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@ Sports are a popular topic for course projects — usually involving
details of some specific sport and statistical analysis of data.

@ In this lecture we imagine some non-specific sport; either a team
sport — (U.S.) football, baseball, basketball, hockey; soccer cricket —
or an individual sport or game — tennis, chess, boxing.

@ We consider only sports with matches between two
teams/individuals. But similar ideas work where there are many
contestants — athletics, horse racing, automobile racing, online video
games.

Let me remind you of three things you already know about sports.

Reminder 1. Two standard “centralized” ways to schedule matches:
league or tournament.
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These schemes are clearly “fair” and produce a “winner”, though have
two limitations

@ Limited number of teams.
@ Start anew each year/tournament.

@ Require central organization — impractical for for games (chess,
tennis) with many individual contestants.

Reminder 2. In most sports the winner is decided by point difference.
One could model point difference but we won't. For simplicity we will
assume matches always end in win/lose, no ties.

Reminder 3. A main reason why sports are interesting is that the
outcome is uncertain. It makes sense to consider the probability of team
A winning over team B. In practice one can do this by looking at
gambling odds [next slide]. Another lecture will discuss data and theory
concerning how probabilities derived from gambling odds change over
time.



Winner of 2015-16 season Superbowl — gambling odds at start of season.

Outcome PredictWise Derived Betfair Price Betfair Back Betfair Lay
Seattle Seahawks 18% $0.171 5.80 5.90
Green Bay Packers 14 % $0.137 7.20 7.40
Indianapolis Colts 9% $0.089 11.00 11.50
New England Patriots 8% $0.077 12.50 13.50
Denver Broncos 6% $0.063 15.50 16.50
Dallas Cowboys 5% $0.047 21.00 22.00
Baltimore Ravens 4% $0.038 26.00 27.00
Philadelphia Eagles 3% $0.036 26.00 30.00
Pittsburgh Steelers 3% $0.035 28.00 30.00
Miami Dolphins 3% $0.033 29.00 32.00
Arizona Cardinals 3% $0.026 36.00 40.00
Cincinnati Bengals 2% $0.024 40.00 42.00
Kansas City Chiefs 2% $0.022 44.00 46.00
Carolina Panthers 2% $0.021 44.00 55.00
Atlanta Falcons 2% $0.020 48.00 50.00
New Orleans Saints 2% $0.019 50.00 55.00
Buffalo Bills 2% $0.018 50.00 65.00
Detroit Lions 2% $0.017 55.00 60.00
New York Giants 2% $0.017 55.00 60.00
Minnesota Vikings 2% $0.017 55.00 65.00
San Diego Chargers 1% $0.016 60.00 65.00




Obviously the probability A beats B depends on the strengths of the
teams — a better team is likely to beat a worse team. So the problems

@ estimate the strengths of A and B
@ estimate the probability that A will beat B

must be closely related. This lecture talks about two ideas for making
such estimates which have been well studied. However the connection
between them has not been so well studied, and is suitable for
simulation-style projects.

Terminology. | write strength for some hypothetical objective numerical
measure of how good a team is — which we can’t observe — and rating
for some number we can calculate by some formula based on past match
results. Ratings are intended as estimates of strengths.



Idea 1: The basic probability model.

Each team A has some “strength” x4, a real number. When teams A and
B play
P(A beats B) = W(xa — xg)

for a specified “win probability function” W satisfying the conditions

W :R — (0,1) is continuous, strictly increasing
W(—x)+ W) =1;  lim W(x)=1. (1)
X—>00

Implicit in this setup, as mentioned before
@ each game has a definite winner (no ties);

@ no home field advantage, though this is easily incorporated by
making the win probability be of the form W(xa — xg £ A);

@ not considering more elaborate modeling of point difference
and also

@ strengths do not change with time.



Some comments on the math model.

P(A beats B) = W(xa — xg)
W :R — (0,1) is continuous, strictly increasing
W(—x)+ W(x) =1, Ilim W(x)=1
X—»00

There is a reinterpretation of this model, as follows. Consider the
alternate model in which the winner is determined by point difference,
and suppose the random point difference D between two teams of equal
strength has some (necessarily symmetric) continuous distribution not
depending on their common strength, and then suppose that a difference
in strength has the effect of increasing team A’s points by x4 — xg. Then
in this alternate model

]P)(A beats B) = ]P)(D—I—XA—XB > 0) = IP)(—D < XA—XB) = IP)(D < XA—XB).

So this is the same as our original model in which we take W as the
distribution function of D.



This basic probability model has undoubtedly been re-invented many
times; in the academic literature it seems to have developed “sideways”
from the following type of statistical problem. Suppose we wish to rank a
set of movies A, B, C, ... by asking people to rank (in order of
preference) the movies they have seen. Our data is of the form

(person 1): C,AE

(person 2): D,B, A, C

(person 3): E, D

One way to produce a consensus ranking is to consider each pair (A, B)
of movies in turn. Amongst the people who ranked both movies, some
number (A, B) preferred A and some number i(B, A) preferred B. Now
reinterpret the data in sports terms: team A beat B i(A, B) times and
lost to team B i(B, A) times. Within the basic probability model (with
some specified W) one can calculate MLEs of strengths xa, xg, . . . which
imply a ranking order.



