
1 STAT 205B homework solutions; HW 2

Problem 6.2.7 (Durrett).
Observe that

P (Xn+1 = xn + 1|Xk = xk, 1 ≤ k ≤ n) = P (ξn+1 /∈ {ξ1, ..ξn}|Xk = xk, 1 ≤ k ≤ n)

=
N − xn
N

by independence

For xn = xn+1 we get P (Xn+1 = xn|Xk = xk, 1 ≤ k ≤ n) = xn
N

and for all other cases 0.
We see that P (Xn+1 = xn + 1|σ(X1, ..Xn)) is σ(Xn)-measurable and thus P (Xn+1 = xn +
1|σ(X1, ..Xn)) = P (Xn+1 = xn + 1|σ(Xn)), so X is a Markov chain.

Problem 6.2.8 (Durrett).
Consider the sequence (X1, X2, X3) = (1, 1, 1). This can happen in two ways: (S1, S2, S3) =

(1, 0,−1), or (S1, S2, S3) = (1, 0, 1). Thus, P (X4 = 2|X1 = 1, X2 = 1, X3 = 1) = .25. Now
consider the sequence (X1, X2, X3) = (0, 0, 1). This can only happen if (S1, S2, S3) = (−1, 0, 1).
Thus, P (X4 = 2|X1 = 0, X2 = 0, X3 = 1) = .5. Thus, X is not a Markov chain.

Problem 6.2.9 (Durrett).

Let p(sn) = Eθ
sn+n+2

2 (1−θ)
n−sn

2

Eθ
sn+n

2 (1−θ)
n−sn

2
= sn+n+2

2(n+2)
. We will show

P (Xn+1 = 1|S1, ..Sn) = p(Sn). Then all the assertions will follow.∫
[S1=s1,..Sn=sn]

p(Sn)dP = p(sn)P (S1 = s1, ..Sn = sn)

= p(sn)EP (Uk ≤ θ for k ∈ A,Uk > θ for k ∈ B|θ)

where A = {k : sk − sk−1 = 1}, B = {k : sk − sk−1 = −1}

= p(sn)Eθ|A|(1− θ)|B| by independence

= p(sn)Eθ
sn+n

2 (1− θ)
n−sn

2 = Eθ
sn+n+2

2 (1− θ)
n−sn

2 = Eθ|A|+1(1− θ)|B|

= EP (Uk ≤ θ for k ∈ A ∪ {n+ 1}, Uk > θ for k ∈ B|θ)

= P (S1 = s1, ..Sn = sn, Xn+1 = 1) =

∫
[S1=s1,..Sn=sn]

1[Xn+1=1]dP

Problem 6.3.10 (Durrett).
(i) x /∈ A gives τA ≥ 1 and so

Ex(τA|F1) = EX1(τA + 1)

as τA ≥ 1 gives τA = 1 + τA ◦ θ1. Thus

g(x) = ExτA = Ex(Ex(τA|F1)) = 1 + Ex(EX1(τA)) = 1 + Exg(X1) = 1 +
∑
y

p(x, y)g(y).
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(ii)

E[g(X((n+ 1) ∧ τA)) + ((n+ 1) ∧ τA)|Fn] = 1{τA ≤ n}(g(X(τA)) + τA) + 1{τA > n}(g(X(n))− 1 + n+ 1)

= g(X(n ∧ τA)) + (n ∧ τA)

using (*)
(iii) First, observe that Px(τA <∞) > 0 gives the existence of an n(x) with pn(x)(x,A) > 0,

so as S − A is finite we get for some N <∞, ε > 0 that

ExτA =
∞∑
k=0

Px(τA > k) as τA ∈ {0, 1, 2, ..}

≤
∞∑
k=0

NPx(τA > kN) as Px(τA > m) ≤ Px(τA > n) if m ≥ n

≤ N

∞∑
k=0

(1− ε)k <∞ as ε > 0.

That is, ExτA is a bounded function.
The conditional expectation of the above martingale given X(0) is (using the n = 0 case)

g(X(0)). On the other hand, since S − A is finite, and g is 0 on A, g is a bounded function,
and convergence of the martingale to g(X(τA)) + τA = τA gives that E[τA|X(0)] = g(X(0)).

Problem 6.3.11 (Durrett).
Observe p((V,H), (H,W )) = p((V, T ), (T,W )) = 1/2 for V,W ∈ {H,T}, p(·, ·) = 0 else.

Let A = (H,H) and check that all conditions in 2.11. are satisfied. So ExN1 is the only solution
of

g(T,H) = 1 + 1/2(g(H,H) + g(H,T )) = 1 + 1/2g(H,T )

max
g(T, T ) = 1 + 1/2(g(T, T ) + g(T,H))

g(H,T ) = 1 + 1/2(g(T, T ) + g(T,H))

with g(H,H) = 0.
Find g(H,T ) = g(T, T ) = 2 + g(T,H) = 6.
So EN1 = 4.

Problem 6.3.12 (Durrett).
Let A = {0, N} and use the result of 6.3.10. It is easy to check that g(x) = x(N −x) solves

the system of equations (*), and thus, g(x) = ExτA.

Problem 10.
Let X be a simple symmetric random walk on Z with X0 = 0 and let f(x) = x if x is

odd, f(x) = 0 if x is even. Then P (f(X3) = 3|f(X2) = 0) = P (f(X3) = 3) = 1
8

while
P (f(X3) = 3|f(X2) = 0, f(X1) = −1) = 0. Thus, (f(Xn)) is not a Markov chain.
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Problem 11.
Let n0(i, j) = min{n : P n(i, j) > 0}. Then n0(i, j) < K because we can always avoid a

cycle. Now

max
i 6=j

Pi(Tj > K − 1) ≤ max
i 6=j

Pi(Tj > n0(i, j)) = max
i 6=j

(1− pn0(i,j)(i, j))

≤ max
i 6=j

(1− an0(i,j)) ≤ 1− aK−1

Let P(−j) = ((p(i, k) : i, k 6= j)). Then

‖ PK−1
(−j) ‖= max

i 6=j

∑
l 6=j

PK−1
(−j) (i, l) = max

i 6=j
Pi(Tj > K − 1) ≤ 1− aK−1

and ‖ Pm(K−1)
(−j) ‖≤ (1− aK−1)m, m = 0, 1, 2, ...

So

EiTj =
∞∑
n=0

Pi(Tj > n) =
∞∑
m=0

(m+1)(K−1)−1∑
n=m(K−1)

Pi(Tj > n)

≤
∞∑
m=0

(K − 1)Pi(Tj > m(K − 1)) ≤
∞∑
m=0

(K − 1) ‖ Pm(K−1)
(−j) ‖

≤ (K − 1)
∞∑
m=0

(1− aK−1)m =
K − 1

aK−1

Further, EjTj ≤ 1 + maxiEiTj
So we can take C(K, a) = 1 + K−1

aK−1 .
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