , Ak} of [n],

P (Π(t) = {A1, . . . , Ak}) = e−(k−1)t(1− e−t)n−k
k∏

i=1

p
|Ai|−1
Ai

(10.7)

where pA =
∑

i∈A pi.

10.3. The standard additive coalescent

A process of particular interest is the additive coalescent started with an ini-
tial mass distribution that is uniform over n possible values. Recall that P[n]

denotes the set of partitions of [n] := {1, . . . , n}. If we consider the P[n]-valued
additive coalescent process (Πn(t), t ≥ 0), with uniform mass distribution on
[n], it is obvious that Πn(t) is an exchangeable random partition of [n]. More
precisely, using notation from Section 1.5, we read from (10.7) and (10.6) that
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Πn(t) is a Gibbs (v
(n,t)
• , w•) distribution on partitions of [n], with weight se-

quences wj = jj−1, the number of ways to assign a rooted tree structure to

a set of j elements, and the weight sequence v
(n,t)
• is such that the distribu-

tion of |Πn(t)| − 1 binomial(n − 1, 1 − e−t). It is easily seen that for fixed t,
these Gibbs distributions on partitions of [n] are not consistent as n varies. So,
unlike the situation for Kingman’s coalescent with constant collision kernel, de-
scribed in Section 5.1, these P[n]-valued additive coalescents processes are not
just projections of some process with values in the set of partitions of positive
integers.

According to the Gibbs distribution of Πn(t), given |Πn(t)| = k the sizes
of the k components of Πn(t), presented in exchangeable random order, are

distributed like (X1, . . . , Xk) given
∑k

i=1Xi = n where the Xi are independent
and identically distributed with the Borel distribution

P(Xi = m) =
e−mmm−1

m!

of the total progeny of a critical Poisson branching process. By Stirling’s formula

P(Xi = m) ∼ 1√
2πm3

as m→∞. (10.8)

Hence, according to Theorem 2.5, if

k →∞ and n→∞ with
k√
n
→ λ (10.9)

the ranked sequence derived from

(Xi/n, 1 ≤ i ≤ k) given
k∑

i=1

Xi = n

converges in distribution to the sequence of ranked jumps of (Ts, 0 ≤ s ≤ λ)
given Tλ = 1, where (Ts, s ≥ 0) is the stable( 1

2 ) subordinator with E(e−ξTs) =

exp(−s√2ξ), so Ts
d
= s2/B2

1 for B1 standard Gaussian. To abbreviate, denote

the distribution of this sequence on P↓
1 by PD( 1

2 ||λ), and recall from Section
Section 4.5 that this is the law of ranked lengths of excursions of Bbr

λ , where Bbr
λ

is a standard Brownian bridge Bbr conditioned on L0
1(Bbr) = λ, where L0

1(Bbr)
is the local time of Bbr at level 0 and time 1, with the usual normalization of
occupation density relative to Lebesgue measure. To get a weak limit for the
normalized ranked component sizes as n →∞, the process (Πn(t), t ≥ 0) must
be run long enough so that |Πn(t)| is of order

√
n. Let

hn := 1
2 logn.

Since |Πn(t)| − 1 has binomial(n− 1, e−t) distribution, if we take t = hn + r for
some r ∈ R we find that E(|Πn(hn + r)|) ∼ √ne−r and the variance is of the
same order, so that

|Πn(hn + r)|/√n d→ e−r. (10.10)

This brings us to:
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Theorem 10.7. [141], [18, Proposition 2] Let Xn(t) ∈ P↓
1 be the sequence of

masses at time t in a ranked additive coalescent process started with n equal
masses of 1/n at time t = 0. Then as n→∞

(Xn(hn + r),−hn ≤ r) d→ (X∞(r), r ∈ R)

in the sense of convergence in distribution on the Skorokhod space of càdlàg
paths, with P↓

1 given the l1 metric, where the limit process is the unique ad-
ditive coalescent parameterized by r ∈ R such that X∞(r) has the PD( 1

2 ||e−r)
distribution of ranked lengths of excursions of Bbr given given L0

1(Bbr) = e−r.

