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B(0) = 0 and B(1) = 1. We show that flows of bridges are in one-to-one correspondence with the so-
called exchangeable coalescents. This yields an infinite-dimensional version of the classical Kingman
representation for exchangeable partitions of N. We then propose a Poissonian construction of a
general class of flows of bridges and identify the associated coalescents. We also discuss an important
auxiliary measure-valued process, which is closely related to the genealogical structure coded by the
coalescent and can be viewed as a generalized Fleming-Viot process.
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1 Introduction

The purpose of this work is to investigate a class of stochastic flows which are naturally con-
nected to a family of processes of coalescence. The latter appear as models for the genealogy of
populations when the size of the population tends to infinity, and have been introduced recently
by Möhle, Pitman, Sagitov and Schweinsberg. To explain this as simply as possible, let us start
by discussing a discrete elementary setting.

We consider a haploid population model with a fixed size N and non-overlapping generations.
Thus, we may and will identify the population at each generation with {1, . . . , N}. For every
generation n ∈ Z and 1 ≤ i ≤ N , we denote by ξi,n the number of children of the individual i at
generation n. Since the total size N of the population is fixed, we must have ξ1,n+· · ·+ξN,n = N .
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We agree to assign labels to individuals in a way which is compatible with the genealogy, in the
sense that when ξi,n ≥ 1, the labels at the generation n + 1 of the children of the individual i
at the n-th generation run from ξ1,n + · · ·+ ξi−1,n + 1 to ξ1,n + · · ·+ ξi,n. We may thus represent
the offspring of the n-th generation by the function ∆n : {0, . . . , N} → {0, . . . , N} which is
defined by

∆n(0) = 0 and ∆n(i) = ξ1,n + · · ·+ ξi,n for i = 1, . . . , N .

By iteration, the total number of descendants at the generation n+ k of the individual i at the
generation n is given by the i-th increment of the compound function ∆n+k−1 ◦ · · · ◦∆n, that
is ∆n+k−1 ◦ · · · ◦∆n(i)−∆n+k−1 ◦ · · · ◦∆n(i− 1).

We now suppose that the preceding data are random as in the model of Cannings [5, 6].
More precisely, for each n ∈ Z, the N -tuple (ξ1,n, . . . , ξN,n) is exchangeable, i.e. its distribution
is invariant under any permutation of indices, and the sequence {(ξ1,n, . . . , ξN,n), n ∈ Z} is i.i.d.
In other words, each map ∆n is a discrete bridge from 0 to N with exchangeable increments,
and the sequence of maps {∆n, n ∈ Z} is i.i.d. We then set for every m,n ∈ Z, with m < n

Bm,n := ∆−m+1 ◦ · · · ◦∆−n .

The reason for this particular definition is easy to understand if we think of tracing back the
genealogical history of individuals: For n ≥ 1, the increments of B0,n are exactly the sizes of
the blocks of the partition of {1, . . . , N} corresponding to individuals at generation 0 who have
the same ancestor n generations backwards in time. We also set Bm,m = Id and note that we
have the following two properties:

(i) (cocycle property) For every ` ≤ m ≤ n

B`,m ◦Bm,n = B`,n . (1)

(ii) The law of Bm,n only depends of n−m, and the bridges Bn1,n2 , . . . , Bnk−1,nk
are independent

for every n1 ≤ · · · ≤ nk.

We call (Bm,n : m,n ∈ Z and m ≤ n) a flow of discrete bridges (with exchangeable in-
crements). The connection with coalescence is clear from the genealogical interpretation: For
every 0 < m < n, the increments of B0,n are obtained by a certain coagulation (i.e. addition)
of those of B0,m, and more precisely the coagulation mechanism is encoded by Bm,n via the
cocycle identity (1).

In this work, we shall be interested in studying the continuous version of the discrete model
above. On one hand, the continuous analog of a discrete bridge is a càdlàg random process B =
(B(r), r ∈ [0, 1]) with nondecreasing paths and exchangeable increments, such that B(0) = 0
and B(1) = 1. These processes will simply be called bridges in the next sections. They have
been studied in detail by Kallenberg [10]. A flow of bridges is then a collection (Bs,t ,−∞ <
s ≤ t < ∞) of bridges, which satisfies the obvious analogs of properties (i) and (ii) (we also
require a mild continuity assumption, see Section 3 below).

On the other hand, recent papers by Möhle, Sagitov, Pitman and Schweinsberg (cf. [14,
15, 17, 18]) have exhibited a large family of coalescent processes with values in the space P of
partitions of N := {1, 2, . . .}, which arise as the limits of Cannings’ model for genealogy when
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the size N of the population tends to infinity. These processes are called here exchangeable
P-coalescents. To be specific, an exchangeable P-coalescent is a Markov process (Πt, t ≥ 0)
with values in P , with a Feller semigroup (Pt) satisfying the following property: For every t > 0
and π ∈ P , Pt(π, ·) is the law of the coagulation of π by a (random) exchangeable partition πt
depending only on t (if π, π′ ∈ P , and A1, A2, . . . are the blocks of π ranked in the increasing
order of their smallest elements, the coagulation of π by π′ is the new partition whose blocks
are the sets ∪i∈CAi when C varies over the blocks of π′). Exchangeable P-coalescents exactly
correspond to the class studied by Schweinsberg [18]. An important special case is the class of
coalescents with multiple collisions (or Λ-coalescents) studied in [15].

Our first theorem (Theorem 1) shows that flows of bridges are in one-to-one correspondence
with exchangeable P-coalescents. One way to express this correspondence is to say that, for any
flow of bridges B, the ranked sequence of jumps of B0,t, viewed as a process in the variable t, has
the same distribution as the ranked sequence of frequencies of an exchangeable P-coalescent at
time t. Note that a first result in the direction of Theorem 1 is given as Lemma 121 of Pitman
[16].

In Section 4, we develop a Poissonian construction à la Lévy-Itô of flows of bridges. The
idea there is to compose elementary bridges with exactly one jump, which are of the form

bU,x(r) = (1− x)r + x 1{U≤r}, r ∈ [0, 1]

where x ∈]0, 1] and the random variable U is uniform over the interval [0, 1]. Precisely, we let ν
be a finite measure on ]0, 1] and denote by M a Poisson point measure on R×]0, 1[×]0, 1] with
intensity dt⊗ du⊗ ν(dx). We then set for every s < t

BM
s,t = bu1,x1 ◦ · · · ◦ buK ,xK

,

where (t1, u1, x1), . . . , (tK , uK , xK) are the atoms of M in ]s, t]×]0, 1[×]0, 1], ordered so that
s < t1 < · · · < tK ≤ t. Then BM is a flow of bridges. Flows of bridges that are constructed
in this way are called simple. We prove in Section 4 that the flow of bridges associated with a
general Λ-coalescent can be obtained as a weak limit of simple flows of bridges (Theorem 2).

In Section 5, we study the dual flow of a general flow of bridges B, which is defined by
B̂s,t = B−t,−s for −∞ < s ≤ t < ∞. We are especially interested in the process (ρt) taking

values in the setM1 of all probability measures on [0, 1], which is defined by ρt([0, r]) = B̂0,t(r)
for every r ∈ [0, 1]. The process (ρt) is a Markov process in M1 with a Feller semigroup. By
analogy with the discrete case discussed previously, we can think of ρt(dr) as the size of the
progeny at time t of the fraction dr of the population at time 0 (in the continuous setting,
the population is identified with the interval [0, 1]). When the flow B is simple, the process
(ρt) is a continuous-time Markov chain with values in M1, which can be seen as a generalized
Fleming-Viot process. Using an approximation by simple flows, we show in subsection 5.2 that
in the case of the flow associated with a general Λ-coalescent, the law of (ρt) is characterized
by a martingale problem for which uniqueness is obtained through a duality argument. To
be specific, the process (ρt) appears as a measure-valued dual to the Λ-coalescent. This is of
course reminiscent of the classical duality for Fleming-Viot processes (see e.g. Chapter 1 of
[7]). In the last part of Section 5, we study the one-point motions t → B̂0,t(r) = ρt([0, r]) for
a fixed r ∈ [0, 1]. We are especially interested in the primitive Eve e of the population, which
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is characterized by the property ρt([e − ε, e + ε]) → 1 as t → ∞, for every ε > 0. We give a
description of the law of the process (ρt({e}))t≥0 of the progeny of e. More precisely, we show
that (ρt({e}))t≥0 is a Feller process and we specify its semigroup and its entrance distributions.

As suggested by the end of subsection 3.2, it is also of interest to study the several points
motion for the flow of inverses B−1

s,t . Under certain conditions, this leads to a coalescing flow on
the unit interval, in the sense of Le Jan and Raimond [13]. This coalescing flow will be studied
in the forthcoming paper [2].

2 Preliminaries

2.1 Bridges

A bridge is a random process B = (B(r), r ∈ [0, 1]) with values in the interval [0, 1], such that

(i) B(0) = 0, B(1) = 1 and the paths of B are right-continuous and nondecreasing.

(ii) B has exchangeable increments.

According to the general results on processes with exchangeable increments [10], a process
B is a bridge if and only if there exists a sequence of nonnegative random variables (βi, i =
1, 2, . . .), with β1 ≥ β2 ≥ β3 ≥ · · ·, and

∑∞
i=1 β

i ≤ 1, and a sequence of i.i.d. uniform [0, 1]
variables (U i, i = 1, 2, . . .), also independent of the sequence (βi), such that a.s. for every
r ∈ [0, 1],

B(r) =
(
1−

∞∑
i=1

βi
)
r +

∞∑
i=1

βi 1{U i≤r}. (2)

Remark. For the preceding representation to hold it may be necessary to enlarge the under-
lying probability space. What really matters is the fact that for any bridge B there is another
bridge with the same distribution as B and such that the representation (2) holds.