This method, with W the logistic function (discussed later), is called the
Bradley-Terry model, from the 1952 paper Rank analysis of incomplete
block designs: I. The method of paired comparisons by R.A. Bradley and
M.E. Terry.

An account of the basic Statistics theory (MLEs, confidence intervals,
hypothesis tests, goodness-of-fit tests) is treated in Chapter 4 of H.A.
David’s 1988 monograph The Method of Paired Comparisons.

So one can think of Bradley-Terry as a sports model as follows: take
data from some past period, calculate MLEs of strengths, use to predict
future win probabilities.



Considering Bradley-Terry as a sports model:

positives:

e allows unstructured schedule;

e use of logistic makes algorithmic computation straightforward.
negatives:

e use of logistic completely arbitrary: asserting

if P(i beats j) = 2/3, P(j beats k) = 2/3 then P(i beats k) = 4/5

as a universal fact seems ridiculous;

e by assuming unchanging strengths, it gives equal weight to past as to
recent results;

e need to recompute MLEs after each match.

The Bradley-Terry model could be used for interesting course projects —
take the Premier league data and ask what is the probability that Chelsea
was actually the best team in 2014-157.



Reminder 4. Another aspect of what makes sports interesting to a
spectator is that strengths of teams change over time — if your team did
poorly last year, then you can hope it does better this year.

In the context of the Bradley-Terry model, one can extend the model to
allow changes in strengths. Seem to be about 2-3 academic papers per
year which introduce some such extended model and analyze some
specific sports data. Possible source of course projects — apply to
different sport or to more recent data.



Idea 2: Elo-type rating systems [show site]

(not ELO). The particular type of rating systems we study are known
loosely as Elo-type systems and were first used systematically in chess.
The Wikipedia page Elo rating system is quite informative about the
history and practical implementation. What | describe here is an
abstracted “mathematically basic” form of such systems.

Each player i is given some initial rating, a real number y;. When player i
plays player j, the ratings of both players are updated using a function T
(Upsilon)

if i beats j then y; — yi + T(yi —y;) and y; = y; — T(yi — yj) 2
if i loses to j then y; — yi — T(y; —yi) and y; = yi + T(y; — yi) .

Note that the sum of all ratings remains constant; it is mathematically
natural to center so that this sum equals zero.



The Elo ratings are based on the following formulas:

R,=R,+Kx(W-W,)

* R, isthe new rating, R, is the old (pre-match) rating.

* Kis the weight constant for the tournament played:

* 60 for World Cup finals;

* 50 for continental championship finals and major intercontinental tournaments;
* 40 for World Cup and continental qualifiers and major tournaments;

* 30 for all other tournaments;

* 20 for friendly matches.

* Kis then adjusted for the goal difference in the game. It is increased by half if a
game is won by two goals, by 3/4 if a game is won by three goals, and by 3/4 +
(N-3)/8if the game is won by four or more goals, where N is the goal difference.

* W is the result of the game (1 for a win, 0.5 for a draw, and 0 for a loss).

* W, is the expected result (win expectancy), either from the chart or the following
formula:

e W, =1/ (106d/400) 4 1)
¢ drequals the difference in ratings plus 100 points for a team playing at home.



Schematic of one player's ratings after successive matches. The e
indicate each opponent's rating.

rating .
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Math comments on the Elo-type rating algorithm.
We require the function T(u), —oo < u < oo to satisfy the qualitative
conditions

T :R — (0,00) is continuous, strictly decreasing, and Ii_)m T(u) =0.
(3

)

We will also impose a quantitative condition
kr = sup|T'(v)| < 1. (4)
u
To motivate the latter condition, the rating updates when a player with
(variable) strength x plays a player of fixed strength y are
x=>x+T(x—y)and x = x — T(y — x)

and we want these functions to be increasing functions of the starting strength
X.

Note that if T satisfies (3) then so does ¢ for any scaling factor ¢ > 0. So
given any T satisfying (3) with s+ < oo we can scale to make a function where
(4) is satisfied.



The logistic distribution function
eX

F(x) :

:ﬁ7*OO<X<OO
e

is a common choice for the “win probability” function W(x) in the basic
probability model; and its complement

1-F(x)=F(—x)

:1+ X’_OO<X<OO
e

is a common choice for the “update function shape” T(x) in Elo-type
rating systems. That is, one commonly uses T(x) = cF(—x).

1 e~ Ta——— I

\
Cl.b} \-d.D
'l Y
—‘s :I;‘l -‘2 a ; ; é ; L ; 0 sl— al- al—
possible W(x) possible T(x)

Whether this is more than a convenient choice is a central issue in this
topic.



