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How good are people at predictions for short- and medium-term
politics and economics?

Here we are not thinking of “routine” issues – predicting election results
from opinion polls, or predicting macroeconomic indicators a few months
ahead – but of more substantial or unique geopolitical issues. Things that
are not just continuations of current trends. For instance, 5 years ago,
few people imagined that Russia would annex Crimea, or that Scotland
would almost become independent, or the emergence of an entity like
ISIL. Where is the line between predictable and unpredictable, and what
do these words actually mean?

Of course there is no magic crystal ball that will tell you actual
predictions. This lecture’s focus is on how to assess how good other
people’s past predictions have been, and we look at

The Good Judgment Project

The annual World Economic Forum Global Risks Survey



Some conceptual issues.
It is often said that “nobody predicted the peaceful ending of Soviet
control of Eastern Europe (1989) and subsequent breakup of the Soviet
Union (1991)”. But what exactly does that mean?

Nice illustration of the difficulties of searching for pre-internet material.
A quick search finds a Wikipedia page Predictions of the dissolution of
the Soviet Union asserting than many such predictions were made. But
these are of the style “it’s a bad system that can’t last forever” rather
than any testable prediction.

A scholarly analysis of literature in the International Relations discipline
was given in 1993 by Gaddis (International relations theory and the end of
the Cold War). What’s relevant to this lecture is their underlying premise

for a theory of International Relations to be regarded as
successful, it should have been able to predict (in say 1985)
that the end of the Cold War (before say 1995) was likely (page
18, edited).



This “unlikely events don’t happen” attitude strikes me as very strange.
To me it’s self-evident that, in such cases, instead of saying “this will or
will not happen” one should think of alternative outcomes and assign
probabilities.

I happen to have a book (Dunnigan – Bay A Quick and Dirty Guide to
War, 1st edition) published in 1985 that actually does this (list
alternative outcomes and assign probabilities) for 15 potential future
conflicts in different parts of the world. On the topic of the Cold War in
Europe, their assessment for 1985-1995 was

65% status quo
25% internal revolts in Eastern Europe lead to decrease in Soviet control
5% military attack by Soviet Union on West Germany
5% Soviet Union falls apart for internal reasons

and their phrase “the empire crumbles” for the latter was rather accurate.



I believe that anyone else who, seriously considered possibilities in 1985
would also assign some small probability to “the empire crumbles”.
(small project: is this correct?)

Reading the actual history of the Soviet Union over 1985-91, my view
(unprovable, of course) is that the outcome actually was unlikely.

Unlikely events do sometimes happen!

Course project: look at some similar source of past forecasts and judge
how accurate they were. For instance, the 2008 edition of Dunnigan –
Bay A Quick and Dirty Guide to War, 4th edition.



The Good Judgment Project

[show page; demo making prediction]

Course project: track some questions like these.



How to score a prediction tournament

Consider for a moment a scenario where two people, A and B, are asked
to predict (as Yes/No) the outcome of each of 100 events. Eventually we
know all the actual outcomes – suppose A gets 80 correct, and B gets 70
correct. There is no great subtlety in interpreting this data; either A is
genuinely better than B at predicting the kind of events under study, or
one person was unusually lucky or unlucky. In this lecture we consider the
other scenario, where A and B are asked to give a forecast (probability)
for each event. Now our data is of the form

event A’s forecast prob. B’s forecast prob. occurs?
. . . . . . . . . . . .
63 0.7 0.8 yes
64 0.5 0.6 no
. . . . . . . . . . . .

Here it is less obvious what to do with this data – which person is better
at assessing probabilities, and how good are they in absolute terms?



One’s first reaction might be

it’s impossible to score a prediction tournament because we
don’t know the true probabilities.

This assertion might be made by analogy with assessing the quality of a
movie – we can’t say which movie reviewer is best at assessing the “true
quality” of movies because we have no standard of “true quality”. Then
a second reaction might be

over a long series of predictions by an individual, look at those
where the predicted probability was around (say) 60%; and see
whether around 60% of those events actually happened.