Note that we may have βi = 0 for i large. Still we will refer to the sequence (βi) as the
ranked sequence of jump sizes of B. Obviously the law of B is determined by that of the
sequence (βi).

Let S stand for the set of all nonincreasing sequences x = (xi, i = 1, 2, . . .) such that
|x| := ∑∞

i=1 xi ≤ 1. The set S is equipped with the uniform distance

d(x, y) = sup
i
|xi − yi|.

Then (S, d) is a compact metric space. We let Sf be the subset of S defined by

Sf = {x ∈ S :
k∑
i=1

xi = 1 for some k <∞}.

Note that Sf is dense in S.

If B is a bridge, the ranked sequence of jump sizes of B is a random variable with values in
S. When dealing with weak convergence of random variables with values in S, we will always
refer to the topology induced by the distance d.
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2.2 Exchangeable partitions

We write N = {1, 2, . . .} for the set of positive integers. A partition π of N can be represented
as a sequence (A1, A2, . . .) of disjoint subsets of N such that⋃

i∈N
Ai = N

and the blocks Ai are ranked according to the increasing order of their least element, i.e.

i ≤ j =⇒ minAi ≤ minAj ,

with the convention min ∅ = ∞. The partition has finitely many (nonempty) blocks if and
only if Ai = ∅ for all i sufficiently large. We write P for the set of all partitions of N equipped
with the usual distance, i.e. the distance between two distinct partitions π and π′ belongs to
{2−k, k ∈ N} and this distance is less than 2−n if and only if the restrictions of π and π′ to
{1, . . . , n} coincide. Then P is a compact metric space.

It is sometimes convenient to view a partition π as an equivalence relation, in the sense that
i
π∼ j if and only if i and j belong to the same block of the partition π.

Following Kingman [11], a random partition (i.e. a P-valued random variable) is called
exchangeable if its distribution is invariant under the action of permutations of N. If Π is an
exchangeable partition, the asymptotic frequency

fA = lim
n→∞

|A ∩ {1, . . . , n}|
n

exists for every block A of Π, a.s. (here we denote by |F | the cardinality of a finite set F ). The
random element of S whose nonzero values are exactly the (nonzero) frequencies of the blocks of
Π will be called the ranked sequence of frequencies of Π. The law of Π is completely determined
by that of its ranked sequence of frequencies. Conversely, given a probability distribution on S,
there exists an exchangeable partition of N whose ranked sequence of frequencies has the given
distribution. This exchangeable partition may be constructed by Kingman’s paintbox scheme,
a variant of which is presented in Section 2.3 below.

If π and π′ are two (deterministic) partitions, we call the coagulation of π by π′ and denote
by cπ′(π) the partition whose blocks are given by⋃

i∈A′
Ai

where A1, A2, . . . stand for the blocks of π and A′ varies over the blocks of π′. (In [16], Definition
19, cπ′(π) is called the π′-coagulation of π.) Note that the map cπ′ : P → P is continuous for
any partition π′ ∈ P .

2.3 Exchangeable partitions and bridges

Let B = (B(r), r ∈ [0, 1]) be a bridge. The (right-continuous) inverse B−1 of B is defined by
the formula

B−1(r) = inf{s ∈ [0, 1] : B(s) > r} if r ∈ [0, 1[, B−1(1) = 1.
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The ranked sequence of the lengths of the maximal intervals on which B−1 remains constant
coincides with that of the jump sizes of B.

Let V1, V2, . . . be an infinite sequence of i.i.d. uniform random variables on [0, 1], which is
independent of B, and define a random partition π(B) by the equivalence relation

i
π(B)∼ j ⇐⇒ B−1(Vi) = B−1(Vj) , i, j ∈ N .

Note that this random partition depends on the sequence V1, . . ., although for convenience this
is not indicated in the notation. In what follows we will consider different choices of the bridge
B, but we will always use the same independent sequence (Vi) to define π(B).

The partition π(B) is exchangeable and the ranked sequence of its frequencies is the ranked
sequence of jump sizes of B. Of course, the definition of π(B) is merely a variation of Kingman’s
paintbox scheme (see e.g. Theorem 36 of [15]) which sets up a bijection between probability
distributions for an exchangeable partition of N and probability distributions on S.

We start by stating a continuity lemma which combines Kingman’s continuity theorem (see
e.g. Theorem 36 in [15]) and a result of Kallenberg for the weak convergence of bridges with
exchangeable increments (see Theorem 2.3 in [10]).

Lemma 1 (Continuity Lemma) Consider for each n ∈ N ∪ {∞} a bridge Bn and denote by
βn = (β1

n, β
2
n, . . .) the ranked sequence of its jump sizes. The following conditions are equivalent:

(i) When n→∞, the exchangeable partition π(Bn) converges in distribution to π(B∞).

(ii) When n→∞, the sequence of ranked jump sizes βn converges in distribution to β∞ in S.

(iii) When n → ∞, the bridge Bn converges in distribution to B∞ in the space D([0, 1],R+)
endowed with the Skorohod topology.

Remark. A little more generally, if we start from a sequence (Bn)n∈N of bridges and assume
that the exchangeable partitions π(Bn) converge in distribution, then the limit has to be of the
form π(B∞) and properties (i),(ii) and (iii) hold.

Assume for a while that the ranked sequence β1 ≥ β2 ≥ · · · of the jump sizes of B is
deterministic. We shall refer to the discrete case when this ranked sequence is in Sf , i.e.∑k
i=1 β

i = 1 for some large enough k, and to the continuous case otherwise. Plainly, the
continuous case occurs iff B−1 has continuous paths a.s., whereas the bridge B is a step process
in the discrete case. Also note that π(B) has infinitely many blocks in the continuous case,
a.s., and only finitely many blocks in the discrete case, a.s.

Let us come back to the case of a general bridge B. Write β = (β1, . . .) for the ranked
sequence of jumps of B and A1, A2, . . . for the (ordered) sequence of the blocks of π(B). On
the event {β /∈ Sf}, all blocks Ai, i = 1, 2, . . . are nonempty a.s., and thus we may define for
every i ∈ N

V ′i = B−1(Vj) for an arbitrary j ∈ Ai. (3)

On the event {β ∈ Sf}, let K denote the (random) number of nonzero components of β.
Then π(B) has exactly K non-empty blocks, a.s., and we may define V ′i by (3), but only for
i = 1, . . . , K. It is then convenient to further introduce an i.i.d. sequence of uniform variables
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Wi, i ∈ N which is independent of the preceding quantities, and to put V ′i = Wi for i > K.
These additional variables are only used to unify the presentation and will play essentially no
role in the sequel.

Lemma 2 Let B be a bridge. We have:

(i) The partition π(B) and the sequence V ′1 , . . . are independent.

(ii) The variables V ′1 , . . . are i.i.d. and uniformly distributed on [0, 1].

Proof: By a simple conditioning argument, we may assume that the ranked sequence β1 ≥
β2 ≥ · · · of jumps of B is deterministic, and we let k ≤ +∞ be the number of nonzero
components in this sequence.

We first consider the discrete case. Recall that Ui is the instant of the jump of B with size
βi, and that U1, . . . , Uk are i.i.d. uniform variables on [0, 1]. Let U∗1 < · · · < U∗k be the order
statistics of U1, . . . , Uk, and denote by σ the permutation of {1, . . . , k} such that U∗i = Uσ(i).
In particular, σ is independent of the U∗i ’s and is uniformly distributed.

Next, consider the random interval partition of [0, 1[ induced by the range of B,

I1 = [0, B(U∗1 )[ , I2 = [B(U∗1 ), B(U∗2 )[ , . . . , Ik = [B(U∗k−1), 1[ .

Note that the length of Ii is βσ(i), so the intervals I1, . . . , Ik are independent of the order
statistics U∗1 < · · · < U∗k and are exactly the intervals on which B−1 remains constant (more
precisely B−1 ≡ U∗i on Ii).

We define a second random permutation τ of {1, . . . , k} as follows: For i = 1, . . . , k, τ(i)
is the index of the i-th interval amongst I1, . . . , Ik visited by the sequence V1, . . ., in the sense
that V1 ∈ Iτ(1), and if V1, . . . , Vj−1 ∈ Iτ(1) and Vj 6∈ Iτ(1), then τ(2) is specified by Vj ∈ Iτ(2), and
so on. From the very definition of the V ′i ’s and that of the blocks A1, . . . , Ak of the partition
π(B), we see that for i = 1, . . . , k,

Ai =
{
n : Vn ∈ Iτ(i)

}
and V ′i = U∗τ(i) . (4)

On the one hand, because V1, . . . is a sequence of i.i.d. uniform variables which is independent
of the bridge B, the conditional distribution of (τ, π(B)) given B only depends on the sequence
of the lengths of the intervals I1, . . . , Ik, viz. βσ(1), . . . , βσ(k). As a consequence,

(τ, π(B)) is independent of the order statistics U∗1 < · · · < U∗k . (5)

On the other hand, we claim that

τ is independent of the partition π(B) , (6)

and
τ is uniformly distributed on the set of permutations of {1, . . . , k} . (7)

Indeed, fix an arbitrary permutation η of {1, . . . , k}. Because σ ◦ η is again a random uniform
permutation independent of the order statistics U∗1 < · · · < U∗k , the step process B̃ on the unit
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interval which has a jump of size βσ◦η(i) at time U∗i for each i = 1, . . . , k, is a bridge with the
same law as B. Next, set

Ĩ1 = [0, B̃(U∗1 )[ , Ĩ2 = [B̃(U∗1 ), B̃(U∗2 )[ , . . . , Ĩk = [B̃(U∗k−1), 1[ ,

so that |Ĩi| = βσ◦η(i). There is a unique càdlàg bijection ϕ : [0, 1[→ [0, 1[ which is linear with
unit slope on Ĩi and such that ϕ(Ĩi) = Iη(i) for i = 1, . . . , k. Since the inverse ϕ−1 preserves the

Lebesgue measure, if we set Ṽn = ϕ−1(Vn) for every n ∈ N, then Ṽ1, . . . is a sequence of i.i.d.
uniform variables which is independent of B̃. Finally, introduce the random permutation τ̃ of
{1, . . . , k} such that for i = 1, . . . , k, τ̃(i) is the index of the i-th interval amongst Ĩ1, . . . , Ĩk
visited by the sequence Ṽ1, . . ., and π̃(B̃) the partition of N with (non-empty)blocks

Ãi =
{
n ∈ N : Ṽn ∈ Ĩτ̃(i)

}
, i = 1, . . . , k .