Proof. The convergence in distribution of Xn(hn +r) to X∞(r) for each fixed r
was just argued. Convergence in the Skorokhod space then follows immediately
from the last regularity property of the ranked additive coalescent process listed
in Theorem 10.3. �

The process X∞ defined by Theorem 10.7 is called the standard additive co-
alescent. Compare with the standard multiplicative coalescent defined by The-
orem 6.13. Theorem 10.7 immediately raises the question of whether there exist
any other eternal additive coalescents besides time shifts of the standard one.
The answer, given in [21], is yes, there are rather a lot of them, but the extreme
ones can all be constructed by a natural generalization of the construction of
the standard additive coalescent considered in the next section. See also Bertoin
[44] for another approach to the solution of this problem, based on processes
with exchangeable increments instead of random trees.

10.4. Poisson cutting of the Brownian tree

According to Theorem 10.1, the additive coalescent started with uniform distri-
bution on n masses can be represented in reversed time by successively cutting
the edges of a random tree with uniform distribution over the nn−1 rooted trees
labeled by [n]. According to a basic result of Aldous (Theorem 6.4) the structure
of this tree, suitably normalized, converges to tree(Bex), the tree in a standard
Brownian excursion. Moreover, the scaling involved in Theorem 10.7 makes the
process of cutting edges of a uniform random tree converge to a Poisson process
of cuts along the skeleton of the limiting Brownian tree, with intensity λ per
unit length in the limit as k/

√
n → λ, where k is the number of trees in the

forest, corresponding to the number of steps backward in time from the terminal
state of the discrete coalescent process derived by cutting the uniform tree with
n vertices.

This line of reasoning suggests it should be possible to construct the standard
additive coalescent by a process of cutting up the branches of a Brownian tree by
a Poisson point process along the skeleton of the tree, and keeping track of the
ranked masses of tree components so formed. This was shown in [18], along with
various other regularity properties of the standard additive coalescent which
follow from this construction.
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To make this construction, let T := tree(2Bex) be the random tree struc-
ture put on [0, 1] by a standard Brownian excursion Bex, with all edge-lengths
multiplied by 2. As in Theorem 7.9, let U1, U2, . . . be a sequence of independent
uniform variables, independent of Bex, and for n ≥ 0 let

Tn := subtree(2Bex; {0, U1, . . . , Un}), (10.11)

regarded as a subset of [0, 1] equipped with the pseudo-metric of tree(2Bex).
According to Theorem 7.9, the tree Tn is isometric to a plane tree which can
be made by the Poisson line-breaking construction. Define the skeleton T † of T
to be random subset of [0, 1] which is the union over leaves u and v of T of the
open path from u to v in T , meaning the usual closed path from u to v, with
endpoints excluded. Note that T † is almost surely dense in [0, 1], both in the
usual topology, and in the tree topology of T . Moreover, T † = ∪nT †

n almost
surely, where T †

n := Tn−{0̃, Ũ1, . . . Ũn} where ũ is the T equivalence class of u.
In fact 0̃ = {0, 1} and Ũi = {Ui} for all i almost surely. The construction of the
sequence of trees Tn induces a natural skeleton search map

σ† : R>0 − {|T1|, |T2|, . . .} → T †

whereby for each n ≥ 1 the open interval (|Tn|, |Tn+1|) is mapped by depth-first
search to the branch in Tn+1 which leads from Tn to Un+1. Here T0 := {0, 1},
|T0| = 0, and |Tn| for n ≥ 1 is the total length of the plane tree which is
isometric to Tn regarded as a subset of tree(2Bex). The length measure on
T † is Lebesgue measure on R>0 pushed onto T † by the skeleton search. There
are now two measures on [0, 1], which are almost surely mutually singular, and
which it is essential to distinguish carefully:

• ordinary Lebesgue measure on [0, 1], to be called the mass measure, which
is concentrated on the random set of leaves of T .

• length measure on the skeleton which is an infinite random measure con-
centrated on the random subset T † of [0, 1], which is disjoint from the
random set of leaves of T .

