
DOI: 10.1007/s00209-003-0633-9

Math. Z. 247, 183–199 (2004) Mathematische Zeitschrift

The Markov moment problem and de Finetti’s
theorem: Part I

Persi Diaconis1, David Freedman2

1 Department of Mathematics and of Statistics, Stanford University, Stanford, CA 94305,
USA

2 Department of Statistics and of Mathematics, University of California, Berkeley, CA
94720-3860, USA (e-mail: freedman@stat.berkeley.edu)

Received: 1 February 2003; in final form: 18 June 2003 /
Published online: 14 January 2004 – © Springer-Verlag 2004

Dedicated to the memory of Sergei Kerov

Abstract The Markov moment problem is to characterize sequences s0, s1, s2, . . .

admitting the representation sn = ∫ 1
0 xnf (x) dx, where f (x) is a probability den-

sity on [0, 1] and 0 ≤ f (x) ≤ c for almost all x. There are well-known charac-
terizations through complex systems of non-linear inequalities on {sn}. Necessary
and sufficient linear conditions are the following: s0 = 1, and

0 ≤ (−1)n−j

(
n

j

)

�n−j sj ≤ c/(n + 1)

for all n = 0, 1, . . . and j = 0, 1, . . . , n. Here, � is the forward difference opera-
tor. This result is due to Hausdorff. We give a new proof with some ancillary results,
for example, characterizing monotone densities. Then we make the connection to
de Finetti’s theorem, with characterizations of the mixing measure.

Introduction

We begin by reviewing the Hausdorff moment problem. Then we take up the Mar-
kov moment problem, with a solution due to Hausdorff (1923). Although this work
was discussed in an earlier generation of texts (Shohat and Tamarkin, 1943, pp. 98–
101; Widder, 1946, pp. 109–12; Hardy, 1949, pp. 272–3), it seems less well known
today than the one due to the Russian school. Next, we sketch some generaliza-
tions and the connection to de Finetti’s theorem. We close with some historical
notes, including a brief statement of the Russian work. We believe that our Theo-
rem 4 is new, along with the local theorems, the applications to Bayesian statistics
(Theorems 8 and 9), and the characterization of measures with monotone densities
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(Theorem 10). Many of the results in this paper can be seen as answers to one facet
or another of the following question: what can you learn about a measure from the
moments, and how is it to be done?

The Hausdorff moment problem

Let s0, s1, s2, . . . be a sequence of real numbers. When is there a probability mea-
sure µ on the unit interval such that sn is the nth moment of µ? In other words, we
seek the necessary and sufficient conditions on {sn} for there to exist a probability
µ with

sn =
∫ 1

0
xn µ(dx) for n = 0, 1, . . . .

This is the Hausdorff moment problem.
To state Hausdorff’s solution, let �tn = tn+1 − tn be the forward difference

operator. Define an auxiliary sequence as

sn,j = (−1)n−j

(
n

j

)

�n−j sj (1)

for n = 0, 1, . . . and j = 0, 1, . . . , n. By convention, �0sj = sj . Thus,

sj,j = sj ,

sj+1,j = (j + 1)(sj − sj+1),

sj+2,j = 1
2 (j + 1)(j + 2)(sj+2 − 2sj+1 + sj ),

and so forth. The reason for introducing the binomial coefficients will be discussed
later.

Theorem 1. Given a sequence s0, s1, . . . of real numbers, define the auxiliary se-
quence by equation (1). There exists a probability measure µ on [0, 1] such that
{sn} is the moment sequence of µ if and only if s0 = 1, and 0 ≤ sn,j for all n and
j . Then µ is unique.

This theorem is due to Hausdorff (1921), but Feller (1971, pp. 224–28) may
be more accessible; the proof will not be repeated here. The “Hausdorff moment
condition” is that 0 ≤ sn,j for all n and j .

The Markov moment problem

The “Markov moment problem” is to characterize moments of probabilities that
have uniformly bounded densities, which constrains µ in Theorem 1 to have the
form µ(dx) = f (x) dx, where f ≤ c a.e. Of course, f ≥ 0 a.e. and

∫ 1
0 f dx = 1,

so c ≥ 1. Hausdorff’s solution is presented as Theorem 2.

Theorem 2. Given a positive real number c, and a sequence s0, s1, . . . of real
numbers, define the auxiliary sequence by equation (1). There exists a probability
measure µ on [0, 1] such that
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(i) {sn} is the moment sequence of µ, and
(ii) µ is absolutely continuous, and

(iii) dµ/dx is almost everywhere bounded above by c,

if and only if s0 = 1, and 0 ≤ sn,j ≤ c/(n + 1) for all n and j . Then µ is unique.

Our proof will use the following lemma.

Lemma 1. Suppose {sn} is the moment sequence of the probability µ on [0, 1];
define the auxiliary sequence by (1). Then

(a) sn,j =
(

n

j

)∫ 1

0
xj (1 − x)n−j µ(dx).

