1 STAT 205B homework solutions; HW 2

Problem 6.2.7 (Durrett).
Observe that

P(Xppi =z, + 1| Xy = 24,1 <k <n) = P(&u1 € {81, &} Xp = 74,1 <k <)

N —z, ,
= Nx by independence

For z, = x4 we get P(Xny1 = 25| X = 23,1 < k < n) = %2 and for all other cases 0.
We see that P(X,41 = @, + 1|o(X1,..X,)) is 0(X,)-measurable and thus P(X,+1 = z, +
llo(X1,..X,)) = P(Xh41 = 2, + 1|0(X,)), so X is a Markov chain.

Problem 6.2.8 (Durrett).

Consider the sequence (X7, X, X3) = (1,1, 1). This can happen in two ways: (51, S2,53) =
(170,—1), or (51,32753) = (1,071) ThUS, P(X4 = 2|X1 = 1,X2 = ]_,Xg = 1) = .25. Now
consider the sequence (X7, Xo, X3) = (0,0, 1). This can only happen if (51, 52, 53) = (—1,0,1).
Thus, P(Xy =2|X; =0,X5 =0,X3 =1) =.5. Thus, X is not a Markov chain.

Problem 6.2.9 (Durrett).

E05n+n+2 (1 )n—sn

— 2 - 2 __ Sptn+2 :

Let p(s,) = e I T (i) - We will show
E0~ 2 (1-0) 2

P(X,41 =1|51,..5,) = p(Sy). Then all the assertions will follow.
/ p(Sy)dP = p(s,)P(S1 = s1,..5, = sp)
[S1=51,..Sn=5n]

=p(sp)EP(U, <0 for ke AUy, >0 for k € B|0)
where A ={k: sy —sp_1 =1}, B={k:sp—s,_1 =—1}

= p(s,)EOA(1 — 0)'Bl by independence

sn+tn n—sn sp+n+2 n— ‘

= p(sn) B0 (1—0) 2" = E0™ 32 (1—0)2" = EoAF (1 —9)8
=FEP(U, <0 for ke AU{n+1},Uy >0 for k € B|f)

== P(Sl = 51, Sn = Sn,Xn+1 = ].) = / 1[Xn+1:1]dp

[51:517--871:571}

Problem 6.3.10 (Durrett).
(i) x ¢ A gives 74 > 1 and so

E.(7a|F1) = Ex, (T4 + 1)

as 74 > 1 gives 74 = 1 4+ 74 06;. Thus

() = Exta = Eo(Eo(7alF1) = 14 Eo(Ex (Ta) = 1+ Eyg(X1) = 14+ Y p(a,9)g(y).

Y



(i)
ElgX(n+ 1) A7)+ ((n+ 1) ATa)|Fo] = 1{1a <n}g(X(14)) + 74) + {74 > n}(g(X(n)) = 1+n+
=g(X(nATa))+ (nATa)

using (*)
(iii) First, observe that P,(74 < oo) > 0 gives the existence of an n(x) with p"(®)(z, A) > 0,
so as S — A is finite we get for some N < oo, € > 0 that

E,.ty = sz(TA >k)as T4 €{0,1,2,..}
k=0

< ZNPZ(TA > kN) as Py(ta >m) < P(ta>n)ifm>n
k=0

gNZ(l—e)k<oo as € > 0.
k=0

That is, E,74 is a bounded function.

The conditional expectation of the above martingale given X (0) is (using the n = 0 case)
g(X(0)). On the other hand, since S — A is finite, and ¢ is 0 on A, ¢ is a bounded function,
and convergence of the martingale to g(X(74)) + 74 = 74 gives that E[r4]X(0)] = g(X(0)).

Problem 6.3.11 (Durrett).

Observe p((V, H), (H, W)) = p((V,T), (T,W)) = 1/2 for V, W € {H, T}, p(-,") = 0 clse.
Let A = (H, H) and check that all conditions in 2.11. are satisfied. So E,N; is the only solution
of

g(T, H) = 1+ 1/2(g(H, H) + g(H,T)) = 1 +1/2(H,T)

g(T,T) =1+ 1/2(g(T,T) + g(T, H))
g(H,T) =1+1/2(¢(T,T) + 9(T, H))
with g(H,H) = 0.

Find g(H,T) = g(T,T) =2+ g(T,H) = 6.
So ENl =4.

Problem 6.3.12 (Durrett).
Let A = {0, N} and use the result of 6.3.10. It is easy to check that g(x) = x(IN — x) solves
the system of equations (*), and thus, g(z) = E,74.

Problem 10.
Let X be a simple symmetric random walk on Z with X, = 0 and let f(z) = = if = is
odd, f(z) = 0 if x is even. Then P(f(X3) = 3|f(X3) = 0) = P(f(X3) = 3) = § while

P(f(X3) =3|f(X2) =0, f(X;) =—1) =0. Thus, (f(X,)) is not a Markov chain.
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Problem 11.
Let no(i,7) = min{n : P"(i,j) > 0}. Then ng(i,j) < K because we can always avoid a
cycle. Now

max P(T; > K — 1) < max P(T; > no(i, 7)) = max(1 — p"®9 (i, 5))
i#£] i#] i#]

< max(1 —a™)) <1 — g%}
i#]

Let P_j = ((p(i k) =i,k # 7). Then
| PK 1||—maXZPK (i, 1) = r?;gxﬂ(Tj>K—l)§1—aK*1

and || 7" V<@ —afHm m=0,1,2,..

So
0o (mH+1)(K—1)—1

Eﬂ}ZiB(Tpn Z Z P(T; > n)

m(K—1
<Y (K-1D)P(T; >m(K -1) <Y (K—1)[| "5
m=0 m=0
A
—a” K—1
m=0 a

Further, F;T; <1+ max; E;T;
So we can take C'(K,a) =