Now, independent of the lengths |Tn|,n ≥ 1 which are the points of a Poisson
process on R>0 with intensity t dt, let N be a Poisson point process in R2

>0.
For λ > 0 let 0 < T1,λ < T2,λ < · · · be the successive points t such that there

is a point (t, u) of N with u ≤ λ, and let T †
1,λ, T

†
2,λ, · · · be the images of these

points via the skeleton search, call them the λ-cuts on the skeleton of T . So by
construction, conditionally given T , the λ-cuts are the points of a Poisson point
process with intensity λ per unit length on the skeleton of T , and as λ increases
the set of λ-cuts increases. Now we can formulate:

Theorem 10.8. [18, Theorem 3] Let Fλ be the random forest whose tree com-
ponents are the Borel subsets of [0, 1] defined to be the equivalence classes for
the random equivalence relation u ∼λ v iff the path from u to v in T does not
contain any λ-cut, where the λ-cuts fall on the skeleton of T according to a
Poisson process of rate λ per unit length on the skeleton, which intensifies as λ
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increases. Let Y (λ) be the sequence of ranked masses of tree components of Fλ.

Then Y (λ) ∈ P↓
1 for all λ > 0 almost surely, and the process (Y (e−r), r ≥ 0)

admits a càdlàg modification which is a realization of the ranked additive coa-
lescent.

Some technical points had to be dealt with in [18] to prove this result, but the
intuitive idea should be clear: after passage to the limit from a uniform random
tree on n vertices, call it un-tree,

• the length measure on the skeleton of T should be regarded as the con-
tinuum limit of length measure on the branches of the un-tree, with nor-
malization by

√
n;

• the mass measure on the leaves of T should be regarded as the continuum
limit of counting measure on the leaves of the un-tree, with normalization
by n.

Thus the continuum analog of cutting edges by a process of Bernoulli trials
with some probability p is a Poisson process of cuts along the skeleton at some
constant rate λ per unit length. Note from Lemma 4.10 and Lemma 3.11 that
Ym(λ), the mth term of Y (λ), which is the mth largest mass, is such that

Ym(λ) ∼ 2

π

λ2

m2
almost surely as m→∞ for each λ > 0 (10.12)

so the Poisson intensity parameter λ is encoded almost surely in the state Y (λ).

In particular, for λ 6= λ′ the laws of Y (λ) and Y (λ′) on P↓
1 are mutually singular,

though the laws of the first m components of Y (λ) and Y (λ′) on [0, 1]m are
mutually absolutely continuous for every m.

Definition 10.9. Call the P↓
1 -valued process (Y (λ), λ > 0) the Brownian frag-

mentation process.

The distribution of (Y (λ), λ > 0) for each fixed λ > 0 is the distribution
of ranked lengths of excursions of a Brownian bridge Bbr given L0

1(Bbr) = λ.
So a considerable amount of information about this process can be read from
the results of Section 4.5. Following is a selection of such results, with new
interpretations.

Moment formulae Let Y∗(λ) be a size-biased pick from Y (λ), which may be
understood as the size of the tree component of the forest Fλ which contains U
picked uniformly at random from [0, 1] independently of Bex. (One could just
as well take the component containing 0, by an obvious symmetry of uniform
trees, and passage to the Brownian limit.) Let fλ denote the density of Y∗(λ),
which can be read from (4.7), as in [18, (8)]:

fλ(y) = (2π)−1/2λy−1/2(1−y)−3/2 exp(− 1
2λ

2y/(1−y)) (0 ≤ y < 1). (10.13)

Then there is the basic identity (2.23)

E

(
∑

i

g(Yi(λ))

)

= E

(
g(Y∗(λ))

Y∗(λ)

)

=

∫ 1

0

y−1g(y)fλ(y)dy (10.14)
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which is valid for all λ ≥ 0 and all non-negative measurable functions g. For
q ∈ R define

µq(λ) := E

(
∑

i

Y q+1
i (λ)

)

= E [(Y∗(λ))q(λ)] =

∫ 1

0

yqfλ(y)dy. (10.15)

