
Lecture 10: Psychology of probability: predictable
irrationality.

David Aldous

March 7, 2016



Here are two extreme views of human rationality.

(1) There is much evidence that people are not rational, in the
economist’s sense [maximization of expected utility (MEU)].
Some would argue we need descriptive economics; I would argue
that all should be taught about probability, utility and MEU and
act accordingly [Dennis Lindley, Understanding Uncertainty.]

(2) You mentioned research which revealed that shoppers often
prefer “50% extra free” to a notionally more generous 33%
reduction in price, and you cited this as evidence of irrationality
or poor mathematical ability on the part of consumers.
. . . . . . Since all value is subjective, if people value 50% extra
free more highly than 33% off, then that is an end of the
matter. Whether or not the resulting behaviour conforms to
some autistic neoclassical idea of rationality is irrelevant. [Rory
Sutherland, Ogilvy & Mather UK. Letter to The Economist July
21 2012.]



The 2011 best-seller Thinking, Fast and Slow by Nobel Prize winning
Kahneman gives a wide-ranging and very non-technical account of
human rationality and irrationality. The key point is that we’re not
arbitrarily irrational but that our intuition is “predictably irrational” (title
of popular 2008 Ariely book) in ways one can describe. The part of this
field relevant to us concerns “decisions under uncertainty”, which
necessarily involves issues of probability and utility.

Psychology research gets real data from real people, but the data mostly
consists of subjects’ answers to hypothetical “limited explicit relevant
data” exam-style questions involving uncertainty. My personal view of
this field is that we have a good understanding of how people think
about such hypothetical questions, but it is less clear how closely this
translates to their “real life” behavior, two obvious issues being

real life does not present us with limited explicit relevant data

your answer to a “what you would do if . . . ” question may well not
be what you would actually do in real life.



A 2004 book Cognition and Chance: the psychology of probabilistic
reasoning by Nickerson gives extensive summaries of the research
literature and descriptions of experiments (surveys).

Course project: repeat some experiment on your friends.

Later I will describe two such course projects done by students in
previous years.

Amongst many survey articles, Cognitive biases potentially affecting
judgment of global risks (Yudkowsky, 2008) is relevant to a later lecture.

I don’t have any new data to serve as “anchor” for today’s lecture. Here
is a famous example which reveals one important general principle. Text
here copied from Wikipedia Framing (social sciences) – several later
examples also copied from relevant Wikipedia articles.



Two alternative programs have been proposed to combat a new disease
liable to kill 600 people. Assume the best estimate of the consequences
of the programs are as follows. (information presented differently to two
groups of participants in a psychology study).

info presented to group 1: In a group of 600 people,
• Program A: ”200 people will be saved”
• Program B: ”there is a one-third probability that 600 people will be

saved, and a two-thirds probability that no people will be saved”

info presented to group 2: In a group of 600 people,
• Program C: ”400 people will die”
• Program D: ”there is a one-third probability that nobody will die,

and a two-third probability that 600 people will die”

In group 1, 72% of participants preferred program A
In group 2, 22% preferred program C.

The point of the experiment is that programs A and C are identical, as
are programs B and D. The change in the decision frame between the two
groups of participants produced a preference reversal: when the programs
were presented in terms of lives saved, the participants preferred the
secure program, A (= C). When the programs were presented in terms of
expected deaths, participants chose the gamble D (= B).



This example illustrates a general framing principle, observed in many
contexts. Our heuristic decisions under uncertainty are strongly affected
by whether our attention is focused on the possible benefits/gains or on
the possible risks/losses.

The framing issue arises in many “risk” contexts

medicine – whether to have an operation

financial investments



Let me quickly mention another well known cognitive bias, called
Anchoring. To quote Wikipedia, this is

the common human tendency to rely too heavily on the first piece of
information offered (the ”anchor”) when making decisions. Once an
anchor is set, other judgments are made by adjusting away from that
anchor, and there is a bias toward interpreting other information around
the anchor. For example, the initial price offered for a used car sets the
standard for the rest of the negotiations, so that prices lower than the
initial price seem more reasonable even if they are still higher than what
the car is really worth.

As the last sentence implies, anchoring can be used as a negotiating
tactic to gain advantage.

This bias is perhaps not so relevant to probability questions, but is
loosely related to one of our Lecture 1 survey questions.