(b) If µ is Lebesgue measure, then sn = 1/(n + 1).
(c) If µ is Lebesgue measure, then sn,j = sn,n = sn = 1/(n + 1).

Proof. Claim (a). Induction on n = j, j + 1, . . . .

Claim (b). Integration.
Claim (c). This just depends on the beta integral (Feller, 1971, p. 47):

∫ 1

0
xα−1(1 − x)β−1dx = �(α)�(β)

�(α + β)
for positive real α, β. (2)

Remarks. (i) Property (b) characterizes Lebesgue measure, in view of the unique-
ness part of Theorem 1. Likewise, sn,j = sn,n for all n and j = 0, . . . , n is a
characterization, as in (c). Indeed,

n∑

j=0

(
n

j

)

xj (1 − x)n−j = 1

for all x in the unit interval—after all, [x + (1 − x)]n = 1. Lemma 1a implies

n∑

j=0

sn,j = 1.

If the sn,j are equal for all j = 0, 1, . . . , n, each must be 1/(n + 1), so
sn = sn,n = 1/(n + 1) for all n = 0, 1, . . . . In essence, this characterization
of the uniform distribution on [0, 1] is due to Bayes (1764): see Stigler (1986,
pp. 128–9).

(ii) Without the binomial coefficients in (1), the upper bound on sn,j in Theorem
2 would be more cumbersome to state. A deeper justification may be given
by formulas (1.8) and (3.7) in Feller (1971, pp. 221, 225).

(iii) The condition s0 = 1 may be dropped in Theorems 1 and 2; then µ is a finite
positive measure, of total mass s0. Indeed,

∑n
j=0 sn,j = s0 for any sequence

{sn}; this can be proved directly, or see (1.9) in Feller (1971, p. 221).

Proof of Theorem 2. Suppose conditions (i), (ii), and (iii) hold true. The conditions
on sn,j follow from Lemma 1. Conversely, suppose the conditions on sn,j hold true.
Theorem 1 shows the existence (and uniqueness) of a probability measure µ whose
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moment sequence is {sn}. What remains to be seen is that µ is absolutely continu-
ous, having a density bounded by c. If g is a non-negative continuous function on
[0, 1], its nth approximating Bernstein polynomial is by definition

Bn,g(x) =
n∑

j=0

g

(
j

n

)(
n

j

)

xj (1 − x)n−j .

We claim that ∫ 1

0
Bn,g(x) µ(dx) ≤ c

∫ 1

0
Bn,g(x) dx.

Indeed, the left side is
∑

j g(j/n)sn,j by Lemma 1a. The right side is∑
j g(j/n)[c/(n+1)] by Lemma 1c. Finally, use the condition that sn,j ≤ c/(n+1).
Of course, Bn,g converges to g uniformly as n → ∞: see Feller (1971, pp. 222–

4), or Lorentz (1966) for a more detailed discussion. So, for all non-negative
continuous g,

∫ 1

0
g(x) µ(dx) ≤ c

∫ 1

0
g(x) dx. (3)

Let G be the set of Borel measurable functions g on [0, 1] with 0 ≤ g ≤ 1. Let
G1 consist of the g ∈ G for which (3) holds. Then G1 contains all the continuous
functions in G and is closed under pointwise limits, so G1 = G. Put g = 1A, the
indicator function of a Borel set A, to conclude that µ(A) ≤ cλ(A), where λ is
Lebesgue measure. Now µ is absolutely continuous; denote the Radon-Nikodym
derivative dµ/dx by f . Let

A = {x : 0 ≤ x ≤ 1 & f (x) > c}.
If λ(A) > 0, then

µ(A) =
∫

A

f (x) dx > cλ(A).

But we have already seen that µ(A) ≤ cλ(A). This contradiction shows that λ(A) =
0, proving Theorem 2. ��
Example 1. Let f (x) = 1/(2

√
x) on (0, 1]. This density is unbounded, but its nth

moment is sn = 1/(2n+1) ≤ 1/(n+1). Thus, the simple condition sn ≤ c/(n+1)

is not sufficient to make the density bounded: auxiliary conditions are needed. For
our f , (n + 1)sn,j is unbounded. Indeed, sn,j can be computed explicitly, using
Lemma 1a and the formula for the beta integral (2):

sn,j = 1

2

(
n

j

)∫ 1

0
xj (1 − x)n−j 1√

x
dx

= 1

2

(
n

j

)
�(j + 1

2 )�(n − j + 1)

�(n + 3
2 )

= 1

2

�(j + 1
2 )

�(j + 1)

�(n + 1)

�(n + 3
2 )

.
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By Stirling’s formula, log �(x) = (x − 1
2 ) log(x + k) − x + O(1) as x gets large,

for any constant k. Hence

log(n + 1) + log �(n + 1) − log �(n + 3
2 ) = 1

2 log(n + 1) + O(1).

