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I don’t use bCourses:

Read web page (search Aldous 205B)

Web page rather unorganized – some topics done by Nike in 205A – will
post homeworks soon.

I am not following Durrett text section-by-section.

After today – math on blackboard. Start today with conceptual review of
measure theory [MT] – emphasizing stuff books don’t tell you.



On measure theory [MT] and probability theory [PT]
1.

At a purely formal level, one could call probability theory the
study of measure spaces with total measure one, but that would
be like calling number theory the study of strings of digits
which terminate. [Terry Tao]

My own analogy is

MT is like an operating system for PT

and like any good OS it should be transparent. There’s another Terry
Tao quote about “3 stages of learning math” . . . . . .

You shouldn’t start a research paper with (Ω,F ,P); it’s just there in the
background.

Historical digression: In retrospect, what was Kolmogorov’s insight?



While Probability certainly involves some conceptually extra idea (relative
to the rest of Mathematics), the issue (100 years ago) was whether
Probability required some new technical ingredient to be added to the
rest of Mathematics. Kolmogorov’s achievement was the realization that
it didn’t. Measure theory had been recently developed to resolve the
technical conflict between the intuitive idea ”every region in the plane
has some area” and the axioms of set theory dealing with every subset of
an uncountable set. This conflict has no conceptual connection with
Probability, but Kolmogorov realized that the technical machinery
(involved in its resolution) of measures, measurable sets, measurable
functions could be reused as an axiomatic setting for Probability.

In retrospect, because one special model within Probability is ”pick a
uniform random point from the unit square”, it is clear that any general
theory of Probability has to include measure theory, but (to reiterate)
Kolmogorov’s achievement was the realization that at the technical level
it didn’t require anything more.



2. Regarding MT:

Not much is needed for most PT.

Mostly it’s clever definitions; only hard theorem is existence of
Lebesgue measure.

It’s rather magical that integration theory works so very generally
(no topology needed) . . . . . .

. . . . . . I will explain the secret reason why.

[show picture of measurable f: forwards/backwards]



3. Two illustrative contexts where MT helps:
(a) For R-valued X

EX =

∫
X (ω)P(dω) =

∫
xµ(dx) =

∫
xf (x)dx =

∑
x

xP(X = x)

(theory) (calculation).

(b) lim supn Xn is a random variable !

(b) illustrates point that MT closed under (many) countable limits



4. You need to understand, both formally and intuitively, the relations
between random variables (RV) and distributions (PM).
• Any RV (general space S) has a distribution.
• In MT one typically deals with given arbitrary PMs.
• In PT we usually think of a PM as arising as the distribution of a RV.
Think in terms of RVs rather than PMs whenever you can.
Here are some aspects of this relationship.

(a). For a PM µ on R, take U uniform(0, 1) and then

F−1µ (U) ∼ µ.

Definition: A measurable space (S ,S) is nice if it is isomorphic to a
Borel subset B of R.
[explain on board]

Background fact: Every space you ever encounter will be a nice space.

Corollary: For any PM µ on any nice space S , there is a measurable
function Gµ : [0, 1]→ S such that Gµ(U) ∼ µ.

(But aside from R no canonical choice).



(b). For two PMs µ, ν on R the property

ν(−∞, x ] ≥ µ(−∞, x ] ∀x

is equivalent to

∃ Xµ ∼ µ, Xν ∼ ν such that Xν ≤ Xµ

and a canonical choice is

(Xν ,Xµ) = (F−1ν (U),F−1µ (U)).

This is stochastic order ν � µ.



(c). For two PMs µ, ν on R with finite means the property∫
φdν ≤

∫
φdµ ∀ integrable convex φ

is equivalent to

∃ Xµ ∼ µ, Xν ∼ ν such that E(Xµ|Xν) = Xν .

This is convex order ν � µ. This result not so easy; and there is no
canonical choice.

(d). For two PMs µ, ν on general space S we have variation distance

||µ− ν|| = max
A
|µ(A)− ν(A)| = 1

2

∑
i

|µi − νi | ( discrete )

with relation
||µ− ν|| = inf{ P(Xµ 6= Xν) }

the inf over joint distributions with Xµ ∼ µ, Xν ∼ ν. The inf is attained
by joint distributions with P(Xν = Xµ = i) = min(µi , νi ).



Recall an application. By calculation

||Bern(λ)− Poi(λ)|| ≤ 1
2λ

2

which easily implies Le Cam’s theorem:

For independent Bernouilli(pi ) RVs ξi ,

||dist(
∑
i

ξi ) − Poi(
∑
i

pi )|| ≤ 1
2

∑
i

p2i .

These are all examples of coupling, which means (in the wide sense)
getting information about a relation between distributions by
constructing (dependent) RVs with those distributions.



5. Alternative (better!) approach to some 205A theory.

[0, 1] s ↔b {0, 1}∞ binary expansion

.58231.... .10010...

b(x) = (b1(x), b2(x), . . .) where bn(x) = [2nx ] mod 2.

s(b) =
∑
n

2−nbn.