Here is data from a Lecture 1 survey question –asked in both the 2014
and 2016 class.
(a) It was estimated that in 2013 there were around 1,400 billionaires in
the world. Their combined wealth, as a percentage of all the wealth
(excluding government assets) in the world, was estimated as roughly
1.5% 4.5% 13.5% 40.5%
(b) I think the chance my answer to (a) is correct is . . . . . . . . . %

2014 course
response number students average guess P(correct)

1.5% 5 54%
4.5% 3 37%

13.5% 12 36%
40.5% 14 64%

2016 course
response number students average guess P(correct)

1.5% 2 72%
4.5% 5 50%

13.5% 12 65 %
40.5% 16 77%



2014 course
response number students average guess P(correct)

1.5% 5 54%
4.5% 3 37%

13.5% 12 36%
40.5% 14 64%

2016 course
response number students average guess P(correct)

1.5% 2 72%
4.5% 5 50%

13.5% 12 65 %
40.5% 16 77%

This data is interesting for several reasons.
(1) The figures are from Piketty’s Capital in the Twenty-First Century
who gives the estimate 1.5%.
(2) One can regard this as an instance of anchoring, because I placed the
correct answer at one extreme of the possible range of answers.
(3) It is also a dramatic illustration of overconfidence in that the people
most confident in their opinion were in fact the least accurate.



Wikipedia has a long List of cognitive biases [show] and Kahneman’s
book discusses many of those related to probability and utility. Only a
few are mentioned in this lecture.

In the studies above, participants were simply asked questions. But
structuring psychology studies as games (rather than as just answering
questions) has several advantages, in particular making voluntary
participation more appealing. So let me describe two game-structured
projects done by students in this course in previous years, repeating on a
small scale studies described in the academic literature.



[demonstrate Project 1 with cards]



Project 1. Set-up. From 2 decks of cards assemble one deck with (say)
34 black cards and 17 red cards. Get 50 tokens (or dimes or Monopoly
currency notes).

Procedure. Show participant the deck, say it’s a non-standard deck with
different numbers of black and red cards, but say “I’m not going to tell
you anything else – whether there are more black or more red”. Say you
will shuffle and deal face-up cards. Each time the participant must bet 1
token on the color of the next card – can bet on either red or black.

You do this quickly; at the end ask participant what strategy they were
using to decide which way to bet.



Project 1. Set-up. From 2 decks of cards assemble one deck with (say)
34 black cards and 17 red cards. Get 50 tokens (or dimes or Monopoly
currency notes).

Procedure. Show participant the deck, say it’s a non-standard deck with
different numbers of black and red cards, but say “I’m not going to tell
you anything else – whether there are more black or more red”. Say you
will shuffle and deal face-up cards. Each time the participant must bet 1
token on the color of the next card – can bet on either red or black.

You do this quickly; at the end ask participant what strategy they were
using to decide which way to bet. A common answer is “after a while I
noticed there were more red than black cards – maybe around 2/3 were
black – so I bet on black 2/3 of the time”.

Analysis. At this point the participant may realize that in fact this
strategy is not optimal. Once you decide there are more blacks than reds,
you should always bet on black.



This error is called Probability matching. The brief Wikipedia article has
the please improve this article note, so that’s a project.

Our second project illustrates a less well known effect.



Project 2. Set-up. Take a bingo game, in which you can draw at
random from balls numbered 1 - 75, or similar randomization device.
Take 5 tokens.

Procedure. Tell participant you will draw balls one by one; each time,
the participant has to bet 1 token on whether the next ball drawn will be
a higher or lower number than the last ball drawn. After doing 5 such
bets, tell participant “there will be one final bet, but this time you can
choose either to bet 1 token, or to bet all your tokens”. Finally, ask
participant what was their strategy for which way to bet, and how did
they decide at the final stage whether to bet all their tokens or just 1.

Results. Before the final bet, almost everyone does the rational strategy
– if the last number is less than 37 they bet the next will be larger. What
we’re interested in is their rationale for how much to bet at the last stage.
A surprising number of people invoke some notion of luck – “I was ahead,
so didn’t want to press my luck by betting everything at the last stage”.

Conclusion. Even when “primed” to think rationally, people often revert
to thinking about chance in terms of “luck”.



Another common cognitive error is base rate neglect, which is the
psychologist’s phrase for not appreciating Bayes formula. In a famous
example, subjects are asked the following hypothetical question.

A taxi was involved in a hit and run accident at night. Two taxi
companies, the Green and the Blue, operate in the city. 85% of
the taxis in the city are Green and 15% are Blue.

A witness identified the taxi as Blue. The court tested the
reliability of the witness under the same circumstances that
existed on the night of the accident and concluded that the
witness correctly identified each one of the two colors 80% of
the time and failed 20% of the time.

What is the probability that the taxi involved in the accident
was Blue rather than Green knowing that this witness identified
it as Blue?

Most people answer either 80% or make some guess over 50%. The
correct answer, via Bayes formula, is
[board]



Base rate neglect. (Wikipedia). If presented with related base rate
information (i.e. generic, general information) and specific information
(information only pertaining to a certain case), the mind tends to ignore
the former and focus on the latter.