So

limn→∞ (n + 1)sn,j = ∞
for any fixed j . The boundedness condition of Theorem 2 is not satisfied.

Example 2. The moments of the “Cantor measure” may be of interest in connection
with Theorem 2. The Cantor measure is the distribution of 2

∑∞
j=1 Xj/3j , the Xj

being independent and identically distributed, Xj = 0 with probability 1/2 and
Xj = 1 with probability 1/2. This measure is uniform on the Cantor set, and is
therefore purely singular. For n ≥ 2, the nth moment is

sn >
1

2

(
1 − 1

n

)n 1

nlog3 2 .

Indeed, the Cantor measure assigns mass 2−m to the interval [1 − 3−m, 1], so

sn ≥ 2−m(1 − 3−m)n

for any positive integer m. Now choose m with log3 n ≤ m < 1 + log3 n. In
particular,

lim (n + 1)sn = ∞.

See Grabner and Prodinger (1996) for more detailed estimates.

Lp densities

Theorem 2 characterizes the moment sequences of probabilities with L∞ densities
on [0, 1]. The next result (also due to Hausdorff) characterizes Lp densities for
p > 1. To state the theorem, define

cn =
{ 1

n + 1

n∑

j=0

[
(n + 1)sn,j

]p}1/p

. (4)

Theorem 3. Given real numbers p > 1 and 0 < c < ∞, and a sequence s0, s1, . . .

of real numbers, define the auxiliary sequence by equation (1), and cn by (4). There
exists a probability measure µ on [0, 1] such that

(i) {sn} is the moment sequence of µ, and
(ii) µ is absolutely continuous, and

(iii) dµ/dx is in Lp with p-norm at most c,

if and only if s0 = 1, and 0 ≤ sn,j for all n and j , and cn ≤ c.
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So far, absolute continuity is defined relative to Lebesgue measure, but Lebes-
gue measure can be replaced by any other probability ν on [0, 1]. To avoid trivial
complications, suppose ν assigns positive mass to the open unit interval (0, 1). Let
tn be the moment sequence of ν, and tn,j the corresponding auxiliary sequence
defined by (1) with tn in place of sn. Lemma 1a confirms that tn,j > 0. Replace the
definition (4) by

cn =
{ n∑

j=0

tn,j

( sn,j

tn,j

)p}1/p

. (5)

Theorem 4. Let ν be a probability on [0, 1], assigning positive mass to (0, 1). Given
real numbers p > 1 and 0 < c < ∞, and a sequence s0, s1, . . . of real numbers,
define the auxiliary sequence by equation (1), and cn by (5) rather than (4). There
exists a probability measure µ on [0, 1] such that

(i) {sn} is the moment sequence of µ, and
(ii) µ << ν, and

(iii) dµ/dν is in Lp with p-norm at most c,

if and only if s0 = 1, and 0 ≤ sn,j for all n and j , and cn ≤ c.

In (iii), the p-norm of dµ/dν is relative to ν, i.e.,
( ∫

(dµ/dν)p dν
)1/p. Theorem

3 is a special case of Theorem 4; our proof of the latter depends on the connection
with de Finetti’s theorem, which is explained next. Let X1, X2, . . . be random vari-
ables taking only the values 0 and 1. The sequence is “exchangeable” if the joint
distribution is invariant under finite permutations, for example,

P {X1 = 1, X2 = 0, X3 = 1} = P {X1 = 0, X2 = 1, X3 = 1}.
Either the random variables can be permuted, or the values.

Theorem 5. Let e1, e2, . . . be 0 or 1. The 0–1 valued random variables X1, X2, . . .

are exchangeable if and only if there is a probability measure µ on [0, 1] such that

P {Xi = ei for i = 1, . . . , n} =
∫ 1

0
θ�ei (1 − θ)n−�ei µ(dθ), (6)

for all n and ei . Then µ is unique.

This theorem is due to de Finetti (1931, 1937); for a review, see Hewitt and
Savage (1955). The “if” part is straightforward. Necessity is more subtle because µ

must be constructed, but Hausdorff’s theorem can be used (Feller, 1971, pp. 228–9).
The proof of Theorem 5 will not be detailed here. Before applying the theorem,
we explain how the auxiliary sequence (1) connects to (6). Suppose the Xi are
exchangeable, and Sn = X1 + X2 + · · · + Xn. Let sn be the moment sequence of
µ in Theorem 5, and define sn,j by (1). Fix n and j with 0 ≤ j ≤ n. Fix some
particular finite sequence e1, e2, . . . , en of 0s and 1s whose sum is j . Then

P {Sn = j} =
(

n

j

)

P {Xi = ei for i = 1, . . . , n} =
(

n

j

)∫ 1

0
xj (1 − x)n−j µ(dx).
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By Lemma 1a,

P {Sn = j} = sn,j . (7)

The notation is flawed, in that sn is a moment of µ rather than a value of Sn.