It is immediate to check that τ = η ◦ τ̃ and π̃(B̃) = π(B). Since (τ, π(B)) and (τ̃ , π̃(B̃)) have
the same law, this completes the proof of (6) and (7).

Now the statement (i) follows from (4), (5) and (6) and (ii) derives from (4), (5) and (7).

Let us turn to the continuous case. Then β is the limit in S of a sequence βn with βn ∈ Sf
for every n ∈ N. Denote by Bn a bridge whose ranked sequence of jumps is βn. By Lemma 1,
the sequence Bn converges in distribution to B, and by Skorohod’s representation theorem we
may even assume that Bn converges a.s. to B in the Skorohod topology. It easily follows that
πn(B) converges a.s. to π(B) (recall that we use the same sequence V1, V2, . . . to define πn(B)
and π(B)) and B−1

n converges to B−1 uniformly on [0, 1], a.s. Finally the desired result follows
by applying the discrete case to each bridge Bn and passing to the limit n→∞. 2

The following corollary of Lemma 2 is crucial for the applications that follow. Note that,
if B and B′ are two independent bridges, then the composition B ◦ B′ is again a bridge, and
simple arguments show that we have (B ◦B′)−1 = B′−1 ◦B−1 a.s.

Corollary 1 Let p ≥ 2 and let B1, . . . , Bp be p independent bridges. For every k ∈ {1, . . . , p},
let Ck be the bridge defined by Ck = B1 ◦ · · · ◦Bk. Then conditionally on (π(C1), . . . , π(Cp−1)),
π(Cp) is distributed as the coagulation of π(Cp−1) by an independent exchangeable partition
distributed as π(Bp).

Proof: We define a random partition π̃(Bm) and a sequence (V
(m)
i , i ∈ N) for every m ∈

{1, . . . , p} by induction on m. We first take π̃(B1) = π(B1), and if A
(1)
i , i ∈ N denote the blocks

of π̃(B1), we set

V
(1)
i = (B1)−1(Vj) , j ∈ A(1)

i ,

and on the event where the number K1 of blocks of π(B1) is finite, we define V
(1)
K1+1, V

(1)
K1+2, . . .

as explained after (3). Suppose that for m ∈ {2, . . . , p} the random variables V
(m−1)
j , j ∈ N

have been defined. We then let π̃(Bm) be defined by

i
π̃(Bm)∼ j ⇐⇒ (Bm)−1(V

(m−1)
i ) = (Bm)−1(V

(m−1)
j ) , i, j ∈ N , (8)
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and, if Ã
(m)
i , i ∈ N are the blocks of π̃(Bm), we also set

V
(m)
i = (Bm)−1(V

(m−1)
j ) , j ∈ Ã(m)

i , (9)

with a similar convention when the number of blocks of π̃(Bm) is finite (each time we use
different auxiliary independent uniform variables). Lemma 2 and an easy induction show that

for every m ∈ {1, . . . , p}, the variables V
(m)
j , j ∈ N are i.i.d. uniform over [0, 1]. Furthermore,

if m ≥ 2, Bm is independent of (V
(m−1)
j , j ∈ N), and it follows that π̃(Bm) has the same

distribution as π(Bm).

Let m ∈ {2, . . . , p}. Using the fact that (Cm)−1 = (Bm)−1 ◦ · · · ◦ (B1)−1, we observe that
the distinct values in the sequence ((Cm)−1(Vj), j ∈ N) appear, in the same order, as the first

values of the sequence (V
(m)
j , j ∈ N). Let A

(m)
j , j ∈ N be the blocks of the partition π(Cm). It

follows from the previous observation that, for every j such that A
(m)
j 6= ∅, and every i ∈ N,

i ∈ A(m)
j if and only if (Cm)−1(Vi) = V

(m)
j .

Using this fact, the definition of π(Cm) and the identity (Cm)−1 = (Bm)−1 ◦ (Cm−1)−1,

we obtain that i and i′ are in the same block of π(Cm) if and only if (Bm)−1(V
(m−1)
k ) =

(Bm)−1(V
(m−1)
k′ ), where k and k′ are defined by i ∈ A(m−1)

k , i′ ∈ A(m−1)
k′ . Thus, π(Cm) is the

coagulation of π(Cm−1) by π̃(Bm).

Since π̃(Bm) has the same distribution as π(Bm), the statement of the corollary will follow
(taking p = m) if we can prove that π̃(Bm) is independent of (π(C1), . . . , π(Cm−1)). From

the definition (8) of π̃(Bm), it is enough to verify that (V
(m−1)

1 , V
(m−1)

2 , . . .) is independent of
(π(C1), . . . , π(Cm−1)). We prove by induction that for every ` ∈ {1, . . . , p}:

The variables V
(`)
j , j = 1, 2, . . . are independent of (π(C1), . . . , π(C`)). (10)

For ` = 1, this follows from assertion (i) of Lemma 2. Let ` ∈ {2, . . . , p} and assume that (10)

holds at order ` − 1, so that the variables V
(`−1)

1 , . . . are independent of (π(C1), . . . , π(C`−1)).

It follows that (B`, (V
(`−1)

1 , . . .)) is independent of (π(C1), . . . , π(C`−1)). From (8), π̃(B`) is

a function of (B`, (V
(`−1)

1 , . . .)), and by (9), (V
(`)

1 , . . .) is a function of (B`, (V
(`−1)

1 , . . .)) and,

possibly, of auxiliary independent variables. Thus the pair ((V
(`)

1 , . . .), π̃(B`)) is independent

of (π(C1), . . . , π(C`−1)). Finally, we also know from Lemma 2 (i) that (V
(`)

1 , . . .) is indepen-

dent of π̃(B`). It follows that (V
(`)

1 , . . .) is independent of (π(C1), . . . , π(C`−1), π̃(B`)) and

since we saw that π(C`) is the coagulation of π(C`−1) by π̃(B`), (V
(`)

1 , . . .) is independent of
(π(C1), . . . , π(C`)). This completes the proof of (10) and of the corollary. 2

3 Exchangeable coalescents and flows of bridges

In this section, we present the basic correspondence between flows of bridges and exchangeable
coalescents. This can be viewed as an infinite-dimensional extension of that between bridges
and exchangeable partitions which we described at the beginning of Section 2.3.
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3.1 Some definitions

We first define the notion of an exchangeable P-coalescent.

Definition 1 An exchangeable P-coalescent is a Markov process Π = (Πt, t ≥ 0) with values
in P, which is continuous in probability, and such that its semigroup (Pt, t ≥ 0) satisfies the
following property: For every t ≥ 0, there exists an exchangeable partition πt such that for every
η ∈ P, Pt(η, ·) is the law of the coagulation of η by πt.

We stress that the semigroup of an exchangeable P-coalescent always enjoys the Feller property,
thanks to the continuity of coagulation maps.

Let Π = (Πt, t ≥ 0) be an exchangeable P-coalescent. For every t ≥ 0, let Πn
t denote

the restriction of the partition Πt to {1, . . . , n}. Then it is easy to verify that the process
(Πn

t , t ≥ 0) is also a Markov process, with values in the (finite) set Pn of all partitions of
{1, . . . , n} : Precisely, if P n

t denotes the semigroup of Πn and if η ∈ Pn has p blocks, P n
t (η, ·)

is the distribution of the coagulation of η by the restriction of πt to {1, . . . , p}. The law
of the Markov chain (Πn

t , t ≥ 0) is then characterized by its transition rates. Thanks to
exchangeability, we only have to consider, for every integer p ≥ 2 and every k1, . . . , km ≥ 2
with k1+· · ·+km ≤ p, the rate βp;k1,...,km corresponding to the following transition. Starting from
a partition π with k blocks, if C1, . . . , Cm are disjoint subcollections of blocks of π containing
respectively k1, . . . , km blocks, a new partition π′ is obtained by merging the blocks of Ci, for
every i = 1, . . . ,m, whereas the remaining p−(k1+· · ·+km) blocks which are not in C1∪. . .∪Cm
are left unchanged in π′. In this form, we see that the class of exchangeable P-coalescents is
exactly the class of coalescents recently studied by Schweinsberg [18]. See also the discussion
in Section 3.3 of [15] or Section 2.6 of [16].

Coalescents with multiple collisions [15] correspond to the special case where βp;k1,...,km = 0
whenever m ≥ 2. Thus the only (possibly) nonzero rates are the βp,k for 2 ≤ k ≤ p. According
to [15], these rates must be of the form

βp,k =
∫

Λ(dx)xk−2 (1− x)p−k. (11)

where Λ is a finite measure on [0, 1]. Conversely, given any finite measure Λ on [0, 1], there
is a coalescent with multiple collisions whose rates are given by (11), which is called the Λ-
coalescent. We refer to the standard Λ-coalescent when the initial value is the partition of N in
singletons.

We now introduce flows of bridges. We let Id denote the identity mapping Id(r) = r for
every r ∈ [0, 1].