If this happens, the individual is called calibrated. Being calibrated is
clearly desirable, but it’s not sufficient because one can “cheat” to attain
calibration.

[board]



Digression: analogy with golf.

Recall that in golf, each hole has a “par”, the score (number of shots)
that an expert is reckoned to need. Imagine you are a non-expert golf
player, participating in a tournament with other non-experts, on a new
golf course with eccentric design (some holes are very easy, some are very
hard) on which no-one has played before, so there is no known par.
Suppose your score, over the 18 hole course, is 82. Is this good? In
absolute terms, you have no way of knowing – there is no “par” for the
course with which to compare your score. But a relative comparison is
easy – you are better, or maybe just luckier, than someone who scores 86.

Our scoring system for prediction tournaments will have the same
property – we can tell who is relatively better, but not how good they are
in absolute terms. Also, like golf, we are trying a get a low score.



The Good Judgment project is an instance of a prediction tournament,
where contestants make forecasts for a series of future events. To
analyze the resulting data, a basic method is to assign a score to each
forecast, given by a formula involving the assessed probability p and the
actual outcome. A mathematically natural choice of formula is squared
error: is

score = (1− p)2 if event occurs

= p2 if not. (1)

As in golf, you are trying to get a low score. For instance if you forecast
p = 0.8 then your score will be 0.04 if the event occurs but will be 0.64 if
it does not occur.



This particular scoring formula has two nice features. Suppose you
actually believe the probability is q. What p should you announce as your
forecast? Under your belief, your mean score (by the rules of elementary
mathematical probability) equals q(1− p)2 + (1− q)p2 and a line of
algebra shows this can be rewritten as

(p − q)2 + q(1− q). (2)

Because you seek to minimize the score, you should announce p = q,
your honest belief – with this scoring rule you cannot “game the system”
by being dishonest in that way.



Now write q for the true probability of the event occurring (recall we are
dealing with future real-world events for which the true value q is
unknown), and write p for the probability that you forecast. Then your
(true) mean score, by exactly the same calculation, is also given by

(p − q)2 + q(1− q).

The term (p − q)2 is the “squared error” in your assessment of the
probability. When contestants A and B forecasts the same event as
probabilities pA and pB , (2) implies that the mean difference between
their scores equals the difference between their squared errors. When A
and B assess probabilities of the same long sequence of events, we can
calculate their average (over events) scores sA and sB . We cannot know
the corresponding mean-squared-errors MSE(A) and MSE(B), defined as
the average (over events) of the squared errors (pA − q)2 and (pB − q)2,
because we do not know the true probabilities q.



But (2) implies that

sA − sB is a sample estimate of MSE(A)−MSE(B) (3)

in the law of large numbers sense, that as the number of events gets
larger and larger, the difference between sA − sB and MSE(A)−MSE(B)
gets smaller and smaller. In the golf analogy, 4 fewer strokes on one
round is not convincing evidence that one player is better than another,
but an average of 4 fewer over many rounds is.

This scoring rule is used for mathematical convenience, but the fact that
we are measuring the “cost” of an incorrect probability forecast as the
squared error (p − q)2 is consistent with a calculation [later in lecture]
that, in a very simple “decision under uncertainty” model, the cost scales
as order (p − q)2.

In the actual Good Judgment project, there an extra issues concerning
scoring – an individual can (and should) update predictions. Here are the
stated scoring rules (actually from earlier GJP).



1 When a question closes, we compute your Brier (MSE) score for a
given question by calculating your Brier score separately for each day
and then averaging all scores.

2 Every day counts equally towards your score. After you make your
first forecast, each subsequent day we count you as making the same
forecast, and therefore you get the same Brier score for each
subsequent day, until you update your forecast. This means that you
should not wait until the last minute to make a forecast.

3 If you don’t make a forecast on the first day a question is open, then
you are assigned the average Brier score of the group.

4 Your overall Brier score across all of the questions on which you
have made forecasts is the average of your overall Brier scores for
each of those questions.



Digression: A mistake in the scoring rules in the earlier GJP.