For n a positive integer, µn(λ) can be interpreted as follows. Let U1, U2, . . .
be independent uniform (0, 1) variables independent of the Brownian tree T :=
tree(2Bex). Given the sequence Y (λ) of masses of tree components of the forest
Fλ derived by cutting the skeleton of T at rate λ, the event that 0, U1, . . . , Un

all fall in the same component of Fλ has probability
∑

i Y
n+1
i (λ). So the un-

conditional probability of this event is µn(λ). On the other hand, this event
occurs if and only if the Poisson cut process has no points up to time λ in
Tn := subtree(2Bex; {0, U1, . . . , Un}), as in Theorem 7.9. Given the total
length Θn := |Tn| of this subtree, the event occurs with probability e−λΘn .
But according to the Poisson line-breaking construction of Theorem 7.9, Θn is
the time of the nth arrival of an inhomogeneous Poisson process on (0,∞) with
rate t at time t. Thus

µn(λ) = E(e−λΘn) (n = 1, 2, . . .)

where for t > 0

P(Θn ∈ dt) = e−
1
2 t2 ( 1

2 t
2)n−1

(n− 1)!
t dt (10.16)

It follows that for n = 1, 2 . . .

µn(λ) =
21−n

(n− 1)!

∫ ∞

0

t2n−1e−
1
2 t2−λtdt =

21−n

(n− 1)!
Ψ2n(λ) (10.17)

where in terms of a standard Gaussian random variable B1 with density ϕ(z) :=

1√
2π
e−

1
2 z2

, for x real and p > 0

Ψp(x)ϕ(x) = E[(B1 − x)p−11(B1 > x)] =
1

p
E[B1(B1 − x)p1(B1 > x)] (10.18)

where the first equality is read from (10.17) by a change of variable, and the sec-
ond equality, obtained by integration by parts, is an instance of Stein’s identity
E[f ′(B1)] = E[B1f(B1)] which is valid for all sufficiently smooth f vanishing at
±∞. It is also known [280] that

Ψp(z) = Γ(p)h−p(z) (<p > 0) (10.19)

where hν is the Hermite function defined by a different integral representation
in (4.59) . The agreement of formulae (10.17) and (4.59) provides a substantial
check on the entire circle of results related to the Brownian asymptotics of
fragmentation of a uniform random tree by random deletion of edges.
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Self-similarity of Brownian fragmentation Brownian scaling yields the
following lemma:

Lemma 10.10. For 0 < t < ∞ let T (t) := tree(2Bex,t) where Bex,t is a
Brownian excursion of length t. Then cutting the skeleton of T (t) according to
a Poisson process of rate λ per unit length creates a forest whose component
masses are distributed as tY (t1/2λ).

Consider a uniform random tree on j(n) vertices. When we assign each vertex
mass 1/j(n) and each edge length 1/

√

j(n), then the random tree converges in
distribution to T in the sense of [18, Lemma 9] If instead we assign each ver-
tex mass 1/n and each edge length 1/

√
n, where j(n)/n→ t, then the random

tree converges in distribution to T (t). Now consider the discrete random forest
Fn(n−m) obtained by deleting m random edges from the uniform random tree
on n vertices. Conditional on the vertex-sets (Vj , j = 1, 2, . . .) of the compo-
nents of the forest, each component is a uniform random tree on vertex-set Vj ,
independently as j varies. Because Y (µ) arises as a limit of relative sizes of the
components of Fn(n−m(n)) as m(n)/n1/2 → µ, we deduce:

Lemma 10.11. Given Y (µ) = (t1, t2, . . .), the tree components Ti of Fµ can
be identified modulo isometry as a sequence of independent copies of T (ti), i =
1, 2, . . . .

Combining with Lemmas 10.10 and 10.11 gives the following statement of a
self-similar Markov branching property of the Brownian fragmentation process.

Proposition 10.12. For each µ > 0, the conditional distribution of Y (µ + λ)
given Y (µ) = y is the distribution of the decreasing reordering of

{yiY
(i)
j (y

1/2
i λ); i, j ≥ 1}

where (Y (i)(·), i ≥ 1) are independent copies of Y (·).
Thus the Brownian fragmentation process is an instance of the general kind

of self-similar fragmentation process studied by Bertoin [46].