Definition 2 A flow of bridges is a collection (Bs,t ,−∞ < s ≤ t <∞) of bridges such that:

(i) For every s < t < u, Bs,u = Bs,t ◦Bt,u a.s.

(ii) The law of Bs,t only depends on t − s. Furthermore, if s1 < s2 < · · · < sn, the bridges
Bs1,s2 , Bs2,s3 , . . . , Bsn−1,sn are independent.
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(iii) B0,0 = Id and B0,t −→ Id in probability as t ↓ 0, in the sense of Skorohod’s topology.

In (iii), the convergence B0,t −→ Id as t ↓ 0 is equivalent to saying that B0,t(r) converges to
r in probability for every r ∈ [0, 1].

If (Bs,t ,−∞ < s ≤ t < ∞) is a flow of bridges, we can for each t ≥ 0 construct the
exchangeable partition π(B0,t) as in subsection 2.3 for B = B0,t. In particular, the ranked
sequence of frequencies of π(B0,t) coincides with that of the jump sizes of the bridge B0,t. We
stress that the same sequence of i.i.d. uniform variables V1, . . . is used to define π(B0,t) for all
t’s.

3.2 The basic correspondence

The next theorem shows that there is a one-to-one correspondence between distributions of
flows of bridges and distributions of exchangeable P-coalescents.

Theorem 1 (i) Let (Bs,t ,−∞ < s ≤ t <∞) be a flow of bridges. Then the process (π(B0,t), t ≥
0) is an exchangeable P-coalescent which starts from the partition of N into singletons.

(ii) Conversely, if (Πt, t ≥ 0) is an exchangeable P-coalescent started from the partition of N
into singletons, then there is a flow of bridges (Bs,t ,−∞ < s ≤ t <∞) such that the processes
(π(B0,t), t ≥ 0) and (Πt, t ≥ 0) have the same finite dimensional distributions.

Proof: (i) Let 0 < t1 < · · · < tn < tn+1. It follows from Corollary 1 that the conditional
distribution of π(B0,tn+1) knowing π(B0,t1), π(B0,t2), . . . , π(B0,tn) is the law of the coagulation
of π(B0,tn) by an independent exchangeable partition distributed as π(Btn,tn+1) or equivalently
as π(B0,tn+1−tn). This shows that the process π(B0,t) is Markovian and that its semigroup
satisfies the defining property of an exchangeable P-coalescent. Finally, using the continuity
lemma and the fact that B0,t converges in probability to the identity map Id as t→ 0, we get
that t→ π(B0,t) is continuous in probability.

(ii) Let (Πt, t ≥ 0) be an exchangeable P-coalescent started from the partition of N in
singletons. With this special initial value, it is immediate that the exchangeable partition πt
of Definition 1 is given by πt = Πt. For every t ≥ 0, let Bt be a bridge such that π(Bt)

d
= Πt

(note that Bt may be obtained from the explicit formula (2), letting β be the ranked sequence
of frequencies of Πt). Then let s, t > 0 and let B′s be a copy of Bs independent of Bt. Corollary

1 implies that π(Bt ◦ B′s) has the same distribution as the coagulation of π(Bt)
d
= Πt by an

independent copy of π(B′s)
d
= Πs. It follows that π(Bt ◦ B′s)

d
= Πs+t and thus Bt ◦ B′s

d
= Bs+t.

We can now use the Kolmogorov extension theorem to construct a collection (Bs,t ,−∞ < s ≤
t <∞) of bridges such that, for every s < t, Bs,t

d
= Bt−s and Bs1,s2 , . . . Bsk−1,sk

are independent
whenever s1 < · · · < sk. The continuity in probability of Πt as t ↓ 0 gives the analogous
property for B0,t as t ↓ 0. 2

Example 1: The Kingman coalescent. Consider the case when (Πt, t ≥ 0) is the so-called
Kingman coalescent. Recall from Theorem 4 in [12] that the process of the number |Πt| of blocks
of Πt is a pure death process with death rate k(k−1)/2 at level k ∈ N. Moreover, Πt is the trivial
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partition of N into a single block if |Πt| = 1, and conditionally on |Πt| = k ≥ 2, the sequence
of the asymptotic frequencies of its blocks ranked in random order, is the uniform probability
measure on the simplex {(x1, . . . , xk) : xi ≥ 0 and

∑k
i=1 xi = 1}, i.e. the k-dimensional Dirichlet

distribution with parameter (1, . . . , 1). It now follows from (2) that the law of the bridge B0,t

which is associated to Kingman coalescent by Theorem 1, can be described as follows: The
process #(t) of the number of jumps of B0,t is a pure death process with death rate k(k− 1)/2
at level k ∈ N, and started at #(0+) = ∞; furthermore the conditional distribution of B0,t

given #(t) = k is that of
k∑
i=1

βi 1{U i≤r} , r ∈ [0, 1] ,

where U1, . . . , Uk is a sequence of k i.i.d. uniform [0, 1] variables, and β = (β1, . . . , βk) a
Dirichlet variable with parameter (1, . . . , 1) which is independent of the Ui’s (for k = 1, one
has β1 = 1 a.s.).

Example 2: The Bolthausen-Sznitman coalescent. For α ∈]0, 1[, let σ(α) denote a stable
subordinator with index α. Then the process (B(α)(r) = σ(α)(r)/σ(α)(1), r ∈ [0, 1]) is a bridge.
Furthermore, if α, β ∈]0, 1[ and B̃(β) is a copy of B(β) independent of B(α), the composition
B(α)◦B̃(β) has the same distribution as B(αβ). It easily follows that there exists a flow of bridges
(Bs,t ,−∞ < s ≤ t < ∞) such that Bs,t is distributed as B(α) for α = es−t. In this situation,
(π(B0,t), t ≥ 0) is the so-called Bolthausen-Sznitman coalescent which was introduced in [4].
See [1] and [3] for various results related to this example.

Remarks. (i) Many results about Λ-coalescents have a natural interpretation via Theorem 1,
in the setting of flows of bridges. For instance, a bridge B has zero drift coefficient a.s. if and
only if the exchangeable partition π(B) has so-called proper frequencies, that is the total sum
of the asymptotic frequencies of its blocks equals 1 a.s. (or equivalently, none of its blocks is a
singleton a.s.). Theorem 8 of Pitman [15] provides an explicit characterization of this property
for Λ-coalescents in terms of the measure Λ. Similarly, the discrete case holds for the bridge
Bs,t if and only if the associated coalescent comes down from infinity, which means that for
every t > 0, Πt has only finitely many non-empty blocks. We refer to Schweinsberg [19] for a
characterization of this property for Λ-coalescents. More generally, these questions can also be
addressed for bridges associated to arbitrary exchangeable P-coalescents; see e.g. Proposition
30 in Schweinsberg [18].

(ii) For a general flow of bridges B, it is also natural to consider the family of inverse
mappings B−1

s,t for s ≤ t. It follows from the cocycle property

B−1
s,u = B−1

t,u ◦B−1
s,t , a.s. for every s ≤ t ≤ u

that for every x ∈ [0, 1], the one-point motion
(
B−1

0,t (x)
)
t≥0

is Markovian; note from Lemma 2

that Lebesgue measure on [0, 1] is invariant for this Markov process. More generally, for every

integer k ≥ 1 and every x1, . . . , xk ∈ [0, 1], the k-point motion
(
B−1

0,t (x1), . . . , B−1
0,t (xk)

)
t≥0

is also

Markovian, and the Feller property is fulfilled whenever for each t > 0, the map r → B−1
0,t (r)

has no fixed discontinuity. Further, in the continuous case (i.e. when the map r → B−1
0,t (r) is

continuous a.s. for every t ≥ 0), the Feller property still holds if we restrict the state space

to the open interval ]0, 1[, and the family
(
B−1
s,t ,−∞ < s ≤ t <∞

)
then induces a coalescing
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stochastic flow on ]0, 1[, in the terminology of Le Jan and Raimond [13] (the boundary points
0 and 1 have to be excluded as they are absorbing states).

3.3 Flow of bridges and mass coalescents

In this section, we briefly reformulate the preceding results in terms of the so-called mass
coalescents (see e.g. Section 3.7 of [15]). Recall from section 2.1 the definition of the sets S
and Sf , and denote by 0 the sequence in S with all components equal to 0. If x = (xi)i∈N ∈ Sf
and π is a partition of N, the coagulation of x by π is the element of Sf whose components are
the numbers ∑

i∈A
xi

when A varies over the blocks of π (these numbers must obviously be ranked in nonincreasing
order, and if π has finitely many blocks, the other components are taken equal to 0).

Definition 3 An exchangeable mass coalescent is a Markov process X = (Xt, t ≥ 0) with values
in S, with a Feller semigroup (Qt, t ≥ 0) satisfying the following property: For every t ≥ 0,
there exists a random exchangeable partition πt of N, such that, for every x ∈ Sf , Pt(x, ·) is the
law of the coagulation of x by πt.

Let X be an exchangeable mass coalescent with semigroup Qt and let πt be as in the definition
above. Then for every t > 0 and every x ∈ S, Qt(x, ·) is the distribution of the ranked sequence
of the numbers ∑

i∈A
xi + (1− |x|)fA,

when A varies over the blocks of πt, and fA is as previously the asymptotic frequency of A.
This easily follows from the definition by approximating x by a sequence in Sf and using the
Feller property of the semigroup.