Elo is an algorithm for producing ratings (and therefore rankings) which
(unlike Bradley-Terry) does not assume any probability model. It
implicitly attempts to track changes in strength and puts greater weight
on more recent match results.

How good are Elo-type algorithms? This is a subtle question — we
need to

@ use Elo to make predictions

@ choose how to measure their accuracy

@ compare accuracy with predictions from some other ranking/rating

scheme (such as Bradley-Terry or gambling odds).

The simplest way to compare schemes would be to look at matches
where the different schemes ranked the teams in opposite ways, and see

which team actually won. But this is not statistically efficient [board].
Better to compare schemes which predict probabilities.

Although the Elo algorithm does not say anything explicitly about
probability, we can argue that it implicitly does predict winning
probabilities.



A math connection between the probability model and the rating
algorithm.

Consider n teams with unchanging strengths xi, ..., x,, with match
results according to the basic probability model with win probability
function W, and ratings (y;) given by the update rule with update
function T. When team i plays team j, the expectation of the rating
change for i equals

T(yi = y)Wxi =) = T(y; — yi) W — xi)- (5)
So consider the case where the functions T and W are related by
T(u)/T(—u) = W(—u)/W(u), —oo<u<o0.

In this case
(*) If it happens that the difference y; — y; in ratings of two
players playing a match equals the difference x; — x; in
strengths then the expectation of the change in rating
difference equals zero

whereas if unequal then (because T is decreasing) the expectation of
(vi —yj) — (xi — x;) is closer to zero after the match than before.



T(u)/T(—u) = W(—u)/W(u), —oo<u< 0. (6)

These observations suggest that, under relation (6), there will be a
tendency for player i's rating y; to move towards its strength x; though
there will always be random fluctuations from individual matches. So if
we believe the basic probability model for some given W, then in a rating
system we should use an T that satisfies (6).

Recall that in the probability model we can center the strengths so that
> xi =0, and similarly we will initialize ratings so that . y; = 0.

What is the solution of (6) for unknown T?

This can be viewed as the setup for a
mathematician/physicist/statistician joke.



Problem

solve T(u)/T(—u) = W(—u)/W(u), —oo < u< oo.

Solution
@ physicist (Elo): T(u) = cW(—u)
e mathematician: T(u) = ( u)p(u) for arbitrary symmetric ¢(-).

o statistician: T(u) = cy/W(—u)/W(u) (variance-stabilizing ¢).

These answers are all “wrong” for different reasons. And so in fact it's
hard to answer “what T to use?”

However we can work backwards; when people use the “complement of
logistic” as the update function T, we can use (6) to argue that they are
implicitly imagining the Bradley-Terry with W the logistic function. So
this gives a way to use Elo ratings to predict win probabilities.



There is a link to my more mathematical write-up of the topic above.

There are several related possible simulation projects. For instance,
consider a league on n teams, whose strengths has some SD o, the
strengths change in time via some rule with rate parameter A\. We take
the probability model with logistic W and the update model with function
cT for logistic T. Study how the optimal value of ¢ depends on (n,c, ).



Some other aspects of rating models.

1. Recent book "“The Science of Ranking and Rating” treats methods
using undergraduate linear algebra. The lecture in this course in 2014
was based more on that book (link on web page).

2. People who attempt realistic models of particular sports, using e.g.
statistics of individual player performance, believe their models are much
better than general-sport methods based only on history of wins/losses or
point differences. But a recent paper Statistics-free sports prediction
claims that (using more complex prediction schemes) they can do almost
as well using only match scores.

3. | have talked about comparing different schemes which predict
probabilities — after we see the actual match results, how do we decide
which scheme is better? | will discuss this in a different context, the
lecture on Geopolitics forecasting.

4. Both schemes are poor at assessing new players. Xbox Live uses its
“TrueSkill ranking system” [show page| which estimates both a rating
and the uncertainty in the rating, as follows.
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Here a rating for player i is a pair (u;,0;), and the essence of the scheme
is as follows. When i beats j

(i) first compute the conditional distribution of X; given X; > X;, where
X; has Normal(y;, 0?) distribution

(i) then update i's rating to the mean and s.d. of that conditional
distribution.

Similarly if i loses to j then i's rating is updated to the mean and s.d. of
the conditional distribution of X; given X; < Xj.

Discussion. The authors seem to view this as an
approximation to some coherent Bayes scheme, but to me it
fails to engage both ‘‘uncertainty about strength" and
‘‘uncertainty about match outcome".

So another simulation project is to compare this to other schemes. Note
this implicitly predicts winning probabilities via P(X; > X;).



[show slides from previous year lecture]

People often think that bookmakers adjust their offered odds so that,
whatever the outcome, they never lose money. This just isn't true. [show
ESPN article]

Finally, there is an interesting paradox involved in designing matches to
be exciting to spectators [board].