An everyday example, at a wedding you might wonder about the chances
this marriage will last 10 years. People’s assessment of such things is
strongly based on the specifics of the couple involved. But in most
examples, you get an improved estimate by moving toward the “base
rate” or “population average”.

A common textbook example concerns false positives in medical tests.
Another contemporary example concerns facial recognition technology.
Consider the following hypothetical setting.



In a city of 1 million inhabitants let there be 100 terrorists and 999,900
non-terrorists. Thus, the base rate probability of a randomly selected
inhabitant of the city being a terrorist is 0.0001, and the base rate
probability of that same inhabitant being a non-terrorist is 0.9999. In an
attempt to catch the terrorists, the city installs an alarm system with a
surveillance camera and automatic facial recognition software.

The false negative rate: If the camera scans a terrorist, a bell will ring
99% of the time, and it will fail to ring 1% of the time.
The false positive rate: If the camera scans a non-terrorist, a bell will
not ring 99% of the time, but it will ring 1% of the time.

Suppose now that an inhabitant triggers the alarm. What is the chance
that the person is a terrorist?

Someone making the ’base rate fallacy’ would infer that there is a 99%
chance that the detected person is a terrorist. In fact (Bayes formula)
the chances they are a terrorist are actually near 1%, not near 99%.



The effects we have described are replicable in experiments, and we are
confident that people do actually encounter such situations and make
these kinds or errors in the real world.

But a critique of this style of work is that, by basing theory on
hypothetical questions with limited explicit relevant data, one can get
“out of touch” with typical real world issues. I will give two “critique”
examples. The first involves reverse engineering a famous example.
Consider two hypothetical scenarios.

Scenario 1. Police know, from existing evidence, that one of two
suspects committed a crime.
Suspect 1 has attributes A and B
Suspect 2 has attribute A (don’t know whether B).

(for instance, A = tall, B = wearing dark jacket at the time)

Then find a new witness who is pretty sure the criminal has attributes A
and B.

Common sense and Bayes rule agree that, whatever the prior probabilities
from other evidence, this extra evidence shifts the probability toward
suspect 1.



Scenario 2.
One suspect – police sure this is criminal but are gathering extra evidence
for trial. New witness says: pretty sure person has attributes A and B.
Which is more likely:
(i) the criminal has attribute A (don’t care whether B)
(ii) the criminal has attributes A and B.

In this abstract formulation, and to students who have taken a course in
mathematical probability, as a simple matter of logic (i) must be more
likely than (ii). But when the question is dressed up in a more colorful
story then people often say that (ii) is more likely then (i).

This error is called the Conjunction fallacy.
The best-known hypothetical story here is “Linda the feminist bank
teller”, as follows.



Linda is 31 years old, single, outspoken, and very bright. She majored in
philosophy. As a student, she was deeply concerned with issues of
discrimination and social justice, and also participated in anti-nuclear
demonstrations.

Which is more probable?

(i) Linda is a bank teller.
(ii) Linda is a bank teller and is active in the feminist movement.

Most people say (ii) is more likely.



The standard explanation for the error in intuition is discussed in another
Wikipedia article Representativeness heuristic. That is, the mental
picture we get from the story fits (ii) better than (i),

To me, the key point is that the type of comparison we are asked to do in
scenario 2 is very artificial – I can think of no “everyday life” setting
where we would care about comparing two probabilities like (i) and (ii)
for the same entity, so we have no experience of doing so. In contrast,
comparing different entities – which menu item will I enjoy more? – is
something we do many times a day, so an alternative explanation of this
particular heuristic error is that we confuse scenario 2 with the much
more familiar scenario 1.

So “Linda the feminist bank teller” works as a memorable example
amongst the long list of counterintuitive examples within elementary
probability (birthday problem, Monty Hall problem, . . . ) but I view it as
an artificial game (like Monty Hall) rather than a general principle (like
the birthday problem, which spotlights the much more general fact that
coincidences happen by pure chance more often than intuition suggests).



A second critique, applicable to textbook exercises as well as these
studies in psychology, is that questions based on “limited explicit relevant
data” don’t address the complexities of “real life” probability, from which
our intuition presumably developed.

Here is a hypothetical, though not so unrealistic, story.



In casual conversation with a stranger in the next airplane seat,
you ask “do you have children?” and the response is “yes, two
boys”. Based on this, what is the chance that the two boys are
twins?