There is a one-to-one correspondence between laws of exchangeable P-coalescents and laws of
exchangeable mass coalescents. On one hand, if (Πt, t ≥ 0) is an exchangeable P-coalescent and
βt is the ranked sequence of frequencies of Πt, then the process (βt, t ≥ 0) is an exchangeable
mass coalescent, whose transition kernel Qt(x, ·) is the law of the coagulation of x by the
exchangeable partition πt appearing in Definition 1. Conversely, if X is an exchangeable mass
coalescent and πt is the (unique in law) exchangeable partition introduced in Definition 3, then
for every s, t > 0, πt+s has the same distribution as the coagulation of πt by an independent

copy of πs. Hence there exists an exchangeable P-coalescent (Πt, t ≥ 0) such that Πt
d
= πt for

every t > 0.

We can thus reformulate Theorem 1 as follows:

(i) If B = (Bs,t ,−∞ < s < t < ∞) is a flow of bridges and βt = (βit , i ∈ N) denotes the
ranked sequence of jump sizes of B0,t, then the process (βt, t ≥ 0) is an exchangeable mass
coalescent with initial value β0 = 0.

(ii) Conversely, if X is an exchangeable mass coalescent started at X0 = 0, there exists a flow
of bridges B such that the process (βt, t ≥ 0) defined in (i) has the same distribution as
X.
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4 Poissonian construction of flows of bridges

It has been known from the pioneering works of Lévy and Itô that Poisson point processes
provide a natural way for constructing a large class of stochastic flows. In this section, we shall
first use this method to construct simple flows of bridges and specify the law of the associated
P-exchangeable coalescents. Then we shall show that flows of bridges corresponding to general
Λ-coalescents arise as weak limits of such simple flows.

To start with, we introduce for every x ∈]0, 1] and u ∈]0, 1[ the elementary function

bu,x(r) = (1− x)r + x1{u≤r} , r ∈ [0, 1] . (12)

Note that if, as usual, U stands for a uniform [0, 1] variable, then the randomly mixed function
bU,x is a prototype of a bridge. Next, consider a Poisson random measure M on R×]0, 1[×]0, 1]
with intensity dt ⊗ du ⊗ ν(dx), where ν is some finite measure on ]0, 1]. With probabil-
ity one, for every s ≤ t the number K of atoms of M on ]s, t]×]0, 1[×]0, 1] is finite; let
(t1, u1, x1), . . . , (tK , uK , xK) denote these atoms with s < t1 < · · · < tK ≤ t. We then de-
fine

BM
s,t = bu1,x1 ◦ · · · ◦ buK ,xK

, (13)

where we agree that the right-hand side above is simply the identity map on [0, 1] when K = 0.

Lemma 3 BM =
(
BM
s,t,−∞ < s ≤ t <∞

)
is a flow of bridges.

The flow BM will be called a ν-simple flow of bridges.

Proof: All that we need to check is that BM
s,t is indeed a bridge, as the other required properties

are obvious. To that end, let us first argue conditionally on the number K of atoms of M on
]s, t]×]0, 1[×]0, 1].

It is well-known that conditionally on K = k ≥ 1, the variables u1, . . . , uk, x1, . . . , xk are
independent, and the ui’s are uniformly distributed on ]0, 1[. Hence bu1,x1 , . . . , buk,xk

are inde-
pendent bridges, and since the composition of two independent bridges is again a bridge, we
see by induction that BM

s,t is a bridge. This is also the case conditionally on K = 0, since then
BM
s,t ≡ Id. As mixing laws of bridges preserves the bridge property, the proof is complete. 2

Let us now describe the evolution of the exchangeable P-coalescent ΠM := (π(BM
0,t), t ≥ 0)

which is constructed from the simple flow BM as in Theorem 1. Plainly, ΠM is a step Markov
process, and more precisely, t > 0 is a jump-time for ΠM only if the fiber {t}×]0, 1[×]0, 1]
contains an atom of the Poisson measure M .

Specifically, let (t, u, x) be, say, the k-th atom of M on [0,∞[×]0, 1[×]0, 1] and B := BM
0,t− the

state of the flow immediately before t. Then, by the same argument as in the proof of Lemma
3, B is a bridge, and the partition π = π(B) is the state of the coalescent ΠM immediately
before the jump. The partition π′ = ΠM

t after the jump is obtained as follows: To each block
Ai of π, we associate the variable V ′i defined by (3) and consider the set

I = {i ∈ N : (1− x)u ≤ V ′i < (1− x)u+ x} .

Then π′ is the partition whose blocks are the Aj’s for j ∈ N\I and A′ =
⋃
i∈I Ai, the block

obtained by the coagulation of all the blocks with indices in I.
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It is convenient to reformulate this description in terms of the variables

ξi = 1{(1−x)u≤V ′i <(1−x)u+x} , i ∈ N .

Since by Lemma 2, V ′1 , . . . are i.i.d. uniform [0, 1] variables which are independent of π, u and
x, we get that conditionally on x, the ξi’s form an i.i.d. sequence of Bernoulli variables with
P(ξi = 1) = x, which is independent of π. We see that π′ then results from the coagulation of
all the blocks Ai with ξi = 1 into a single block. This last formulation enables us to identify
ΠM as a standard Λ-coalescent, where Λ is the measure on [0, 1] given by Λ(dx) = x2ν(dx):
See Corollary 3 in Pitman [15], and also Sagitov [17].

We record this analysis in the following statement.

Lemma 4 Let ν be a finite measure on ]0, 1]. Let B be a ν-simple flow of bridges and let
Π = (π(B0,t), t ≥ 0) be the exchangeable P-coalescent associated with B by Theorem 1. Then
Π is a standard Λ-coalescent for Λ(dx) = x2ν(dx).

We now state a result of convergence in distribution of a sequence of simple flows of bridges,
which yields a Poissonian construction of flows of bridges corresponding to the Pitman-Sagitov
Λ-coalescents.

Theorem 2 Consider a sequence (νn, n ∈ N) of finite measures on ]0, 1], and for every n, let
(Bn

s,t,−∞ < s ≤ t < ∞) be a νn-simple flow of bridges. Suppose that Λn(dx) := x2νn(dx)
converges weakly to some finite measure Λ(dx) on [0, 1]. Then as n → ∞, (Bn

s,t,−∞ < s ≤
t < ∞) converges in the sense of weak convergence of finite dimensional distributions to the
flow of bridges (Bs,t ,−∞ < s ≤ t < ∞) such that the associated exchangeable P-coalescent
(π(B0,t), t ≥ 0) is a standard Λ-coalescent.

Proof: We know from Theorem 1 of Pitman [15] that the standard Λn-coalescent converges
in distribution to the standard Λ-coalescent. By Lemma 4 and the continuity lemma, this
readily entails that for every s < t, Bn

s,t converges in distribution to Bs,t, where B is the flow of
bridges associated with the Λ-coalescent by Theorem 1. The convergence of finite-dimensional
marginals then follows using the independence properties of flows of bridges. 2

If we start from a given finite measure Λ on [0, 1], we can find a sequence νn of finite
measures on ]0, 1] such that the measures x2νn(dx) converge weakly to Λ. Lemma 4 and
Theorem 2 then provide a (weak) Poissonian construction of the flow of bridges corresponding
to the Λ-coalescent. By analogy with the case of Lévy processes, it is tempting to reinforce
this construction to a strong one, that is to obtain an almost sure version of the convergence
of Theorem 2.

For this purpose, let us consider a finite measure Λ on [0, 1] with Λ({0}) = 0, and let
M be a Poisson random measure on R×]0, 1[×]0, 1] with intensity dt ⊗ du ⊗ x−2Λ(dx). For
every n ∈ N, the restriction Mn of M to R×]0, 1[×]1/n, 1] is a Poisson measure with intensity
dt ⊗ du ⊗ νn(dx), where νn is the finite measure given by νn(dx) = 1{x>1/n}x

−2Λ(dx). We
can thus use (13) to construct a νn-simple flow of bridges Bn from the Poisson measure Mn,
and since Λn(dx) := x2νn(dx) converges weakly to Λ(dx), Theorem 2 shows that Bn converges
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weakly as n → ∞ towards the flow of bridges corresponding to the Λ-coalescent. Under the
additional condition ∫

[0,1]
x−1Λ(dx) <∞ . (14)

we can in fact get an almost sure convergence. Assume further for simplicity that
∫
x−2Λ(dx) =

∞ (as otherwise there is no difficulty) and Λ({1}) = 0. For fixed s < t, denote by {(ti, ui, xi), i ∈
N} the sequence of the atoms of the Poisson measure M on ]s, t]×]0, 1[×]0, 1], ranked in the
decreasing order of the third coordinate. On the one hand, for every u, x ∈]0, 1[, the inverse
b−1
u,x of the elementary function bu,x, is Hölder continuous with parameter 1/(1 − x). On the

other hand, assumption (14) ensures that with probability one,∑
i∈N

xi < ∞ ,

It is then a simple exercise to verify that (Bn
s,t)
−1 converges in the sense of the uniform norm as

n→∞, a.s. Therefore, in this special case, the limiting flow of Theorem 2 can be constructed
in such a way that (Bn

s,t)
−1 converges uniformly to (Bs,t)

−1, a.s., for every s < t. It is an
interesting question whether such an almost sure convergence still holds when (14) fails.

We mention that the Poissonian approach developed in this section, can be extended to the
construction of the most general flow of bridges (corresponding to the general exchangeable
P-coalescent studied by Möhle and Sagitov [14] and Schweinsberg [18]). Roughly, one needs to
replace the elementary functions bu,x by more general functions the type

r →
(

1−
∞∑
i=1

xi

)
r +

∞∑
i=1

xi1{r≥ui} ,

where x1 ≥ x2 ≥ · · · ≥ 0 is a sequence in S and (ui, i ∈ N) a sequence of distinct points in
]0, 1[. Note that such functions correspond to general bridges conditioned by the sequences of
their jump sizes and jump times. Details are left to the interested reader.

