3. Let X_n be an irreducible chain with transition matrix P. Let Y_n be the jump chain $Y_n = X(T_n)$ where $T_0 = 0$ and

$$T_{n+1} = \min\{m > T_n : X_m \neq X(T_n)\}.$$

(a) Show that Y_n is Markov, and write its transition matrix Q in terms of P.

(b) Show that (Y_n) is recurrent iff (X_n) is recurrent.

(c) Assuming recurrence, find the relation between the P-invariant measure and the Q-invariant measure.

(d) Deduce that, on an infinite state space, it is possible for (Y_n) to be positive-recurrent while (X_n) is not.

4. Let X_n be a finite irreducible chain with transition matrix P. Fix a subset A of S. Define a transition matrix Q on A by

$$q(i,j) = p(i,j)/\sum_{k \in A} p(i,k).$$

Suppose Q is irreducible. In the case where P is reversible, find a simple explicit formula for the stationary distribution π^* of Q in terms of P and its stationary distribution π. Give an example to show that the formula may not hold in the non-reversible case.