
Probability 

 

Introduction 

There are two central questions concerning probability. First, what are its formal features? 

That is a mathematical question, to which there is a standard, widely (though not universally) 

agreed upon answer. This answer is reviewed in the next section. Second, what sorts of things 

are probabilities—what, that is, is the subject matter of probability theory? This is a 

philosophical question, and while the mathematical theory of probability certainly bears on it, 

the answer must come from elsewhere. To see why, observe that there are many things in the 

world that have the mathematical structure of probabilities—the set of measurable regions on the 

surface of a table, for example—but that one would never mistake for being probabilities. So 

probability is distinguished by more than just its formal characteristics. The bulk of this essay 

will be taken up with the central question of what this “more” might be.  

 

Kolmogorov’s axiomatization 

Probability theory was inspired by games of chance in seventeenth century France and 

inaugurated by the Fermat-Pascal correspondence, which culminated in the Port-Royal Logic 

(Arnauld, 1662). Its axiomatization had to wait nearly another three centuries. The locus 

classicus of the mathematical theory of probability is Kolmogorov (1933), who found his 

inspiration in measure theory. His axiomatization has become orthodoxy. Let Ω be a non-empty 

set. A field (algebra) on Ω is a set F of subsets of Ω that has Ω as a member, and that is closed 



under complementation (with respect to Ω) and union. Assume for now that F is finite. Let P be 

a function from F to the real numbers obeying: 

1. P(a) ≥ 0 for all a ∈ F. 

2. P(Ω) = 1. 

3. P(a ∪ b) = P(a) + P(b) for all a, b ∈ F such that a ∩ b = ∅. 

Call P a probability function, and (Ω,F, P) a probability space. 

One could instead attach probabilities to members of a collection of sentences of a formal 

language, closed under truth-functional combinations. Either way, a kind of reflective 

equilibrium is achieved between these axioms, which are thought to be intuitively plausible, and 

various important interpretations of probability (to be discussed in the subsequent sections), 

which obey them, and which bring them to life in applications. 

It is often thought that the only non-conventional part of the axiomatization is the third 

axiom. That is too quick. For it is substantive that probabilities are: 

(i) defined by functions (rather than by one-many or many-many mappings); 

(ii) functions of one variable (unlike primitive conditional probability functions, which are 

functions of two variables); 

(iii) defined on a field (rather than a set with weaker closure conditions); 

(iv) represented numerically (rather than qualitatively, as ‘possibility’ is, or comparatively, as 

‘similarity to a given world’ is in the Stalnaker/Lewis-style semantics for counterfactuals (Lewis 

[1986]); 

(v) real numbers (rather than those of some other number system); 

(vi) bounded (unlike other quantities that are treated measure-theoretically, such as lengths); 

(vii) attain maximal and minimal values (thus prohibiting open or half-open ranges). 



For a discussion of rival theories that relax or replace (ii), (iii), (iv) and (vi), see Fine (1973). 

Complex-valued probabilities are proposed by Feynman and Cox (see Mückenheim et al. 1986); 

infinitesimal probabilities (of non-standard analysis) by Skyrms (1980) and Lewis (1980) among 

others; unbounded probabilities by Renyi (1970). Primitive conditional probability functions will 

be briefly discussed at the end of this section. 

Kolmogorov extends his axiomatization to cover infinite probability spaces. Probabilities are 

now defined on a σ-field (σ-algebra)—a field that is further closed under countable unions—and 

the third axiom is correspondingly strengthened: 

3’. (Countable additivity) If a1, a2, a3 , … is a countable sequence of (pairwise) disjoint sets, 

each belonging to F, then  

    P(
  n =1

!

! an) = 
n=1

!

" P(an). 

De Finetti (1990) is a notable opponent of countable additivity.  

Kolmogorov then defines the conditional probability of a given b by the ratio of 

unconditional probabilities: 

P(a | b) = 

  

P(a!b)

P(b)
, provided P(b) > 0. 

Note that this ratio is undefined if either or both of the unconditional probabilities are undefined, 

or if P(b) = 0. Yet in uncountable spaces there can be genuine, non-trivial events whose 

probabilities are undefined (so-called ‘non-measurable sets’), and others whose probabilities are 

0 (‘probability 0 does not imply impossible’ as textbooks, and Kolmogorov himself, caution us). 

So Kolmogorov’s definition does not guarantee that certain intuitive constraints on conditional 

probability are met—for example, that the probability of an event, given itself, is 1.  



Kolmogorov addresses the probability 0 problem with a more sophisticated account of 

conditional probability as a random variable conditional on a sigma algebra, appealing to the 

Radon-Nikodym theorem to guarantee the existence of such a random variable. (See, e.g., 

Billingsley [1995].) A rival approach takes conditional probability P(_,_) as primitive and 

defines the unconditional probability of a as P(a,T), where T is a necessary (e.g., tautological) 

proposition. Various axiomatizations of primitive conditional probability have been defended in 

the literature, typically differing only on the handling of conditional probabilities with zero 

unconditional probability antecedents. In many ways, the most general and elegant of the 

proposed axiomatizations is Popper’s (1959). See Roeper and Leblanc (1999) for an 

encyclopedic discussion of competing theories of conditional probability, and Keynes (1921), 

Carnap (1950), Popper (1959), and Hájek (2003) for arguments that probability is inherently a 

two-place function.  