If implemented precisely as stated above, there was a “mistake” in the
rules in the original GJP, in the sense that one can sometimes “game the
system” to get a better (mean) score by making a dishonest (not your
true assessed probability) forecast. Fortunately the mistake is easily
fixable. In brief, the trick is

Your forecast should overstate your assessed probability, in the
early stages of question duration.

The trick depends on the fact that, in a typical question, the
questions“closes” if the event happens, but continues until the deadline if
not; there is an asymmetry between “event happens” and “event does
not happen” which is not handled correctly by the scoring rules.

We illustrate with an artificially simple example.



Suppose the question is open for duration 2T , and your initial probability
assessment is as follows.

With chance 1/2 the event will happen at time T . Otherwise it
will not happen.

Suppose also you believe that, if the event is going to happen before the
deadline, then it will be a “surprise”, in the sense of no advance warning.
So your honest forecast would be p = 1/2 before time T , and then (if
the event did not happen at T ) p = 0 until time 2T . Now let’s do the
calculation supposing you forecast a dishonest value p before time T
(but still forecast p = 0 subsequently).
• If the event happens at T , the question “closes” at T , and your
average (over days) score is the score on each day: (1− p)2.
• If not, your score on days before T is p2, and your score on days after
T is 0, so your average score is p2/2
Combining these possibilities, your mean score equals

1
2 ((1− p)2 + p2/2)

and this is maximized by p = 2/3.



One can fix this mistake by not closing the question until the deadline
(time 2T in our example) and imputing the forecast value p = 1 for the
days after the event happens (if it happens before the deadline). In our
example, with this modified rule, if the event happens at time T , your
score would be ((1− p)2 + 0)/2, and then your overall mean score
becomes

1
4 ((1− p)2 + p2)

which is indeed maximized by p = 1
2 .



A bottom line?

1. Some people really are better than others. Over 168 questions, the SE
of each score in the figure is about 0.02.

2. It might be that the best people are able to assess the true
probabilities. Or not. There’s no way to distinguish.



The Good Judgment Project has roots in Tetlock’s work, described in his
2005 book Expert Political Judgment., which may be best known for its
conclusion that the “expert” forecasters he studied were often
hard-pressed to do better than the proverbial dart-throwing chimp.
Tetlock and colleagues believe that forecasting tournaments are the best
way to compare forecasting ability; and that participants can improve
their forecasting skills through a combination of training and practice,
with frequent feedback on their accuracy. Combining training and
practice with what GJP’s research suggests is a stable trait of forecasting
skill seems to produce the phenomenon that GJP calls
“superforecasters”. These have been so accurate that, according to a
recent report by Washington Post columnist David Ignatius, they even
outperformed the forecasts of intelligence analysts who have access to
classified information.
Extracts from the (public) Project blog, with minor edits.

The book is well worth reading, with undergraduate-level mathematical
statistics arising from serious conceptual issues. Just for fun, I quote his
categorization of excuses that experts make when their predictions turn
out wrong. I have changed some of his titles.



1: Implicit conditions not satisfied. For instance, you predict that
implementing a certain policy will have good results; if not then you say
the policy must have been implemented badly.
2: Exogeneous shocks. Nobody could have expected . . . . . . the Spanish
Inquisition.
3: Close call counterfactual. I was almost right.
4: Just off on timing. The war lasted a bit longer than the question
deadline.
5: Politics is unpredictable, anyway. So my mistake wasn’t really a
mistake.
6: I made the right mistake. An error in the other direction would
have been more serious.
7: Unlikely events sometimes happen.



Course project: (rather vague). Look at the technical statistics part of
Tetlock’s book, look at critiques of his work by others, look as
subsequent academic literature. For instance Mandel - Barnes Accuracy
of forecasts in strategic intelligence claim that Canadian experts are
better than U.S. experts.

Note there is a 2015 follow-up book which is less technical:
Superforecasting.



The annual World Economic Forum Global Risks Survey

[show WEF]

My link goes to the 100-page report; I will talk about the key graphic.