Bertoin’s representation of the Brownian fragmentation process Start-
ing from the standard Brownian excursion Bex, for each λ ≥ 0 let Bex

λ ∈ C[0, 1]
be the excursion dragged down by drift λ, that is

Bex
λ (u) := Bex(u)− uλ (0 ≤ u ≤ 1),

let
Bex

λ (u) := inf
0≤t≤u

Bex
λ (t)

and let Y ex(λ) be the sequence of ranked lengths of excursions away from 0 of
the process (Bex

λ (u)−Bex
λ (u), 0 ≤ u ≤ 1). Note that these are the ranked masses

of subtrees of tree(Bex
λ ), regarded as a forest of subtrees attached to a forest

floor of length λ defined by the branch of tree(Bex
λ ) of length λ which joins 0

to 1.



10.4. POISSON CUTTING OF THE BROWNIAN TREE 221

Theorem 10.13. Bertoin [42]. The process (Y ex(λ), λ ≥ 0) is another realiza-
tion of the Brownian fragmentation process.

It can be argued that each excursion of Bex
λ above its past minimum process

of duration t is simply a Brownian excursion of duration t, and that these
excursions are conditionally independent given their lengths. The self-similar
fragmentation property of (Y ex(λ), λ ≥ 0) follows by Brownian scaling. So to

prove Theorem 10.13, the main thing to check is that Y ex(λ)
d
= Y (λ) for each

fixed λ > 0, which is not so obvious. A subtle feature here is the order structure
of the sequence of excursion intervals whose ranked lengths is Y ex(λ). See [397]
and [91] for further discussion.

Exercises

10.4.1. (Evolution of the mass containing 0) [18] Let Y∗(λ) be the mass
of the tree component of Fλ that contains 0. Then Y∗(λ) is a size-biased pick
from the components of Y (λ), and

(Y∗(λ), λ ≥ 0)
d
= (1/(1 + Tλ), λ ≥ 0) (10.20)

where (Tλ, λ ≥ 0) is the stable( 1
2 ) subordinator with Tλ

d
= λ2/B2

1 . The same
conclusion holds in Bertoin’s model, for Y∗(λ)(λ) the return time to 0 of Bex

λ .
See [42].

10.4.2. (Deletion of a size-biased component) [18, Theorem 4 and Lemma
12] Let Y∗(λ) be a size-biased pick from the components of Y (λ). The conditional
distribution of Y (λ) given Y∗(λ) = y is the unconditional distribution of the
decreasing reordering of {y} ∪ {(1− y)Yi((1− y)−1/2λ), i ≥ 1}.
10.4.3. (A check on the moment formula) Verify that the moment for-
mula (10.17) is consistent with the self-similar Markov branching property of
(Y (λ), λ ≥ 0) described in Proposition 10.12.

10.4.4. (Partition probabilities) Fix n ≥ 2. Let Y[n](λ) := (Y(1), . . . , Y(n)(λ))
where Y(i)(λ) is the mass of the tree-component of Fλ containing Ui where the
Ui are independent and uniform on (0, 1), independent of Fλ. Note that the
Y(i)(λ) are exchangeable random variables, all distributed like Y(1) = Y∗(λ)
which is a size-biased pick from the components of Y (λ). Write Πn(λ) for the
partition of [n] generated by the values of Y(i)(λ), i ∈ [n] and write Y ∗

j (λ), j =
1, 2, · · · for the sequence of distinct values of Y(i)(λ), i ≥ 1. Observe that given
Πn(λ) = {B1, . . . , Bk} say, where the Bj for 1 ≤ j ≤ k are arranged in order
of their least elements, Y(i)(λ) = Y ∗

j (λ) for all i ∈ Bj . The joint distribution of
(Y(1)(λ), . . . , Y(n)(λ)) for each fixed λ > 0 is determined by the following formula:
for each partition {B1, . . . , Bk} of [n] such that #Bi = ni for 1 ≤ i ≤ k, where
the ni are arbitrary positive integers with sum n, and for y1, . . . , yk with yj > 0
and σ :=

∑

j yj < 1 ,

P (Πn(λ) = {B1, . . . , Bk} and Y ∗
j (λ) ∈ dyj , for all 1 ≤ j ≤ k) (10.21)
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=
λk

(2π)k/2





k∏

j=1

y
nj−3/2
j dyj



 (1− σ)−3/2 exp

(

− λ2

2

σ

1− σ

)

. (10.22)

For n = 1 this reduces to (10.13). Deduce the previous formula (4.67) for the
EPPF of a ( 1

2 ||λ) partition by integration of (10.21)-(10.22).

