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Plan of the talk

• Computational complexity
-- efficient algorithms, hard and easy problems,

P vs. NP
• The power of randomness

-- in saving time
• The weakness of randomness

-- what is randomness ?
-- the hardness vs. randomness paradigm

• The power of randomness
-- in saving space
-- to strengthen proofs



Easy and Hard Problems
asymptotic complexity of functions

Multiplication
mult(23,67) = 1541

grade school algorithm:
n2 steps on n digit inputs

EASY
P – Polynomial time 

algorithm

Factoring
factor(1541) = (23,67)

best known algorithm:
exp(n) steps on n digits

HARD?
-- we don‟t know!
-- the whole world thinks so!



Map Coloring and P vs. NP
Input: planar map M
(with n countries)

2-COL: is M 2-colorable?

4-COL: is M 4-colorable?

Easy

Hard?3-COL: is M 3-colorable?

Trivial

Thm: If    3-COL    is Easy
then  Factoring is Easy

P vs. NP problem: Formal: Is 3-COL Easy?

Informal: Can creativity be automated?

-Thm [Cook-Levin ‟71, Karp ‟72]: 3-COL is NP-complete  
-…. Numerous equally hard problems in all sciences



Fundamental question #1
Is NPP ? Is any of these problems hard?
- Factoring integers

- Map coloring
- Satisfiability of Boolean formulae
- Traveling salesman problem
- Solving polynomial equations
- Computing optimal Chess/Go strategies  

Best known algorithms: exponential time/size.
Is exponential time/size necessary for some?

Conjecture 1 : YES



The Power of Randomness

Host of problems for which:

- We have probabilistic polynomial 
time algorithms

- We (still) have no deterministic
algorithms of subexponential time.



Coin Flips and Errors
Algorithms will make decisions using coin flips

0111011000010001110101010111…
(flips are independent and unbiased)
When using coin flips, we‟ll guarantee: 
“task will be achieved, with probability >99%”

Why tolerate errors?
• We tolerate uncertainty in life
• Here we can reduce error arbitrarily <exp(-n)
• To compensate – we can do much more…



Number Theory: Primes

Problem 1: Given x[2n, 2n+1], is x prime?

1975 [Solovay-Strassen, Rabin] : Probabilistic 
2002 [Agrawal-Kayal-Saxena]: Deterministic !!

Problem 2: Given n, find a prime in [2n, 2n+1]

Algorithm: Pick at random x1, x2,…, x1000n

For each xi apply primality test.
Prime Number Theorem  Pr [ i xi prime] > .99



Algebra: Polynomial Identities

Is  det(                 )- i<k (xi-xk)  0 ?

Theorem [Vandermonde]: YES

Given (implicitly, e.g. as a formula) a polynomial 

p of degree d.     Is p(x1, x2,…, xn)  0 ?

Algorithm [Schwartz-Zippel „80] : 

Pick ri indep at random in {1,2,…,100d}

p  0    Pr[ p(r1, r2,…, rn) =0 ] =1

p  0    Pr[ p(r1, r2,…, rn)  0 ] > .99

Applications: Program testing, Polynomial factorization



Analysis: Fourier coefficients
Given (implicitely) a function f:(Z2)

n  {-1,1}
(e.g. as a formula), and >0,
Find all characters  such that |<f,>| 

Comment : At most 1/2 such 

Algorithm [Goldreich-Levin „89] : 
…adaptive sampling… Pr[ success ] > .99

[AGS] : Extension to other Abelian groups.
Applications: Coding Theory, Complexity Theory

Learning Theory, Game Theory



Geometry: Estimating Volumes

Algorithm [Dyer-Frieze-Kannan „91]:
Approx counting  random sampling 
Random walk inside K.
Rapidly mixing Markov chain.

Analysis:
Spectral gap  isoperimetric inequality

Applications:
Statistical Mechanics, Group Theory            

Given (implicitly) a convex body K in Rd  (d large!)
(e.g. by a set of linear inequalities)
Estimate  volume (K)
Comment: Computing volume(K) exactly is #P-complete

K



Fundamental question #2
Does randomness help ?

Are there problems with probabilistic
polytime algorithm but no deterministic one? 

Conjecture 2: YES

Theorem: One of these conjectures is false!