5 The dual flow

5.1 Dual flows and generalized Fleming-Viot processes

Here, we turn our attention to the dual flow (B̂s,t ,−∞ < s ≤ t <∞) defined by

B̂s,t = B−t,−s ,

where (Bs,t ,−∞ < s ≤ t < ∞) is as in subsection 2.1. For the sake of simplicity, we shall
assume that the flow is not trivial, in the sense that the case when Bs,t ≡ Id will be implicitly
excluded from now on.

Plainly, B̂s,t is a bridge whose law only depends on t− s, and which converges in probability

to Id when t − s → 0. Furthermore the bridges B̂s1,s2 , . . . , B̂sn−1,sn are independent for every
s1 < · · · < sn, and the following cocycle property holds for every s < t < u:

B̂t,u ◦ B̂s,t = B̂s,u .
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Recall that M1 denotes the space of all probability measures on [0, 1], which is equipped
with the weak topology. We are especially interested in the process (ρt)t≥0 taking values in
M1, which is defined by the distribution function

ρt([0, y]) = B̂0,t(y) for every y ∈ [0, 1].

From the cocycle property for B̂, we immediately get that this process is Markovian, with a
transition semigroup Rt which can be described as follows. If µ ∈ M1, and F(µ) denotes the
distribution function of µ, Rt(µ, ·) is the law of the random element of M1 whose distribution
function is B0,t ◦F(µ). From this description and the fact that B0,t has no fixed discontinuities,
we also see that (ρt)t≥0 is a Feller process and in particular it has a càdlàg modification. From
now on, we always deal with this càdlàg modification. Note that ρ0 = λ is Lebesgue measure on
[0, 1]. In the genealogical interpretation of Section 1, ρt(dr) represents the size of the progeny
at time t of the fraction dr of the initial population.

We may also consider, for a fixed y ∈ [0, 1], the process Ft(y) defined by

Ft(y) = ρt([0, y]).

Again from the cocycle property, we see that this process is a Markov process, and that its
semigroup Qt does not depend on y: For every x ∈ [0, 1], Qt(x, ·) is simply the law of B0,t(x).
This semigroup is again Feller thanks to the absence of fixed discontinuities for B0,t. It is easy
to verify that ρt({y}) = 0 for every t ≥ 0, a.s. (if ε > 0 and Tε = inf{t ≥ 0 : ρt({y}) ≥ ε},
apply the strong Markov property of ρ at time Tε to see that on the event {Tε < ∞} there
will exist rational values of t for which ρt({y}) > 0, which does not occur with probability
one). From the right-continuity of paths of ρt, we now deduce that the paths of Ft(y) are also
right-continuous a.s. (they will indeed be càdlàg by the Feller property). The process Ft(y)
will be studied in subsection 5.3.

We will now argue that the process ρt can be viewed as a generalized Fleming-Viot process.
Consider first the case of simple flows. Let BM

s,t be defined by (13), where M is a Poisson
random measure on R×]0, 1[×]0, 1] with intensity dt⊗ du⊗ ν(dx) and ν is some finite measure
on ]0, 1]. As above, we consider the process ρM with values in M1 defined for t ≥ 0 by

ρM([0, y]) = B̂M
0,t(y) , y ∈ [0, 1] ,

and recall that
B̂M

0,t = buk,xk
◦ · · · ◦ bu1,x1 (15)

where (−t1, u1, x1), . . . , (−tk, uk, xk) are the atoms of M on [−t, 0[×]0, 1[×]0, 1] with 0 < t1 <
· · · < tk ≤ t.

The process (ρMt , t ≥ 0) is a continuous-time Markov chain, and we see from (15) that its
jumps occur with rate ν(]0, 1]), independently of the state. More precisely, as the elementary
function bu,x corresponds to the distribution of the probability measure (1 − x)dy + xδu(dy)
on [0, 1] (where δu stands for the Dirac point mass at u), if t is a jump time for ρM· , then the
conditional law of ρMt given ρMt− is that of

(1−X)ρMt− +XδY ,
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where X and Y are independent random variables, X is distributed according to ν(·)/ν(]0, 1])
and Y according to ρMt−.

This description bears obvious similarities with that for the evolution of the Fleming-Viot
process; see e.g. Chapter 1 of Etheridge [7]. For this reason, we call ρM the ν-generalized
Fleming-Viot process (ν-GFV process in short). A limit theorem for sequences of these simple
generalized Fleming-Viot processes is easily deduced from Theorem 2. We let (νn) be a sequence
of finite measures on ]0, 1], and for every n we denote by ρn = (ρnt , t ≥ 0) the νn-GFV process
started at λ.

Corollary 2 Let Λ be a finite measure on [0, 1]. Assume that the finite measures x2νn(dx)
converge weakly to Λ. Then the sequence of processes (ρn) converges in distribution, in the
sense of weak convergence of finite-dimensional marginals, to the process ρ corresponding to the
flow of bridges B associated with the Λ-coalescent.

This immediately follows from Theorem 2: If Bn denotes a νn-simple flow of bridges,
and if 0 < t1 < · · · < tk, Theorem 2 yields the convergence in distribution of the k-tuple
(Bn
−tk,0, . . . , B

n
−t1,0) towards (B−tk,0, . . . , B−t1,0), which gives (and is in fact stronger than) the

convergence of (ρnt1 , . . . , ρ
n
tk

) towards (ρt1 , . . . , ρtk).

In subsection 5.2 below, we will see that the law of the process (ρt) is characterized by a
martingale problem for which uniqueness is proved via a duality argument. (This approach also
shows that the convergence in distribution in Corollary 2 holds in the sense of weak convergence
in the Skorohod space D([0,∞[,M1).) The process (ρt) appears as a measure-valued dual of the
Pitman-Sagitov coalescents with multiple collisions. In this direction, it is interesting to recall
the known connection between the standard Fleming-Viot process and Kingman’s coalescent,
see e.g. Section 5.2 of [7]. As mentioned above, these generalized Fleming-Viot processes
can be viewed as continuous versions of Cannings’ population model (see Section 1). Various
properties motivated by this genealogical interpretation are discussed in subsection 5.3.

5.2 A martingale problem and a duality relation

In this section, we will provide a different approach to the Poisson construction of Theorem 2,
based on the study of the martingale problem for the process ρ introduced in subsection 5.1.
In the case of a simple flow of bridges, the description of the continuous-time Markov chain ρM

given in subsection 5.1 shows that its law is characterized by the following martingale problem:
For any bounded measurable function G on M1,

G(ρMt )−
∫ t

0
ds
∫
ν(dy)

∫
ρMs (da)

(
G
(
(1− y)ρMs + yδa

)
−G

(
ρMs
) )

(16)

is a martingale.

We will consider functions G of the following special type. Let p ≥ 1 be an integer and let
f be a continuous function on [0, 1]p. For every µ ∈M1, we set

Gf (µ) =
∫

[0,1]p
µ(dx1) . . . µ(dxp) f(x1, . . . , xp).
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Let Λ be a finite measure on [0, 1], and let βp,k be the transition rates of the Λ-coalescent,
as defined by (11). We introduce an operator L acting on functions of the type Gf :

LGf (µ) =
∑

I⊂{1,...,p},|I|≥2

βp,|I|

∫
µ(dx1) . . . µ(dxp)

(
f(RI(x1, . . . , xp−|I|+1))− f(x1, . . . , xp)

)
. (17)

Here, for every subset I of {1, . . . , p} with |I| ≥ 2, RI(x1, . . . , xp−|I|+1) is defined as follows. If
inf(I) = `,

RI(x1, . . . , xp−|I|+1) = (y1, . . . , yp)

where yi = x` for i ∈ I and the values yi, i /∈ I listed in the order of {1, . . . , p}\I are the
numbers x1, . . . , x`−1, x`+1, . . . , xp−|I|+1.

Let B be the flow of bridges associated with the Λ-coalescent and let ρt be defined from B
as in subsection 5.1.

Theorem 3 (i) The law of the process (ρt, t ≥ 0) is characterized by the following martingale
problem. For every integer p ≥ 1 and every continuous function f on [0, 1]p,

Gf (ρt)−
∫ t

0
dsLGf (ρs)

is a martingale.

(ii) Let νn be a sequence of finite measures on ]0, 1], and for every n let ρn be the Markov
chain in M1 associated with νn, started at θn ∈M1. Assume that the finite measures x2νn(dx)
converge weakly to Λ and that the sequence θn converges weakly to θ∞. Then the sequence
of processes (ρn) converges in distribution in the sense of weak convergence for the Skorohod
topology on D([0,∞[,M1), to the process ρ started at θ∞.

The proof will show that the process ρ is a measure-valued dual to the Λ-coalescent, in the
sense of Ethier and Kurtz [8] (Section 4.4).

Proof: We prove (i) and (ii) simultaneously. So let (νn) and (ρn) be as in (ii) and let ϕ be a
bounded measurable function on [0, 1]. Taking G(µ) = 〈µ, ϕ〉 and then G(µ) = 〈µ, ϕ〉2 in (16),
we get that for every n, both 〈ρnt , ϕ〉 and

〈ρnt , ϕ〉2 −
( ∫

νn(dy)y2
) ∫ t

0
ds
(
〈ρnt , ϕ2〉 − 〈ρnt , ϕ〉2

)
are martingales. Since the sequence

∫
νn(dy)y2 is bounded, a classical criterion (see e.g. The-

orem VI.4.13 in [9]) ensures that the sequence of the laws of the processes (〈ρnt , ϕ〉)t≥0 in
D([0,∞[,R) is tight. A standard argument then yields the tightness of the laws of the pro-
cesses ρn in D([0,∞[,M1).