10.4.5. (The splitting time) Consider Y[2](λ) = (Y(1)(λ), Y(2)(λ)), the sizes
of tree components of Fλ containing independent uniform variables U1 and
U2. There is a splitting time S defined as the smallest λ for which these tree
components are distinct. Then the joint density of (S, Y(1)(S), Y(2)(S)) is

f(s, y1, y2) =
s

2π
y
−1/2
1 y

−1/2
2 (y1 + y2)(1− y1 − y2)−3/2 exp

(

− s
2

2

y1 + y2
1− y1 − y2

)

.

Notes and comments

As a generalization of results of this chapter, a class of inhomogeneous contin-
uum random trees arises naturally from asymptotics of p trees for non-uniform
p. References, with applications to the entrance boundary of the additive coa-
lescent, are [82], [21] and [20]. See also [44] and [309] for related work.
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MR1641670

[20] D. J. Aldous and J. Pitman. A family of random trees with random
edge lengths. Random Structures and Algorithms, 15:176–195, 1999.
MR1704343

[21] D. J. Aldous and J. Pitman. Inhomogeneous continuum random trees and
the entrance boundary of the additive coalescent. Probab. Th. Rel. Fields,
118:455–482, 2000. MR1808372

[22] D. J. Aldous and J. Pitman. The asymptotic distribution of the diameter
of a random mapping. C.R. Acad. Sci. Paris, Ser. I, 334:1021–1024, 2002.
MR1913728

[23] D. J. Aldous and J. Pitman. Invariance principles for non-uniform ran-
dom mappings and trees. In V. Malyshev and A. M. Vershik, editors,
Asymptotic Combinatorics with Applications in Mathematical Physics,
pages 113–147. Kluwer Academic Publishers, 2002. MR1999358

[24] D. J. Aldous and J. Pitman. Two recursive decompositions of Brownian
bridge. Technical Report 595, Dept. Statistics, U.C. Berkeley, 2002. To
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[58] P. Biane. Some comments on the paper: “Brownian bridge asymptotics for
random mappings” by D. J. Aldous and J. W. Pitman. Random Structures
and Algorithms, 5:513–516, 1994.

[59] P. Biane, J.-F. L. Gall, and M. Yor. Un processus qui ressemble au pont
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[79] E. Buffet and J. Pulé. Polymers and random graphs. J. Statist. Phys.,

64:87–110, 1991.
[80] Y. D. Burtin. On a simple formula for random mappings and its applica-

tions. J. Appl. Probab., 17:403 – 414, 1980.
[81] G. S. C. Banderier, P. Flajolet and M. Soria. Random maps, coalescing

saddles, singularity analysis, and Airy phenomena. Random Structures Al-
gorithms, 19(3-4):194–246, 2001. Analysis of algorithms (Krynica Morska,
2000). MR1871555

[82] M. Camarri and J. Pitman. Limit distributions and random trees de-
rived from the birthday problem with unequal probabilities. Electron. J.
Probab., 5:Paper 2, 1–18, 2000. MR1741774

[83] E. Canfield. Central and local limit theorems for the coefficients of poly-
nomials of binomial type. J. Comb. Theory A, 23:275–290, 1977.

[84] C. Cannings. The latent roots of certain Markov chains arising in genetics:
a new approach, I. Haploid model. Adv. Appl. Prob., 6:260–290, 1974.

[85] P. Carmona, F. Petit, J. Pitman, and M. Yor. On the laws of homogeneous
functionals of the Brownian bridge. Studia Sci. Math. Hungar., 35:445–
455, 1999. MR1762255

[86] P. Carmona, F. Petit, and M. Yor. Some extensions of the arc sine law as
partial consequences of the scaling property of Brownian motion. Probab.
Th. Rel. Fields, 100:1–29, 1994.