[show 2016 graphic]
[note axes are likelihood vs economic impact]

Predictions are for “next 10 years”. We can look at past years and see
(partially) how the predictions worked out. I will show the 2011 and 2007
reports.

We are all aware of what Wikipedia calls the Financial crisis of 2007 - 08
and the subsequent 2008 - 2012 global economic recession. It is often
said (as with collapse of Soviet Union) that no-one predicted this. Here is
the 2007 report, written in late 2006, before any widely-recognized signs
of trouble.

[show 2007 graphic]



The entry “asset price collapse”, defined via

A collapse of real and financial asset prices leads to the
destruction of wealth, deleveraging, reduced household spending
and impaired aggregate demand

appears as the 5th most likely of the 23 risks, but quantifying risk as
likelihood times severity it is assessed as the greatest of these risks. So
this assessment is actually as good as one could hope for.

As an aside, the “oil price shock” assessed as 4th most likely did almost
occur in 2007-8 but was overtaken by the asset price collapse and did not
have the severe impact predicted – see chart below.

[show chart]



In this Global Risks Survey the types of risk (as well as probability and
size of economic effect) are very vague, so we can’t really give a
numerical “score”, as in the GJP, for how accurate they were. However

Course project: look at the 2011 chart, and give a rough assessment of
the subsequent economic effects of some of the identified risks.

Course project: compare the risks identified in the 2011 chart with the
extent of media coverage (as end-2010) of future global risks.

[show 2011 chart]

Course project: look at the 2016 chart, and think of some risks they did
not consider, and analyze in the style of the Global Risks Survey.



Other exercises in thinking about the future, on my “papers” page, are

Future Global Shocks

Global Trends 2030: Alternative Worlds

Shifting Gear: policy challenges for the next 50 years.

As we look into the future, where does rationality end and science fiction
begin?



Math digression: The cost of errors in assessing probabilities

What is the cost of an error in assessing a probability? This is a very
vague question, and clearly the answer is very context-dependent. For
instance in the context of betting against a human opponent at odds to
be negotiated, having a less accurate estimate of the true probability
than does your opponent is liable to be very costly. We consider instead
a very simple model of a decision under uncertainty, which we could view
as a bet against Nature, an opponent who is indifferent to our actions
and wishes.



Model. An event F will occur with unknown probability p. You have a
choice of action A, which you would take if you knew F would occur, or
action B, which you would take if you knew F would not occur. So we
suppose there is a payoff table
• (action A): payoff = a if F occurs, payoff = b if F does not occur
• (action B): payoff = c if F occurs, payoff = d if F does not occur
where a > c and d > b. (If payoffs are random we can just take their
expectations. We are in the classical setting of linear utility, not
risk-averse). Now we calculate the mean payoffs
• (action A): mean payoff = pa + (1− p)b
• (action B): mean payoff = pc + (1− p)d
There is a critical value pcrit where these mean payoffs are equal, and
this is the solution of

pcrit

1− pcrit
=

d − b

a− c
.

If we knew p our best strategy is

do action A if p > pcrit, do action B if p < pcrit.

Instead all we have is our guess pguess, so we use this strategy but based
on pguess instead of p.



What is the cost of not knowing p? If pguess and p are on the same side
of pcrit then we take the optimal action and there is zero cost; if they are
on opposite sides we take the sub-optimal action and the cost is

|p − pcrit|z where z = a− b − c + d > 0. (4)

Let me outline an argument for what happens in many repeated different
games of this type. Assume the different payoffs are all of order 1 and are
independent (over games) of the probabilities, and hence pcrit is
independent of p and pguess. Then the proportion of times that pcrit

happens to be in the interval between p and pguess should be of order
|p − pguess|, assuming the latter is small; and when this occurs the mean
cost is also, by (4), of order |p − pguess|.

So in this particular “decision under uncertainty” context the cost of
errors is order (p − pguess)

2.



Finally, for fun I have a link to some future predictions from 1993. These
were deliberately intended to be provocative – unlikely extreme changes –
but a few have actually almost happened.