Fundamental question #1

Does NP require exponential time/size ?

Conjecture 1: YES



Hardness vs. Randomness
Theorems [Blum-Micali,Yao,Nisan-Wigderson, 

Impagliazzo-Wigderson…] :
If there are natural hard problems, then
randomness can be efficiently eliminated.

Theorem [Impagliazzo-Wigderson „98] 
NP requires exponential size circuits 
every probabilistic polynomial-time 
algorithm has a deterministic counterpart

Theorem [Impagliazzo-Kabanets‟04, IKW‟03] 
Partial converse!



Computational Pseudo-Randomness

none

efficient
deterministic pseudo-

random
generator

algorithm
input

output

many
unbiased
independent

n

algorithm
input

output

many
biased

dependent

n

fewk ~ c log n

pseudorandom if
for every efficient
algorithm, for every input,

output output

Goldwasser-Micali‟81



Hardness  Pseudorandomness

k ~ clog n

k+1

f

Need: f hard on random input  Average-case hardness

Have: f hard on some input    Worst-case hardness                                                 

Hardness amplification

Need G: k bits  n bits

Show G: k bits  k+1 bits

NW generator



Derandomization

G efficient
deterministic

pseudo-
random
generator

algorithm
input

output

n

k ~ c log n

Deterministic algorithm:
- Try all possible 2k=nc “seeds”
- Take majority vote

Pseudorandomness paradigm:
Can derandomize specific 
algorithms without assumptions!
e.g. Primality Testing & Maze exploration



Randomness and 
space complexity



Getting out of mazes 
(when your memory is weak)

Theseus

Ariadne

Crete, ~1000 BC

Theorem [Aleliunas-Karp-
Lipton-Lovasz-Rackoff „80]:
A random walk will visit 
every vertex in n2 steps 
(with probability >99% )

Only a local view (logspace)

n–vertex maze/graph

Theorem [Reingold „06] :
A deterministic walk,
computable in logspace,
will visit every vertex. 
Uses ZigZag expanders [Reingold-Vadhan-Wigderson „02]

Mars, 2003AD



The power of pandomness

in Proof Systems



Probabilistic Proof System 
[Goldwasser-Micali-Rackoff, Babai „85]

Is a mathematical statement claim true? E.g.
claim:  “No integers x, y, z, n>2 satisfy xn +yn = zn “

claim:  “The Riemann Hypothesis has a 200 page proof”

An efficient Verifier V(claim, argument) satisfies:

*) If claim is true then V(claim, argument) = TRUE
for some argument
(in which case claim=theorem, argument=proof)

**) If claim is false then V(claim, argument) = FALSE 
for every argument 

probabilistic

with probability > 99%

always



Remarkable properties of 
Probabilistic Proof Systems

- Probabilistically Checkable Proofs (PCPs)

- Zero-Knowledge (ZK) proofs



Probabilistically Checkable 
Proofs (PCPs)

claim:  The Riemann Hypothesis
Prover:  (argument)
Verifier: (editor/referee/amateur)

Verifier‟s concern: Has no time…
PCPs: Ver reads 100 (random) bits of argument.

Th[Arora-Lund-Motwani-Safra-Sudan-Szegedy‟90]
Every proof can be eff. transformed to a PCP 
Refereeing (even by amateurs) in seconds!
Major application – approximation algorithms



Zero-Knowledge (ZK) proofs
[Goldwasser-Micali-Rackoff „85]

claim:  The Riemann Hypothesis
Prover:  (argument)
Verifier: (editor/referee/amateur)

Prover‟s concern: Will Verifier publish first?
ZK proofs: argument reveals only correctness!

Theorem [Goldreich-Micali-Wigderson „86]:
Every proof can be efficiently transformed to a 
ZK proof, assuming Factoring is HARD
Major application - cryptography



Conclusions & Problems
When resources are limited, basic notions get new 
meanings (randomness, learning, knowledge, proof, …).

- Randomness is in the eye of the beholder.
- Hardness can generate (good enough) randomness.
- Probabilistic algs seem powerful but probably are not.
- Sometimes this can be proven! (Mazes,Primality)
- Randomness is essential in some settings.

Is Factoring HARD? Is electronic commerce secure?
Is Theorem Proving Hard? Is PNP? Can creativity 

be automated?