Proof of Theorem 4. If s0 = 1 and 0 ≤ sn,j for all n and j , there is a probabil-
ity µ on [0, 1] whose moment sequence is {sn}. For the rest, the “if” and “only
if” assertions can be proved together: the issue is to determine from the moments
whether µ is absolutely continuous with respect to ν, and dµ/dν ∈ Lp(ν). We
begin by constructing an exchangeable sequence X1, X2, . . . of 0–1 valued random
variables that satisfy (6): write Pµ for P . Define Pν in the analogous way. Let
Sn = X1 + · · · + Xn. Let Fn be the field generated by X1, . . . , Xn, and F the
σ -field generated by all the X’s, so Fn ↑ F. Let Hn be the random variable whose
value is Pµ{Sn = j}/Pν{Sn = j} on the set {Sn = j}. Then Hn is the Radon-
Nikodym derivative of Pµ with respect to Pν , both restricted to Fn. Thus, Hn is a
martingale relative to Pν , and cn is the p-norm of Hn relative to Pν . By Jensen’s
inequality,

cn in (5) are non-decreasing. (8)

From this point on, we use the standard martingale theory for differentiating mea-
sures. The key martingale fact is Theorem 4.1 on pp. 319–20 in Doob (1953); the
application to differentiating measures is summarized in Freedman (1983, pp. 345–
6): for more discussion, see Hewitt and Stromberg (1969, pp. 369–75). We conclude
that

Hn → H∞ a.e. [Pµ + Pν], (9)

with

H∞ = dPµ/dPν (10)

for the full σ -field F: the limit is infinite on the part of the space where Pµ is
singular with respect to Pν . Moreover,

cn = [Eν(H
p
n )]1/p ↑ [Eν(H

p
∞)]1/p, (11)

where Eν denotes expectation relative to Pν . In particular, if supn cn ≤ c < ∞,
then H∞ ∈ Lp(ν) and ‖H∞‖p ≤ c. On the other hand, if cn is unbounded, then
H∞ /∈ Lp(ν). The next (and last) step in the proof is perhaps worth isolating as a
proposition, which writes H for H∞.

Proposition 1. Let L = limn Sn/n, which exists a.e. relative to Pµ + Pν . Let
h = dµ/dν, and H = dPµ/dPν , with the understanding that h = ∞ on the part
of the unit interval where µ is singular with respect to ν; similarly for H on its
domain. Then

(i) PµL−1 = µ.
(ii) PνL

−1 = ν.
(iii) H = h(L) a.e. relative to Pµ + Pν .
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Proof. Only claim (iii) is argued. To begin with, we impose the side condition that
µ << ν. Let Pθ be the distribution when a θ -coin is tossed, so

Pθ {Xi = ei for i = 1, . . . , n} = θ�ei (1 − θ)n−�ei ,

the ei being 0 or 1. Furthermore,

Pµ =
∫ 1

0
Pθ µ(dθ), Pν =

∫ 1

0
Pθ ν(dθ).

For any A ∈ F,
∫

A

h(L) dPν =
∫ 1

0

(∫

A

h(L) dPθ

)

ν(dθ)

=
∫ 1

0

(∫

A

h(θ) dPθ

)

ν(dθ)

=
∫ 1

0
Pθ(A) h(θ) ν(dθ)

=
∫ 1

0
Pθ(A) µ(dθ) = Pµ(A).

The second equality holds because Pθ(L = θ) = 1 by the strong law of large
numbers. The fourth equality holds by the side condition µ << ν, with h =
dµ/dν. Thus, h(L) is a version of dPµ/dPν . This proves claim (iii) under the side
condition, but the general case follows: notice that H and h depend affinely on
µ, then replace µ by (µ + ν)/2. This completes the argument, and the proof of
Theorem 4. ��
Remark. (i) Theorem 4 holds as stated when p = ∞, if we redefine cn in (5) as

cn = max
j=0,...,n

sn,j /tn,j .

This is Corollary 3.1 in Knill (1997).
(ii) The case p = 1 is more problematic. We can show that µ << ν iff the mar-

tingale Hn is uniformly Pν-integrable, but this is little more than a restatement
of the definition of absolute continuity, and uniform integrability may not be
any easier to check in applications than absolute continuity.

(iii) The conditions we have considered in Theorems 2–4 are of the form

fn(s0, s1, . . . , sn) ≤ kn,

where fn is a specified continuous function on Rn+1, kn is a constant, and
s0, s1, . . . a sequence that may—or may not—be the moment sequence of
a probability that is being characterized in some way. No condition of this
form can describe the moment sequences of absolute continuous probabili-
ties, because the set of absolutely continuous probabilities is not weak-star
closed.

(iv) Theorems 2–4 can be extended in a straightforward way from the unit interval
to the unit cube in Rd .
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(v) Hausdorff was working with finite signed measures. Theorems 2–5 can be
extended to cover that case, although the interpretation of de Finetti’s theorem
for signed priors remains a little mysterious, at least for elderly statisticians;
also see Feynman (1987). For multi-dimensional signed measures, see Knill
(1997); for an application to de Finetti’s theorem, see Jaynes (1986).