[87] P. Carmona, F. Petit, and M. Yor. Beta-gamma random variables and
intertwining relations between certain Markov processes. Rev. Mat.
Iberoamericana, 14(2):311–367, 1998.

[88] A. Cayley. A theorem on trees. Quarterly Journal of Pure and Applied
Mathematics, 23:376–378, 1889. (Also in The Collected Mathematical Pa-
pers of Arthur Cayley. Vol XIII, 26-28, Cambridge University Press, 1897).

[89] C. A. Charalambides and J. Singh. A review of the Stirling numbers, their

http://www.ams.org/mathscinet-getitem?mr=MR1871697
http://www.ams.org/mathscinet-getitem?mr=MR1942321
http://www.ams.org/mathscinet-getitem?mr=MR0243689
http://www.ams.org/mathscinet-getitem?mr=MR1871555
http://www.ams.org/mathscinet-getitem?mr=MR1741774
http://www.ams.org/mathscinet-getitem?mr=MR1762255


228 BIBLIOGRAPHY

generalizations and statistical applications. Commun. Statist.-Theory
Meth., 17:2533–2595, 1988.

[90] K. Chase and A. Mekjian. Nuclear fragmentation and its parallels. Phys.
Rev. C, 49:2164–2176, 1994.

[91] P. Chassaing and S. Janson. A Vervaat-like path transformation for the
reflected Brownian bridge conditioned on its local time at 0. Ann. Probab.,
29(4):1755–1779, 2001. MR1880241

[92] P. Chassaing and G. Louchard. Phase transition for parking blocks, Brow-
nian excursion and coalescence. Random Structures Algorithms, 21:76–
119, 2002. MR1913079

[93] P. Chassaing and J.-F. Marckert. Parking functions, empirical processes,
and the width of rooted labeled trees. Electron. J. Combin., 8(1):Research
Paper 14, 19 pp. (electronic), 2001. MR1814521

[94] P. Chassaing and G. Schaeffer. Random planar lattices and integrated
superbrownian excursion. In B. Chauvin, P. Flajolet, D. Gardy, and
A. Mokkadem, editors, Mathematics and Computer Science II, pages 127–
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par le moyen des séries. Mém. Acad. Roy. Sci. Belles-Lettres de Berlin,
24, 1770.

[104] A. Dembo, A. Vershik, and O. Zeitouni. Large deviations for integer par-
titions. Markov Process. Related Fields, 6(2):147–179, 2000. MR1778750

[105] B. Derrida. Random-energy model: an exactly solvable model of disor-
dered systems. Phys. Rev. B (3), 24(5):2613–2626, 1981. MR627810

[106] B. Derrida. From random walks to spin glasses. Phys. D, 107(2-4):186–
198, 1997. Landscape paradigms in physics and biology (Los Alamos, NM,
1996). MR1491962

[107] A. Di Bucchianico. Probabilistic and analytical aspects of the umbral cal-

http://www.ams.org/mathscinet-getitem?mr=MR1880241
http://www.ams.org/mathscinet-getitem?mr=MR1913079
http://www.ams.org/mathscinet-getitem?mr=MR1814521
http://www.ams.org/mathscinet-getitem?mr=MR1940133
http://www.ams.org/mathscinet-getitem?mr=MR1465814
http://www.ams.org/mathscinet-getitem?mr=MR1744984
http://www.ams.org/mathscinet-getitem?mr=MR900930
http://www.ams.org/mathscinet-getitem?mr=MR1778750
http://www.ams.org/mathscinet-getitem?mr=MR627810
http://www.ams.org/mathscinet-getitem?mr=MR1491962


BIBLIOGRAPHY 229

culus. Stichting Mathematisch Centrum, Centrum voor Wiskunde en In-
formatica, Amsterdam, 1997. MR1431509

[108] P. Diaconis and D. Freedman. Partial exchangeability and sufficiency. In
J. K. Ghosh and J. Roy, editors, Statistics Applications and New Direc-
tions; Proceedings of the Indian Statistical Institute Golden Jubilee In-
ternational Conference; Sankhya A. Indian Statistical Institute, 205-236,
1984.