Here b takes Lebesgue measure on [0, 1] to fair-coin-tossing measure
(product Bernoulli (1/2)) on {0, 1}∞), and s takes it back. In RV terms,
for uniform U and product Bernoulli B = (Bi )

b(U) =d B, s(B) =d U.

[Imagine idealized RNGs].



b(U) =d B, s(B) =d U.

Now we do a trick. Take disjoint infinite subsets S1,S2, . . . of
{1, 2, 3, . . .} and write Si = {si1, si2, . . .} and define

Ui = s(Bsij , j ≥ 1), i = 1, 2, . . .

This gives an infinite sequence of IID uniform(0, 1) RVs.

Recall Corollary: For any PM µ on any nice space S , there is a
measurable function Gµ : [0, 1]→ S such that Gµ(U) ∼ µ.

Now we can conclude infinite product measure µ1 × µ2 × . . . exists
because it is the distribution of (Gµ1(U1),Gµ2(U2), . . .).

This is much simpler than usual MT proofs for µ1 × µ2 (though only for
nice spaces). Note an interpretation of the Corollary: if it were false there
would be PMs one could not simulate even in infinite time from an
idealized RNG.



Recall

It’s rather magical that integration theory works so very generally
(no topology needed) . . . . . .

. . . . . . I will explain the secret reason why.

The secret reason is that (roughly speaking) all measure spaces (S ,S, µ)
are the same as ([0, 1],B,Leb).

Another secret..

For almost all PT you do not need to know the proof of existence of
Lebesgue measure (via outer measures etc).



Understanding the Radon-Nikodym theorem.

Physical density is mass per unit volume, as a local limit for
heterogeneous material. In the setting of two PMs µ, ν on (S ,S) we
would like to define density as

f (s) = lim
A↓{s}

ν(A)
µ(A)

but this definition doesn’t work very generally. However, assuming
S = σ(Bi , 1 ≤ i <∞) (countably generated), we have finite fields
Fn = σ(Bi , 1 ≤ i ≤ n) and we can define

Xn(s) = ν(A)
µ(A) where A is atom, s ∈ A

which is finite when ν � µ, that is

∀A ∈ S : µ(A) = 0 implies ν(A) = 0.

Key point: (Xn) is a martingale w.r.t. (S ,S, µ).



Xn(s) = ν(A)
µ(A) where A is atom, s ∈ A

Key point: (Xn) is a martingale w.r.t. (S ,S, µ).
And assumption ν � µ implies (easy: by contradiction)

∀ε > 0 ∃δ(ε) > 0 such that µ(A) < δ(ε) implies ν(A) < ε

This implies (Xn) is uniformly integrable, and MG convergence says there
is a limit function f

Xn(s)→ f (s) a.s., L1, w.r.t. µ

which has the desired “density” property

ν(A) =

∫
A

f dµ, A ∈ S.

So we can indeed get the density as some particular limit

f (s) = lim
n

ν(An(s))
µ(An(s))

µ− a.s.

But not canonical.



Conditioning and MT

Formal definition of conditional expectation. Let (Ω,F ,P) be a
probability space. Suppose X ∈ F and E|X | <∞. Suppose G is a σ-field
contained in F . We say that a random variable Y is a version of E(X |G)
if
(I) Y ∈ G
(II) E[Y 1A] = E[X1A] ∀ A ∈ G.
This Y exists, is integrable, and is unique (almost surely).

Then there is a “calculus of conditional expectations” which is very
useful, in particular in the context of martingales, so you need to learn
that. For example: if EX 2 <∞ then

var X = E var(X |G) + var E(X |G).

[board example of use]



Much of this theory is intuitive as gambling on a fair game.
If you pay a fixed stake x to get a random return X , your gain is X − x ,
this is “fair” if E(gain) = 0, that is if x = EX .

A sub- σ-field G represents “information”. What is the fair stake Y if
you know G? Consider A ∈ G and the strategy:

if A occurs, stake Y , if not, don’t bet.

Your gain is (X − Y )1A, and to be fair we need E(gain) = 0, that is
E[Y 1A] = E[X1A]. That’s where the formal definition comes from.

Optional sampling [stopping] theorems (OST) formalize the
conservation of fairness principle: under technical assumptions, the
overall result of any strategy involving a sequence of bets on fair games is
just like a single bet on a fair game: E(overall gain) = 0.



Gambling is like stock market. Imagine mutual fund; can buy/sell at end
of day price.

Xn price of 1 share at end of day n

Fn information at end of day n

Hn number of shares held during day n

Sn = accrued profit at end of day n.

Related by
Sn − Sn−1 = Hn(Xn − Xn−1).

From the story

Hn ∈ Fn−1 ((Hn) is predictable)

If also (Xn) is a martingale and each Hn is bounded then

(Sn) is a martingale.

This is the discrete analog of stochastic calculus. One can get many
results (e.g. the upcrossing inequality) about (Xn) by choice of (Hn)
use of OST for (Sn).