Local theorems

Theorem 2 can be modified if we desire only that µ should be absolutely continuous
on the interval [a, b], with 0 ≤ a < b ≤ 1, and dµ/dx ≤ c on [a, b]; off this
interval, µ has no special features. We begin with the sufficiency part of Theorem
2, only sketching the development.

Theorem 6. Given real numbers a, b, c with 0 ≤ a < b ≤ 1 and c > 0, and a
sequence s0, s1, . . . of real numbers, define the auxiliary sequence by equation (1).
There exists a probability measure µ on [0, 1] such that

(i) {sn} is the moment sequence of µ, and
(ii) µ is absolutely continuous on the interval [a, b], and

(iii) dµ/dx is almost everywhere bounded above by c on the interval [a, b],

if s0 = 1, and 0 ≤ sn,j for all n and j , and sn,j ≤ c/(n + 1) for all n and j with
a ≤ j/n ≤ b. Then µ is unique.

Here is a generalization of the sufficiency part of Theorem 4.

Theorem 7. Given a positive real number c, and a, b with 0 ≤ a < b ≤ 1, and a
probability ν on [0, 1] that assigns positive mass to (a, b), and a sequence s0, s1, . . .

of real numbers, define the auxiliary sequences sn,j and tn,j by applying equation
(1) to µ and ν respectively. Define cn as follows:

cn =
{ ∑

an≤j≤bn

tn,j

( sn,j

tn,j

)p}1/p

. (12)

There exists a probability measure µ on [0, 1] such that

(i) {sn} is the moment sequence of µ, and
(ii) µ is absolutely continuous with respect to ν on the interval [a, b], and

(iii) dµ/dx ∈ Lp(ν) on the interval [a, b], with norm at most c,

if s0 = 1, and 0 ≤ sn,j for all n and j , and cn ≤ c. Then µ is unique.

Proofs are straightforward, using Hausdorff’s theorem to get µ and techniques
described earlier in the paper to characterize dµ/dx. For example, take Theorem 6.
We can prove (3) for all continuous functions on the interval [a, b], then for all Borel
functions g on [a, b] with 0 ≤ g ≤ 1. The balance of the argument is unchanged.
The conditions, however, are not necessary, as will be shown by example.

Example 3. To see why the upper bound in Theorem 6 cannot be a necessary con-
dition, take a = 0 and b = 1/2. Let µ assign mass 1/2 to [0, 1/2], with density
bounded above by c; let µ assign the remaining mass 1/2 to 1/2+h. Choose n large
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and even, then h > 0 small. Consider Pµ{Sn = n/2}. The part of µ on [0, 1/2]
contributes at most c/(n + 1) to Pµ{Sn = n/2}. But—if h = 0—the other piece of
Pµ{Sn = n/2} is of order 1/

√
n. If h > 0 is small, this other piece can therefore

be much larger than c/(n + 1).
For Theorem 6, the necessary and sufficient upper bound condition on sn,j

would be sn,j ≤ c/(n + 1) + exp(−2δ2n) for all δ with 0 < δ < (b − a)/2 and
all n, j with a + δ ≤ j/n ≤ b − δ. See (3.5) in Diaconis and Freedman (1990).
Example 3 indicates why the term exp(−2δ2n) is needed, and the restriction to
a + δ ≤ j/n ≤ b − δ. The characterization of Lp densities relative to Lebesgue
measure is also relatively straightforward. For other base measures, we do not have
clean results.

Applications to Bayesian statistics

Theorems on moment sequences can be translated in a straightforward way into the-
orems characterizing the mixing measure µ in Theorem 5. We give two examples.
Recall that Pθ is the distribution when a θ -coin is tossed, so

Pθ {Xi = ei for i = 1, . . . , n} = θ�ei (1 − θ)n−�ei ,

the ei being 0 or 1. Furthermore,

Pµ =
∫ 1

0
Pθ µ(dθ). (13)

Theorem 8. Let Xi be 0–1 valued random variables on the probability triple
(�, F, P ). Let c be a positive real number. Then {Xi} admits the representation

P {Xi = ei for i = 1, . . . , n} =
∫ 1

0
θ�ei (1 − θ)n−�ei f (θ) dθ

for all n and ei = 0 or 1, and 0 ≤ f ≤ c a.e., iff

(i) the Xi are exchangeable, and
(ii) Pµ{Sn = j} ≤ cPλ{Sn = j} for all n = 0, 1, . . . and j = 0, 1, . . . , n, where

λ is Lebesgue measure on [0, 1], and Sn = X1 + · · · + Xn.

Then f is unique.

This is immediate from (7) and Theorem 2. The analog of Theorem 4 is as
follows.