[109] P. Diaconis and J. Kemperman. Some new tools for Dirichlet priors.
In J. Bernardo, J. Berger, A. Dawid, and A. Smith, editors, Bayesian
Statistics, pages 95–104. Oxford Univ. Press, 1995.

[110] P. Diaconis, E. Mayer-Wolf, O. Zeitouni, and M. P. W. Zerner. The
Poisson-Dirichlet law is the unique invariant distribution for uniform split-
merge transformations. Ann. Probab., 32(1B):915–938, 2004. MR2044670
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cul Stochastique, Paris 1982/83, pages 197–304. Springer-Verlag, 1985.

http://www.ams.org/mathscinet-getitem?mr=MR1618435
http://www.ams.org/mathscinet-getitem?mr=MR617405
http://www.ams.org/mathscinet-getitem?mr=MR2026070
http://front.math.ucdavis.edu/math.PR/0205093
http://www.ams.org/mathscinet-getitem?mr=MR2016784
http://www.ams.org/mathscinet-getitem?mr=MR1220220
http://www.ams.org/mathscinet-getitem?mr=MR1782847
http://front.math.ucdavis.edu/math.PR/0403398
http://www.ams.org/mathscinet-getitem?mr=MR1898911
http://www.ams.org/mathscinet-getitem?mr=88j:60134


BIBLIOGRAPHY 235

Lecture Notes in Math. 1118.
[221] N. L. Johnson and S. Kotz. Continuous Univariate Distributions, volume

2. Wiley, 1970.
[222] C. Jordan. Calculus of Finite Differences. Rotting and Romwalter, Sorron,

Hungary, 1939. Reprod. Chelsea, New York, 1947.
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random distributions. Ann. Statist., 20(3):1203–1221, 1992. MR1186247

[301] E. Mayer-Wolf, O. Zeitouni, and M. P. W. Zerner. Asymptotics of certain
coagulation-fragmentation processes and invariant Poisson-Dirichlet mea-
sures. Electron. J. Probab., 7:no. 8, 25 pp. (electronic), 2002. MR1902841

[302] J. W. McCloskey. A model for the distribution of individuals by species
in an environment. Ph. D. thesis, Michigan State University, 1965.

[303] H. P. McKean. Excursions of a non-singular diffusion. Z. Wahrsch. Verw.
Gebiete, 1:230–239, 1963.

[304] H. P. McKean. Brownian local times. Advances in Mathematics, 16:91 –
111, 1975.

[305] A. Meir and J. Moon. On the altitude of nodes in random trees. Canad.
J. Math., 30:997–1015, 1978.

[306] A. Mekjian and K. Chase. Disordered systems, power laws and random
processes. Phys. Letters A, 229:340–346, 1997.

[307] A. Z. Mekjian. Cluster distributions in physics and genetic diversity. Phys.
Rev. A, 44:8361–8374, 1991.

[308] A. Z. Mekjian and S. J. Lee. Models of fragmentation and partitioning
phenomena based on the symmetric group Sn and combinatorial analysis.
Phys. Rev. A, 44:6294–6312, 1991.

[309] G. Miermont. Ordered additive coalescent and fragmentations associated
to Levy processes with no positive jumps. Electron. J. Probab., 6:no. 14,
33 pp. (electronic), 2001. MR1844511

[310] G. Miermont. Self-similar fragmentations derived from the stable tree. I.
Splitting at heights. Probab. Theory Related Fields, 127(3):423–454, 2003.
MR2018924

[311] G. Miermont. Self-similar fragmentations derived from the stable tree. II.
Splitting at nodes. Probab. Theory Related Fields, 131(3):341–375, 2005.
MR2123249

[312] G. Miermont and J. Schweinsberg. Self-similar fragmentations and stable
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Locaux, volume 52-53 of Astérisque, pages 89–116. Soc. Math. de France,
1978.

[427] J. Warren and M. Yor. The Brownian burglar: conditioning Brownian
motion by its local time process. In J. Azéma, M. Émery, , M. Ledoux,
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