The power and weakness of
randomness
(when you are short on time)

Avi Wigderson
Institute for Advanced Study



Plan of the talk

-+ Computational complexity

- - efficient algorithms, hard and easy problems,
P vs. NP

*+ The power of randomness

-- in saving fime

- The weakness of randomness

-- what is randomness ?

-- the hardness vs. randomness paradigm
*+ The power of randomness

-- in saving space

-- to strengthen proofs



Easy and Hard Problems

asymptotic complexity of functions

Multiplication
mult(23,67) = 1541

grade school algorithm:
n? steps on n digit inputs

EASY
P - Polynomial time
algorithm

Factoring
factor(1541) = (23,67)

best known algorithm:
exp(Yn) steps on n digits

HARD?
we don't know!
the whole world thinks so!



Map Coloring and P vs. NP

Input: planar map M
(with n countries)
2-COL: is M 2-colorable? Easy

3-COL: is M 3-colorable? Hard?
4-COL: is M 4-colorable? Trivial

Thm: If 3-COL s Easy
then Factoring is Easy

-Thm : 3-COL is NP-complete
. Numerous equally hard problems in all sciences

g —Lesotho
South Africa

P vs. NP problem: Formal: Is 3-COL Easy?
Informal: Can creativity be automated?



Fundamental question #1

Is NP<P ? Is any of these problems hard?
- Factoring integers

- Map coloring

- Satisfiability of Boolean formulae

- Traveling salesman problem

- Solving polynomial equations

- Computing optimal Chess/Go strategies

Best known algorithms: exponential time/size.
Is exponential time/size necessary for some?

Conjecture 1 : YES



The Power of Randomness

Host of problems for which:

- We have probabilistic polynomial
time algorithms

- We (still) have 70 deterministic
algorithms of subexponential time.



)

Coin Flips and Errors e,%

Algorithms will make decisions using coin flips
0111011000010001110101010111._..

(flips are independent and unbiased)

When using coin flips, we'll guarantee:

"task will be achieved, with probability >99%"

Why tolerate errors?

- We tolerate uncertainty in life

 Here we can reduce error arbitrarily <exp(-n)
+ To compensate - we can do much more...



Number Theory: Primes
Problem 1: Given xe[2", 2™1!], is x prime?

1975 : Probabilistic
2002 : Deterministic !l

Problem 2: Given n, find a prime in [2", 2"!]
Algorithm: Pick at random x;, X,,.., X;000n

For each x; apply primality test.
Prime Number Theorem = Pr [ 3i x; prime] > .99



Algebra: Polynomial Identities

)- Iy (X-%,) =0 ?
: YES

Given (implicitly, e.g. as a formula) a polynomial
p of degree d. Is p(x;, X5,.., X,) =0 ?

Algorithm -

Pick r; indep at random in {1,2,..,100d}

p=0 = Pr[p(y, ry,... r)=0 ]-=1

p0 = Pr[p(y, ro,...r)=0]> .99
Applications: Program testing, Polynomial factorization



Analysis: Fourier coefficients

Given (implicitely) a function f:(Z,)" —» {-1,1}
(e.g. as a formula), and £>0,

Find all characters y such that |<f,yx>|> ¢
Comment : At most 1/¢2 such y

Algorithm
..adaptive sampling..  Pr[ success ] > .99

: Extension to other Abelian groups.
Applications: Coding Theory, Complexity Theory
Learning Theory, Game Theory



Geometry: Estimating Volumes

Given (implicitly) a convex body K in R? (d large!)
(e.g. by a set of linear inequalities)

Estimate volume (K)

Comment: Computing volume(K) exactly is #P-complete

Algorithm
Approx counting ~ random sampling

Random walk inside K. i

Rapidly mixing Markov chain.

N

Analysis: \\ 1

Spectral gap = isoperimetric inequality\ 7

Applications: — L \’S /

Statistical Mechanics, Group Theory |



Fundamental question #2

Does randomness help ?

Are there problems with probabilistic
polytime algorithm but no deterministic one?

Conjecture 2:

Fundamental question #1
Does NP require exponential time/size ?

Conjecture 1:

Theorem: One of these conjectures is falsel



Hardness vs. Randomness

Theorems

If there are natural hard problems, then
randomness can be efficiently eliminated.

Theorem

NP requires exponential size circuits =
every probabilistic polynomial-time
algorithm has a deterministic counterpart

Theorem
Partial converse!



Computational Pseudo-Randomness

input

many = many
unbiased & A AE RSN biased
independent dependent
efficient
deterministic pseudo-
— . T random
SielSiSISiSlS] pseudorandom if generator

for every efficient

algorithm, for every input, k~clogn few




Hardness = Pseudorandomness

Need G: k bits > n bits

Show G: k bits > k+1 bits

Need: f hard on random input Average-case hardness

Have: f hard on some input  Worst-case hardness




Derandomization

input

Deterministic algorithm:
- Try all possible 2k=nc "
- Take majority vote

G efficient
deterministic
pseudo-
random
generator

seeds”

Pseudorandomness paradigm:
Can derandomize specific
algorithms assumptions!
e.g. Primality Testing & Maze exploration




Randomness and
space complexity



Getting out of mazes
(when your memory is weak)

Theseus

Ariadne

compu’rntalﬁs mzbgsmse Crete, ~1000 BC
will visit every vertex.

Uses ZigZag expanders



The power of pandomness

in Proof Systems



Probabilistic Proof System

Is a mathematical statement claim true? E.g.
claim: “No integers x, y, z, n>2 satisfy x" +yh = zn"
claim: "The Riemann Hypothesis has a 200 page proof”

probabilistic
An efficient Verifier V(claim, argument) satisfies:

*) If claim is true then V(claim, argument) = TRUE
for some argument always
(in which case claim=theorem, argument=proof)

**) If claim is false then V(claim, argument) = FALSE
for every argument with probability > 99%



Remarkable properties of
Probabilistic Proof Systems

- Probabilistically Checkable Proofs (PCPs)

- Zero-Knowledge (ZK) proofs



Probabilistically Checkable
Proofs (PCPs)

The Riemann Hypothesis
Prover: (argument)
Verifier: (editor/referee/amateur)

Verifier's concern: Has no time...
PCPs: Ver reads 100 (random) bits of argument.

Th

Every proof can be eff. transformed to a PCP
Refereeing (even by amateurs) in seconds!
Major application - approximation algorithms



Zero-Knowledge (ZK) proofs

claim: The Riemann Hypothesis
Prover: (argument)
Verifier: (editor/referee/amateur)

Prover's concern: Will Verifier publish first?
ZK proofs: argument reveals correctness!

Theorem

Every proof can be efficiently transformed to a
ZK proof,

Major application - cryptography



Conclusions & Problems

When resources are limited, basic notions get new
meanings (randomness, learning, knowledge, proof, ..).

- Randomness is in the eye of the beholder.

- Hardness can generate (good enough) randomness.

- Probabilistic algs seem powerful but probably are not.
- Sometimes this can be proven! (Mazes,Primality)

- Randomness is essential in some settings.

Is Factoring HARD? Is electronic commerce secure?
Is Theorem Proving Hard? Is P=NP? Can creativity
be automated?