Theorem 9. Let Xi be 0–1-valued random variables on the probability triple
(�, F, P ). Let ν be a probability on [0, 1], assigning positive mass to (0, 1). Let
p > 1 and 0 < c < ∞. Then {Xi} admits the representation

P {Xi = ei for i = 1, . . . , n} =
∫ 1

0
θ�ei (1 − θ)n−�ei f (θ) ν(dθ)

for all n and ei = 0 or 1, and f ∈ Lp(ν) has norm at most c, iff
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(i) the Xi are exchangeable, and
(ii) cn ≤ c for all n = 0, 1, . . . , where

cn =



n∑

j=0

Pν{Sn = j}
(

Pµ{Sn = j}
Pν{Sn = j}

)p




1/p

(14)

and Sn = X1 + · · · + Xn.
Then f is unique.

Theorem 9 can be extended to the case p = ∞ by redefining cn as follows:

cn = max
j=0,...,n

Pµ{Sn = j}/Pν{Sn = j}.

There are yet more general theorems characterizing partially exchangeable pro-
cesses with Lp densities, in the setting of Diaconis and Freedman (1984): we will
explore such results in Part II of this paper. In the abstract setting, the proofs are
more transparent (although the setting itself may seem a little strange).

Monotone densities

In some applications, it is desired to characterize monotone densities in terms of
their moments; see, for instance, Diaconis and Kemperman (1996). Theorem 10
gives a result for densities that are non-decreasing. We will need the following
lemma, which expresses a monotone function as a mixture of the extreme step
functions.

Lemma 2. Let F be a non-negative, right-continuous, non-decreasing function on
[0, 1); we allow F(0) > 0 and F(1−) = ∞. Let fθ (x) = 0 for 0 ≤ x < θ and
fθ (x) = 1/(1 − θ) for θ ≤ x < 1, so fθ is a probability density for 0 ≤ θ < 1.
Then

F =
∫

[0,1)

fθ ν(dθ),

where the measure ν on [0, 1) is defined as follows: ν(dθ) = (1 − θ)F (dθ), with
F(dθ) assigning mass F(0) to 0. Finally, the total mass in ν is

∫ 1
0 F(x) dx.

Proof. The calculation will seem trite, but it is easy to get lost if you start at the
wrong place. Let Hθ = 0 on [0, θ) and Hθ = 1 on [θ, 1). Then

F(x) =
∫

[0,1)

Hθ (x) F (dθ) =
∫

[0,1)

fθ (x) (1 − θ)F (dθ) =
∫

[0,1)

fθ (x) ν(dθ).

To evaluate the mass in ν, integrate over x ∈ [0, 1). The proof is complete. ��
Theorem 10. Given a sequence s0, s1, . . . of real numbers, define the auxiliary
sequence sn,j by equation (1). There exists a probability measure µ on [0, 1] such
that
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(i) {sn} is the moment sequence of µ, and
(ii) µ is absolutely continuous on [0, 1), and

(iii) dµ/dx is non-decreasing on [0, 1),

if and only if s0 = 1, and 0 ≤ sn,j for all n and j , and sn,j is nondecreasing in j

for all n. The probability µ has a possible atom at 1, but µ{1} = 0 iff sn → 0.

Proof. Suppose µ satisfies conditions (i), (ii), and (iii). Then µ is a convex combi-
nation of point mass at 1, and an absolutely continuous probability on [0, 1] with a
non-decreasing density. If µ{1} = 1, it is clear that sn,j is non-decreasing with j .
Suppose on the other hand that µ is absolutely continuous on [0, 1] and dµ/dx is
non-decreasing. As in Lemma 2,

dµ/dx =
∫

[0,1)

fθ ν(dθ).

(In this application, ν is a probability measure.)
Since sn,j is affine in µ by Lemma 1a, it suffices to consider the θ ’s one at

a time, i.e., we can take ν to be point mass at θ . Let 0 ≤ j < n. We claim that
sn,j ≤ sn,j+1, that is,

(
n

j

) ∫ 1

0
xj (1 − x)n−j fθ (x) dx ≤

(
n

j + 1

) ∫ 1

0
xj+1(1 − x)n−j−1fθ (x) dx,

(15)

which is to say,

(j + 1)

∫ 1

θ

xj (1 − x)n−j dx ≤ (n − j)

∫ 1

θ

xj+1(1 − x)n−j−1 dx. (16)

Let G(θ) be the right hand side of (16) minus the left hand side, namely,

G(θ) =
∫ 1

θ

xj (1 − x)n−j−1g(x) dx,

where
g(x) = (n − j)x − (j + 1)(1 − x).

Now
G′(θ) = θj (1 − θ)n−j−1h(θ),

where
h(θ) = −g(θ) = (j + 1)(1 − θ) − (n − j)θ.