At least along a subsequence, we can thus assume that the processes ρn converge weakly
to some process ρ with càdlàg paths and values in M1. (Of course, in the special case where
θn = λ for every n, we know from Corollary 2 that this process is the same as the one of
subsection 5.1.) We again apply (16), now with

G(µ) =
p∏
i=1

〈µ, ϕi〉
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where ϕi is continuous on [0, 1], for every i = 1, . . . , p. It follows that, for every n, G(ρnt ) −∫ t
0 dsL

nG(ρns ) is a martingale, if

LnG(µ) =
∫
νn(dy)

∫
µ(da)

(
G((1− y)µ+ yδa)−G(µ)

)
=

∫
νn(dy)

∫
µ(da)

( p∏
i=1

(
(1− y)〈µ, ϕi〉+ yϕ(a)

)
−

p∏
i=1

〈µ, ϕi〉
)

=
∫
νn(dy)

 ∑
I⊂{1,...,p}

(1− y)p−|I|y|I|
(∏
i/∈I
〈µ, ϕi〉

)
〈µ,

∏
i∈I
ϕi〉 −

p∏
i=1

〈µ, ϕi〉


=

∑
I⊂{1,...,p},|I|≥2

βnp,|I|

(∏
i/∈I
〈µ, ϕi〉

)
〈µ,

∏
i∈I
ϕi〉 −

p∏
i=1

〈µ, ϕi〉

 ,
where βnp,k =

∫
νn(dy)yk(1− y)p−k for 2 ≤ k ≤ p. The assumption of the theorem ensures that

βnp,k converges as n → ∞ towards βp,k. By passing to the limit n → ∞, it follows that, for
f(x1, . . . , xp) = ϕ1(x1) · · ·ϕp(xp),

Gf (ρt)−
∫ t

0
dsLGf (ρs)

is a martingale, where LGf is as in the statement of the theorem. Since any continuous function
on [0, 1]p is the uniform limit of linear combinations of functions of the type ϕ1(x1) · · ·ϕp(xp),
we easily conclude that the process ρ satisfies the martingale problem of the statement of the
theorem.

We then verify that the law of ρ is characterized by this martingale problem. To this end we
use a duality argument. Denote by (Πp

t )t≥0 the Λ-coalescent in Pp. Following the description
given in Section 3, its generator L∗ can be written as follows: If π ∈ Pp is a partition with say
q blocks A1, . . . , Aq, and if F is any function defined on Pp,

L∗F (π) =
∑

J⊂{1,...,q},|J |≥2

βq,|J |
(
F (cJπ)− F (π)

)
where cJπ denotes the new partition obtained from π by merging the blocks Ai, i ∈ J .

If f is a continuous function on [0, 1]p, we denote by Φf the function defined onM1×Pp by

Φf (µ, π) =
∫
µ(dx1) . . . µ(dx|π|) f(Y (π;x1, . . . , x|π|)),

where, if π has q = |π| blocks A1, . . . , Aq listed in the order of their least elements, we put
Y (π;x1, . . . , xq) = (y1, . . . , yp), with yj = xi if and only if j ∈ Ai.

If π is fixed, the function µ −→ Φf (µ, π) can be written in the form Gg(µ) for a certain
continuous function g on [0, 1]|π| and we can thus define LΦf (µ, π) = LGg(µ). Similarly, if µ is
fixed, we can view Φf (µ, ·) as a function on Pp, and define L∗Φf (µ, π). The following lemma is
easily deduced from the explicit form of L and L∗.

Lemma 5 For every µ ∈M1 and π ∈ Pp,

LΦf (µ, π) = L∗Φf (µ, π).
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This lemma establishes the duality between the limiting process ρ and the Λ-coalescent. Let
π0 denote the partition of {1, . . . , p} in singletons. Arguing as in Section 4.4 of [8], we infer
from Lemma 5 that, for any solution ρ of the martingale problem of the theorem,

E (Gf (ρt)) = E (Φf (ρt, π0)) = E (Φf (ρ0,Π
p
t )) , (18)

where Πp
t starts from π0 and it is implicit that ρ0 and (Πp

s)s≥0 are independent. Hence the law
of ρt is uniquely determined by that of ρ0. From Theorem 4.4.2 in [8], this implies uniqueness
for the martingale problem, as well as the strong Markov property for the solution. Parts (i)
and (ii) of the theorem now follow. 2

Remarks. (1) The duality relation of Lemma 5 is of course reminiscent of that for the Fleming-
Viot process. In the case when Λ = c δ0 (so that Πt is the Kingman coalescent), (ρt)t≥0 is a
Fleming-Viot process without mutation, and we recover the duality presented e.g. in Section
1.12 of [7]. Note that duality for the Fleming-Viot process is usually presented in terms of a
function-valued process rather than a coalescent.

(2) In the special case where ρ0 = λ is Lebesgue measure on [0, 1], we know that ρt is
distributed as (

1−
∑
i∈N

βit
)
λ+

∑
i∈N

βit δUi

where βt = (βit)i∈N is the ranked sequence of frequencies of the standard Λ-coalescent at time t,
and (Ui)i∈N are i.i.d. uniform on [0, 1] and independent of βt. It is a simple matter to recover
this identity in distribution from the duality relation (18).

(3) Let ρµ denote the process ρ started at µ ∈ M1. Then ρµ can be constructed from the
special case µ = λ by the explicit formula

ρµt ([0, x]) = ρλt ([0, µ([0, x])]) , x ∈ [0, 1] , t ≥ 0.

This formula obviously corresponds to the description of the semigroup that was given in
subsection 5.1.

(4) We could have proved directly the duality relation (18), without using the above calcu-
lations of generators. Consider first the case when ρ0 = λ. Then Φf (ρt, π0) has the same law
as ∫

[0,1]p
dB0,t(x1) · · · dB0,t(xp)f(x1, . . . , xp) =

∫
[0,1]p

dx1 · · · dxpf(B−1
0,t (x1), . . . , B−1

0,t (xp)) .

In particular, taking expectations, we get

E (Φf (ρt, π0)) = E
(
f(B−1

0,t (V1), . . . , B−1
0,t (Vp))

)
,

where V1, . . . , Vp are i.i.d. uniform [0, 1] variables which are independent of the bridge B0,t. In
the notation of Section 2.3 with B = B0,t and Πt = π(B0,t), we thus have

E (Φf (ρt, π0)) = E
(
f
(
Y (Πp

t ;V
′

1 , . . . , V
′
|Πp

t |
)
))

, (19)
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where Πp
t stands for the restriction of the partition Πt to {1, . . . , p}. Recall from Lemma 3

that Πt and (V ′1 , . . .) are independent and that the latter is a sequence of i.i.d. uniform [0, 1]
variables. We now see that the right-hand side in (19) coincides with

E (Φf (λ,Π
p
t )) .

This completes the proof of (18) in the case ρ0 = λ, since we already know from Theorem 2
that (Πt, t ≥ 0) is the standard Λ-coalescent. In the general case, simply use remark (3) above.

5.3 One point motion and the primitive Eve

We consider again the dual flow (B̂s,t ,−∞ < s ≤ t < ∞) of a general flow of bridges and
the process (ρt, t ≥ 0) with ρ0 = λ, defined in subsection 5.1. In this section, we shall be
interested in the one-point motions B̂s,t(y), where y ∈ [0, 1] and s ∈ R are fixed, and t ≥ s.
By stationarity of the flow, there is no loss of generality in assuming s = 0, and we recall the
notation

Ft(y) = ρt([0, y]) = B̂0,t(y).

We saw in subsection 5.1 that Ft(y) is a Markov process with càdlàg paths and a Feller semi-
group Qt.

Proposition 1 The process (Ft(y), t ≥ 0) is a martingale which converges a.s. to 0 or 1. More
precisely,

P
(

lim
t→∞

Ft(y) = 1
)

= y .

Proof: The martingale property stems from the fact that for any bridge B, one has E(B(y)) =
y. Now the martingale Ft(y) is bounded and thus converges a.s., and we have to check that the
only possible limit points are 0 and 1.

The dynamics of coalescents implies that the probability that 1 and 2 belong to distinct
blocks of the partition π(B0,t) is e−ct, where c is some positive real number (c has to be strictly
positive as we have excluded the case when Bs,t ≡ Id). Expressing this probability in terms of
jump-sizes βi(t) of B0,t, we get

E
( ∞∑
i=1

(βi(t))2

)
= 1− e−ct ,

a quantity which converges to 1 when t→∞. Hence the ranked sequence of jump-sizes of B0,t

converge in probability to (1, 0, . . .), and thus, by the continuity lemma, B0,t (or, equivalently,
B−t,0) converges in distribution to the bridge that has a unique jump with size one. The rest
of the proof is now straightforward. 2

Proposition 1 suggests to investigate the set of initial values y ∈ [0, 1] for which limt→∞ Ft(y) =
1. By the monotonicity of bridges, this set is necessarily an interval. This yields the following
definition:
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Definition 4 The random point

e := inf
{
y ∈ [0, 1] : lim

t→∞
Ft(y) = 1

}
= sup

{
y ∈ [0, 1] : lim

t→∞
Ft(y) = 0

}
is called the primitive Eve.

Note that Proposition 1 entails that the primitive Eve is always uniformly distributed on [0, 1].

The terminology is motivated by the genealogical interpretation of the dual flow recalled in
subsection 5.1. It will follow from Theorem 4 below that ρt({e}) = Ft(e) − Ft(e−) converges
to 1 as t → ∞. However, the jump Ft(y) − Ft(y−) = ρt({y}) corresponds to the size of the
progeny at time t of the individual y of the initial generation. Thus, informally, the primitive
Eve is the common ancestor at the initial generation of most of the individuals at time t when
t is sufficiently large.

It is now natural to consider the process of the size of the progeny of the primitive Eve in
the population at time t. To describe its distribution, we shall distinguish two cases. Write dt
for the drift coefficient of Ft. Then the cocycle property implies that dt+s = dtd̃s, where d̃s is
a copy of ds independent of (dr)r≤t. Using also the Feller property of the semigroup of (ρt), it
follows that:

(i) Either dt = 0 a.s., for every t > 0.