This is a fairly realistic conversation. Of course, if you cared about twins
you could just ask, so thinking about probabilities here is artificial, but
let’s do it anyway. We’re looking for an approximate answer, and I won’t
discuss all the common sense approximations being made.
First we need the empirical frequency of a birth giving twin boys, which
turns out to be about 5/1000. Second, amongst 2-child families in
general, the frequency of “2 boys” must be about 1/4. Now we can
estimate the population ratio

(number of families with twin boys, no other children)

(number of families with two boys, no other children)
≈ 2%.

Interpreting ratio of frequencies as a conditional probability,

P(twins|2 boys, no other children) ≈ 2%

and one might give ”about 2%” as the answer to the original question.



This answer is drastically wrong! The information we have is not “2
boys, no other children” but instead the information is the specific form
of the response “yes, two boys”. A person with twins might well have
mentioned this fact in their response – e.g. “yes, twin boys”. And a
person with non-twins might have answered in a way that implied
non-twins, e.g. “Sam’s in College and Jim’s in High School”.

The best answer to the original question that I can devise is

2% × p
q ; where

p is the chance a person with twins answers in such a way that you can’t
infer twins;
q is the chance a person with non-twins answers in such a way that you
can’t infer non-twins.

Common experience is that people with twins might well actually tell
you, so let me guess p = 1/8 and q = 1/2, leading to my best guess
“0.5%” for the desired probability.



The point: for doing probability calculations, and even more so in doing
statistical analysis of data based on human responses, it can be
misleading to use information without thinking how the information was
obtained.



Utility theory is the classical model, referred to in our two opening
quotations, for rational agents making decisions. “Utility” is a
deliberately vague word, meaning a numerical measure of desirability of
outcomes. First consider ordinary non-random settings. Why do we buy
things?

Theory says you have a “utility for money” function U(x), generally
assumed increasing but concave. You also have a utility U∗ for owning
any particular item. If you have money x and the item costs y then
buying the item will increase your utility if

U(x − y) + U∗ > U(x).

Utility theory says, as a definition or axiom, that the “rational” way to
make decisions is to take the action that maximizes utility.

Utilities clearly are subjective, and theory allows them to be arbitrary
(different people buy different things), but theory then insists you should
behave “rationally” in this particular sense.



In principle you have a utility for everything. For instance time (air travel:
direct flight or 2-stop).
Note U(x) not assumed straight line – losing all you money, or doubling
your money, are not equal-but-opposite – so being as risk-averse as you
wish is counted as “rational”.
One might think this theory can explain everything, but it doesn’t. For
instance, utility theory says you should have the same utility for owning
an item, regardless of whether or not you actually own it (price willing to
pay to buy should be same as price willing to accept to sell). But in fact
there is the

endowment effect: people place a higher value on objects
they own than objects they do not own.

To demonstrate this effect in the real world one wants a situation where
one can eliminate possible extraneous reasons. Here is a very ingenious
example.



Duke University has a very small basketball stadium and the number of
available tickets is much smaller than the number of people who want
them, so the university has developed a complicated selection process for
these tickets that is now a tradition. Roughly one week before a game,
fans begin pitching tents in the grass in front of the stadium. At random
intervals a university official sounds an air-horn which requires that the
fans check in with the basketball authority. Anyone who doesn’t check in
within five minutes is cut from the waiting list. At certain more
important games, even those who remain on the list until the bitter end
aren’t guaranteed a ticket, only an entry in a raffle in which they may or
may not receive a ticket. After a final four game in 1994, economists Ziv
Carmon and Dan Ariely called all the students on the list who had been
in the raffle. Posing as ticket scalpers, they probed those who had not
won a ticket for the highest amount they would pay to buy one and
received an average answer of $170. When they probed the students who
had won a ticket for the lowest amount they would sell, they received an
average of about $2,400. This showed that students who had won the
tickets placed a value on the same tickets roughly fourteen times as high
as those who had not won the tickets.



[show page 1 again]



Let’s anyway continue with utility theory as a prescription for how people
should behave. Consider the context of “decisions under uncertainty”,
that is random outcomes.

If we assign utilities to all possible outcomes, and if we know how our
available choices affect the probabilities of the various outcomes, then we
can make the choice that maximizes expected utility (MEU; note
Wikipedia discusses this as Expected utility hypothesis).

First, a few uncontroversial comments. If your wealth is $10K and
somehow have an opportunity to bet (win or lose) $5K with a 51%
chance of winning, most people would not take that bet. But if the
chance of winning were 99% then most people would take that bet. MEU
theory explains this by saying that you would take the bet if the
probability p of winning satisfies

pU(15K ) + (1− p)U(5K ) > U(10K ).



So according to MEU theory

being risk-averse for large amounts is rational
being risk-averse for small amounts in not rational.

So, for instance,

buying insurance to offset possible large losses is rational
buying insurance to offset possible small losses is not rational