Clearly, h(θ) > 0 for 0 ≤ θ < (j + 1)/(n + 1) and h(θ) < 0 for (j + 1)/(n +
1) < θ ≤ 1. Thus, G increases from 0 at 0—see Lemma 1c—to its maximum at
(j+1)/(n+1), and then decreases to 0 at 1. In short, G > 0 except at 0 and 1, where
G vanishes. Thus, (16) holds for 0 ≤ θ ≤ 1, and (15) must hold for 0 ≤ θ < 1,
completing the proof of the “only if” part of the theorem. The converse follows
from Proposition 2 below, with pn,j = sn,j . The convergence of µn is discussed
in the remarks following the proposition. ��
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Proposition 2. Let the probability µn on [0, 1] assign mass pn,j to j/n for j =
0, 1, . . . , n, with 0 ≤ pn,0 ≤ pn,1 ≤ · · · ≤ pn,n and

∑n
j=0 pn,j = 1. Suppose

µn → µ weak-star. Let F be the distribution function of µ. Then F is convex on
[0, 1], hence absolutely continuous on [0, 1) with nondecreasing density F ′. There
is a possible atom at 1.

Proof. Take the convolution of µn with the uniform distribution on [− 1
2n

, 1
2n

],
in effect replacing the point masses with their histogram. The resulting measure
has distribution function Fn which is convex—because F ′

n is monotone—and still
converges weak-star to F . Let D be the set of discontinuity points of F . Then
D ∪ D/2 ∪ D/3 ∪ · · · is countable. So, there are small positive h with jh ∈ D

for no integer j : after all, jh ∈ D iff h ∈ D/j . Next, Fn converges pointwise to
F on the h-skeleton h, 2h, . . . , because F is continuous there. Since Fn is convex
on this skeleton, so is F . But h can be arbitrarily small. Therefore, F is convex
on (0, 1). In particular, F is continuous on (0, 1), even absolutely continuous,
and its density F ′ is increasing. Suppose by way of contradiction that 0 were an
atom with mass δ > 0. For any x, h > 0 with 0 < x < 1 − h, we would have
µ[x, x + h] = limn Fn(x + h) − Fn(x) ≥ lim supn Fn(h) − Fn(0) ≥ δ, which is
impossible; the first inequality holds because F ′

n is monotone; the second, because
p0,n ≤ 1/(n + 1) so Fn(0) − Fn(−h) → 0 while µ{0} = δ. Thus, F is continuous
even at 0, with F(0) = 0. This finishes the proof of Proposition 2, and hence of
Theorem 10. ��

Remarks. (i) Decreasing densities can be characterized in a similar way, al-
though the possible atom moves to 0, and can be excluded by requiring
sn,0 → 0.

(ii) The existence of the density in Theorem 10 follows from the monotonicity of
sn,j , but the density need not be bounded.

(iii) Why does µn converge? Hausdorff proved Theorem 1 by showing directly
that µn converges weak-star to the desired µ: see Feller (1971, pp. 225–26).
For us, it may seem more natural to prove the relevant law of large num-
bers. The convergence of µn would follow, along with Hausdorff’s moment
theorem, the convergence of the Bernstein polynomials, and de Finetti’s the-
orem. In essence, that is the path followed by de Finetti (1937). Compactness
arguments are also feasible.

(iv) Theorem 10 completes Bayes’observation that a uniform density corresponds
to a uniform distribution for Sn: the uniform density is non-decreasing and
non-increasing, so the resulting distribution of Sn has the same features. Of
course, there are familiar arguments that are more direct: see Lemma 1 and
the remarks that follow it.

(v) Suppose µ is absolutely continuous on [0, 1), and dµ/dx is non-decreasing
on [0, 1). Unless dµ/dx is constant, sn,j will be strictly increasing with j .
Indeed, the inequality in (16) is strict unless θ = 0 or 1; the inequality in (15)
is therefore strict unless θ = 0, corresponding to a density that is constant.
On the other hand, if µ has an atom at 1, then sn,n−1 < sn,n.



196 P. Diaconis, D. Freedman

Historical notes

Hausdorff

Hausdorff’s work on the moment problem was motivated by summability theory
(Hausdorff, 1921, 1923). In brief, let S = {sn,j : n = 0, 1, . . . , j = 0, . . . , n} be
a triangular matrix of real numbers. The “S-limit” of a sequence {xi} is
limn

∑n
j=0 sn,j xj . A summability method S is “regular” if lim xi = x∞ implies

that the S-limit is x∞. Familiar examples include Cesàro’s method, where sn,j =
1/(n + 1), and Euler’s Ep method with

sn,j =
(

n

j

)

pj (1 − p)n−j .

Hausdorff introduced a more general scheme, defining

sn,j =
(

n

j

)∫ 1

0
pj (1 − p)n−j µ(dp) (17)

where µ is a finite signed measure on [0, 1]. For instance, setting µ to Lebesgue
measure gives us Cesàro’s method: see Lemma 1b. If µ is point mass at p, we
get Ep. Among many other things, Hausdorff showed that a summability method
defined by (17) is regular iff µ{0} = 0 and µ(0, 1] = 1; this is more or less
obvious from (7). However, µ need not be a probability measure: its negative part
need not vanish. Methods defined by (17) are now called “Hausdorff methods.” For
additional discussion, see Widder (1946) or Hardy (1949).