(ii) Either P(dt > 0) > 0 for every t ≥ 0. Then dt = e−At , where (At)t≥0 is a subordinator
with values in [0,∞].

We refer to (i) as the proper case (since then the partitions π(B0,t) have proper frequencies a.s.
for every t ≥ 0) and to (ii) as the improper case. Necessary and sufficient conditions for the
proper case to hold can be found in Schweinsberg [18]; see also Theorem 8 in Pitman [15] for
the case of Λ-coalescents.

Theorem 4 (i) The process

ρt({e}) = Ft(e)− Ft(e−), t ≥ 0

is a Markov process in [0, 1] with a Feller semigroup Q∗t given as follows: If x > 0,∫
Q∗t (x, dy)ϕ(y) =

1

x
E
(
Ft(x)ϕ(Ft(x))

)
, (20)

and ∫
Q∗t (0, dy)ϕ(y) = E

( ∫
ρt(dy)ϕ(ρt({y}))

)
. (21)

In particular, the restriction to ]0, 1] of the semigroup Q∗t is the h-transform of Qt for h(x) = x.

(ii) In the proper case, 0 is an instantaneous point for the process (ρt({e}), t ≥ 0). In the
improper case, 0 is a holding point and more precisely P(ρt({e}) = 0 | ρt) = dt for every t ≥ 0.
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Remark. In the proper case, formula (21) shows that the law of ρt({e}) is that of a size-biased
sample of the atoms of ρt.

Proof: We first compute the distribution of ρt({e}) for a fixed t > 0. For every s ≥ 0, set
F̃s = B−t−s,−t. Then (F̃s, s ≥ 0) is independent of Ft and has the same law as (Fs, s ≥ 0).
Furthermore by the cocycle relation we have F̃s ◦ Ft = Ft+s a.s., for every s ≥ 0. Denote by
ẽ the primitive Eve for F̃ . Let y be any rational in [0, 1]. On the event {y > e}, we know
that F̃s ◦ Ft(y) = Ft+s(y) tends to 1 as s → ∞. Hence Ft(y) ≥ ẽ on the event {y > e}.
Similarly, we have Ft(y) ≤ ẽ on the event {y < e}. From these considerations we conclude that
ẽ ∈ [Ft(e−), Ft(e)]. Since ẽ is independent of Ft, we see that the conditional law of e given Ft
(or equivalently given ρt) is that of F−1

t (U), where U is uniform on [0, 1] and independent of
Ft. It follows that

E (ϕ(ρt({e})) | ρt) =
∫
ρt(dy)ϕ(ρt({y}))

and
E (ϕ(ρt({e}))) =

∫
Q∗t (0, dy)ϕ(y),

where Q∗t (0, ·) is as in the statement of the theorem. The property P(ρt({e}) = 0 | ρt) = dt
also readily follows.

We then claim that the conditional distribution of (ρt+s(e))s≥0 given the event {ρt({e}) = 0}
is the law of (ρs({e})s≥0 (this makes sense only in the improper case, since otherwise one is
conditioning on an event of zero probability). On the event {ρt({e}) = 0}, the function Ft is
continuous at e, and in the preceding notation we have ẽ = Ft(e) and

ρt+s({e}) = Ft+s(e)− Ft+s(e−) = F̃s(Ft(e))− F̃s(Ft(e)−) = F̃s(ẽ)− F̃s(ẽ−).

The claim now follows.

At this point we observe that the kernels Q∗t satisfy the following continuity property: For
every continuous function ϕ on [0, 1],

lim
x→0

Q∗tϕ(x) = Q∗tϕ(0). (22)

To get this property, we simply use the exchangeability of increments of Ft to write

Q∗tϕ(x) =
1

x
E
(
Ft(x)ϕ(Ft(x))

)
= (1− x)−1 E

(1

x

∫ 1−x

0
da (Ft(a+ x)− Ft(a))ϕ(Ft(a+ x)− Ft(a))

)
= (1− x)−1 E

(1

x

∫ 1−x

0
da
∫ a+x

a
ρt(dy)ϕ(Ft(a+ x)− Ft(a))

)
= (1− x)−1 E

( ∫
ρt(dy)

1

x

∫ y∧(1−x)

(y−x)+
daϕ(Ft(a+ x)− Ft(a))

)
and it is now clear that the latter quantity converges to

E
( ∫

ρt(dy)ϕ(ρt({y})
)

= Q∗tϕ(0)
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as x→ 0.

We now prove by induction on p that for every 0 < t1 < · · · < tp, and every nonnegative
measurable functions ϕ1, . . . , ϕp on [0, 1], one has

E
(
ϕ1(ρt1({e})) · · ·ϕp(ρtp({e}))

)
=
∫
Q∗t1(0, dz1)Q∗t2−t1(z1, dz2) . . . Q∗tp−tp−1

(zp−1, dzp)ϕ(z1) · · ·ϕ(zp). (23)

The case p = 1 has already been established. Let p ≥ 2 and suppose that the result holds at
order p−1. Assume for the moment that ϕ1, . . . , ϕp are continuous and that ϕ1 vanishes on [0, ε]
for some ε > 0. Now observe from Proposition 1 that, for every y > 0, the conditional law of
(Ft(y), t ≥ 0) given limt→∞ Ft(y) = 1 can be expressed as the h-transform of the unconditional
law, for h(y) = y. Next, pick some integer n ≥ 1 and for k = 0, . . . , n−1, consider the processes

Ft((k + 1)/n)− Ft(k/n) , t ≥ 0 .

It follows from the exchangeability of the increments of bridges and the flow property that the
distribution of each of these processes does not depend on k. The same thus holds true if we
condition these processes to have limit 1 as t → ∞, or equivalently by e ∈]k/n, (k + 1)/n].
These conditional distributions are therefore all the same as that of (Ft(1/n), t ≥ 0) given
limt→∞ Ft(1/n) = 1. By expressing ρt({e}) as the limit of Ft([ne + 1]/n) − Ft([ne]/n) when
n→∞, we now get

E
(
ϕ1(ρt1({e})) · · ·ϕp(ρtp({e}))

)
= lim

n→∞

n∑
k=1

E
(
ϕ1(Ft1(

k+1
n

)− Ft1( k
n
)) . . . ϕp(Ftp( k+1

n
)− Ftp( k

n
)) 1{ lim

t→∞
Ft( k+1

n
)− Ft( k

n
) = 1}

)
= lim

n→∞
nE

(
ϕ1(Ft1(

1
n
)) . . . ϕp(Ftp( 1

n
)) 1{ lim

t→∞
Ft( 1

n
) = 1}

)
= lim

n→∞
nE

(
ϕ1(Ft1(

1
n
))Ft1(

1
n
)
∫
Q∗t2−t1(Ft1(

1
n
), dz2) . . . Q∗tp−tp−1

(zp−1, dzp)ϕ(z2) · · ·ϕ(zp)
)

=
∫
Q∗t1(0, dz1)Q∗t2−t1(z1, dz2) . . . Q∗tp−tp−1

(zp−1, dzp)ϕ(z1) · · ·ϕ(zp),

where the last equality follows from (22). By standard arguments, we thus obtain that (23)
holds for any nonnegative measurable functions ϕ1, . . . , ϕp such that ϕ1(0) = 0. To complete the
proof, it remains to consider the case when ϕ1 = 1{0}. In that case however, the desired result
follows from the fact that the conditional law of (ρt1+s({e}))s≥0 knowing that {ρt1({e}) = 0}
is the law of (ρs({e}))s≥0, together with the induction hypothesis. This completes the proof of
(23).

It follows from (23) that the process (ρt({e}))t≥0 is Markovian with semigroup Q∗t . The Feller
property of the semigroup follows from (22) and the Feller property of Qt. Finally, in the proper
case we have seen that P(ρt({e}) = 0) = 0 for every t > 0, so that 0 must be an instantaneous
point. On the other hand, in the proper case, we have P(ρt({e}) = 0) = E(dt) > 0, so that e
is a holding point. 2

In the improper case, the process ρt({e}) must leave 0 by a jump, that is, if T := inf{t ≥ 0 :
ρt({e}) > 0}, we have ρT ({e}) > 0. It is easy to compute the distribution of this jump when
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B is the flow associated with the Λ-coalescent. Then the improper case holds iff∫
x−1Λ(dx) <∞

(see [15], Theorem 8), and the law of ρT ({e}) is given by

E
(
ϕ(ρT ({e}))

)
=

∫
ϕ(x)x−1Λ(dx)∫
x−1Λ(dx)

.

To prove this, observe that for any continuous function ϕ on [0, 1] such that ϕ(0) = 0, we have

E
(
ϕ(ρT ({e}))

)
= lim

t→0

1

θt
Q∗tϕ(0) = lim

t→0

1

θt
E
( ∫

ρt(dy)ϕ(ρt({y}))
)
,

where θ is the parameter of the exponential time T . Consider the special case ϕ(r) = rp for
p ≥ 1. It follows from the duality relation (18) that

E
( ∫

ρt(dy) ρt({y})p
)

= P(|Πp+1
t | = 1).

On the other hand, from the form of the rates for the Λ-coalescent, we have

lim
t→0

1

t
P(|Πp+1

t | = 1) = βp+1,p+1 =
∫
xp−1Λ(dx).

The stated result now follows.

Remark. In the case of the flow associated with the Λ-coalescent, the process ρt({e}) has
the same one-dimensional marginals as the process of the frequency at time t of the block
containing 1 in the standard Λ-coalescent (see Proposition 30 in [15]). Note however that the
two processes are quite different, since the latter has nondecreasing paths, which is not the case
for ρt({e}).
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