Some notes on Hausdorff (1923) may be of interest. The auxiliary sequence,
with the binomial coefficients, is introduced in equation (5) on p. 223; the positivity
condition is (A) on the same page. The solution to the moment problem is Satz I
on p. 226. The condition for an Lp density is (C) on p. 234, and the theorem is Satz
III on p. 236. The condition for L∞ is (D) on the same page, and the solution to the
Markov moment problem is Satz IV on p. 237. The hitherto-unmentioned Satz II
on p. 232 characterizes moment sequences of finite signed measures: his necessary
and sufficient condition (B) is, in our notation, supn

∑
j |sn,j | < ∞.

The Russian School

Solutions to the Markov moment problem, and similar results for the half-line and
the whole line, were among the great achievements of the Russian school. Perhaps
the history begins with Chebychev, who gave a rigorous proof of the Central Limit
Theorem using the method of moments, with connections to the theory of continued
fractions, orthogonal polynomials, and numerical quadrature. His student Markov
formulated the moment problem we have been discussing (along with many other
contributions in other areas).

Let {sn} be a given sequence of real numbers, and c a given positive real. When
is sn = ∫ 1

0 xnf (x) dx for all n, with f a probability density bounded above by c?
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To answer this question, Markov expanded

exp
[1

c

( s0

z
+ s1

z2 + s2

z3 + s3

z4 + · · ·
)]

(18)

as a continued fraction, and showed that positivity of certain coefficients was a
necessary condition. The condition turned out to be sufficient as well. There were
later developments by Ahiezer and Krein (1962), and Krein and Nudelman (1977).
One theorem in Ahiezer and Krein (1962, p. 71) can be stated this way: sn =∫ 1

0 xnf (x) dx for all n, with 0 ≤ f ≤ c a.e., iff tn satisfies Hausdorff’s condition,
where tn is defined by a formal series expansion of (18) in powers of 1/z:

exp
[1

c

( s0

z
+ s1

z2 + s2

z3 + s3

z4 + · · ·
)]

= 1 + t1

z
+ t2

z2 + t3

z3 + · · · (19)

Of course, the tn are polynomial functions of sn/c. For example,

t1 = s0

c
, t2 = s1

c
+ 1

2

s2
0

c2 , t3 = s2

c
+ s0s1

c2 + 1

6

s3
0

c3 .

In general,

tn = 1

n!

∑

π

n∏

j=1

(jsj−1/c)
aj (π) (20)

where π runs through the permutations of length n, and aj (π) is the number of
cycles in π of length j . Here, s0 = ∫

f : if s0 = 1, then f is a probability density.
Sergei Kerov made several remarkable contributions to this theory. For instance,

(19) sets up a one-to-one correspondence between the moments {sn} of a density
bounded by c, and the moments {tn} of an auxiliary measure ν on [0, 1]. Given f ,
Kerov showed how to pick a random point from ν, by generating a nested sequence
of random intervals

[0, 1] ⊃ [X1, Y1] ⊃ [X2, Y2] ⊃ · · ·

that shrink to a point. Despite the complexity of (19), Kerov’s algorithm is ele-
gance itself. At stage n + 1, pick a point U at random in [Xn, Yn]. Then flip a coin
that lands heads with probability f (U)/c, or tails with the remaining probability
1 − [f (U)/c]. If the coin lands heads, Xn+1 = U and Yn+1 = Yn. But if the coin
lands tails, Xn+1 = Xn and Yn+1 = U . Probabilities have to be bounded between
0 and 1: that is where the condition 0 ≤ f ≤ c comes in.

Kerov found striking connections between his algorithm and Young tableaux,
as well as eigenvalues of random matrices, and the zeroes of orthogonal polyno-
mials. Recently, expansions connected to the Markov moment problem—like (19)
and (20)—have found applications in Bayesian non-parametric statistics: Cifarelli
and Regazzini (1990), Diaconis and Kemperman (1996).
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for the “if” part of Theorem 2. The sn are moments of a probability on [0, 1], call it µ, by
Hausdorff’s theorem. Let λ be Lebesgue measure on [0, 1], and {tn} the moment sequence
of cλ − µ, with auxiliary sequence {tn,j } defined by the analog of (1). Then

tn,j =
(

n

j

)∫ 1

0
xj (1 − x)n−j d(cλ − µ) = c/(n + 1) − sn,j

by Lemma 1, so {tn} satisfies the Hausdorff condition,

(−1)n−j

(
n

j

)

�n−j tj ≥ 0,

although t0 = 1 is unlikely. Hence, cλ ≥ µ, again by Hausdorff’s theorem. We also thank
Jon McAuliffe for a number of helpful comments, and a very careful anonymous referee.
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