Versions of Bayes’ theorem can now be proven (see BAYESIANISM): 

P(a | b) = 

  

P(b | a)P(a)

P(b)
   

 = 

  

P(b | a)P(a)

P(b | a)P(a) + P(b | ¬a)P(¬a)
 

More generally, suppose there is a partition of hypotheses {h1, h2, ... , hn}, and evidence e. Then 

for each i, 

P(hi | e) = P(e | hi )P(hi )

P(e | hj )P(hj )
j=1

n

!
. 

The P(e | hi) terms are called likelihoods, and the P(hi) terms are called priors. 

Finally, Kolmogorov defines a and b to be independent iff P(a | b) = P(a); equivalently, iff 

P(b | a) = P(b); equivalently, iff P(a ∩ b) = P(a)P(b) (for P(a) ≠ 0 ≠ P(b)). The terminology 



suppresses the fact that such independence is really a three-place relation between an event, 

another event, and a probability function. This distinguishes probabilistic independence from 

such two-place relations as logical, causal, and counterfactual independence. 

The next section turns to the so-called interpretations of probability: attempts to answer the 

central philosophical question: What is probability? 

Frequentism 

Ask a scientist what probability is, and one will typically get a frequentist answer: The 

probability of an event is the relative frequency of trials of a repeatable experiment on which that 

event occurs; sometimes the words ‘in the long run’ are added. This leaves open important 

questions: Which are the trials to be counted? How long does the run have to be? One may 

confine one’s attention to actual trials, realized in this world, or one may countenance 

hypothetical trials. And one may have merely finitely many trials to contend with, or one may 

have infinitely many, in which case probability will be identified with the limit of the relative 

frequency in a sequence of trials. One may thus immediately distinguish 2 x 2 = 4 variants of 

frequentism. However, the actual world typically delivers only finitely many trials of any given 

experiment. And it is often thought that if one is going to allow the trials to be hypothetical 

anyway, there is no obstacle to letting the sequence of trials be infinite, thus guaranteeing a ‘long 

run’. So one may confine one’s attention, as frequentists typically do, to just two of the possible 

positions: finite actual frequentism and infinite hypothetical frequentism. 

In his discussion of the proportion of births of males and females, Venn contends that 

“probability is nothing but that proportion” (1866, 84, his emphasis)—a version of finite actual 

frequentism. Von Mises, by contrast, insists that probabilities exist only relative to virtual infinite 

sequences of ‘attributes’ called collectives. In a collective, the limiting relative frequency of any 



attribute exists and is the same on any recursively specified subsequence. (Von Mises’ original 

definition, in terms of “place selections”, is here finessed by Church.) 

 The probability of a given attribute, relative to a collective, is then identified with its limiting 

relative frequency in that collective. Von Mises’ position is thus a version of infinite hypothetical 

frequentism, as are those of Reichenbach and van Fraassen.  

Any version of frequentism faces the notorious reference class problem. Any event, in all its 

detail, occurs exactly once, so if non-trivial frequencies are to be associated with it, it must be 

regarded as a token of a more general event type, whose instances constitute its reference class. 

However, there are indefinitely many ways of typing a given event. This would not be a problem 

if its relative frequency was the same in each reference class, or if one such class stood out as 

natural or privileged. The problem gains teeth to the extent that various competing reference 

classes have equal claim to determining the probability and that they yield different relative 

frequencies for the event.  

In some cases the reference class problem may be solved for the actual, finite frequentist, but 

at the price of creating the equally notorious problem of the single case: intuitively, the objective 

probability of a one-off event may be less than 1, but finite frequentism cannot respect this 

intuition. Many events occur only once by any reasonable standard of typing: the 2000 

presidential election, the invasion of Iraq, the last Lakers vs. Bulls game, and so on. The only 

natural reference class for such an event is the singleton set consisting of itself, and thus it has 

relative frequency 1 (and its non-occurrence has relative frequency 0). Nonetheless, it seems 

natural to think of non-extreme probabilities attaching to at least some of these ‘single-case’ 

events. 



The problem of the single case is particularly striking, but there is really a sequence of 

related ‘granularity’ problems: the problem of the double case, the problem of the triple case ... A 

finite reference class of size n can only produce relative frequencies at a certain level of ‘grain’, 

namely 1
n

. Among other things, this rules out irrational probabilities; yet the best physical 

theories say otherwise (for example, various decay probabilities delivered by quantum mechanics 

are irrational). Furthermore, there is a sense in which any of these problems can be transformed 

into the problem of the single case. Suppose that a coin is tossed a thousand times. This can be 

regarded as a single trial of a thousand-tosses-of-the-coin experiment. Yet one does not want to 

be committed to saying that that experiment yields its actual result with probability 1. 

The move to infinite hypothetical frequentism only makes the reference class problem worse. 

For not only must one choose a set of events in which to place a given event; since the set is now 

infinite, one must also choose an ordering among the events. After all, in non-trivial cases one 

can make the limiting relative frequency whatever value one likes simply by reordering the 

results of a given sequence. Consider the limiting relative frequency of even numbers among 

positive integers. On the ‘natural’ ordering <1, 2, 3, …> it is 1
2

; however, one can make it 1
4

 by 

reordering the integers so that the even numbers occur at every fourth place in the sequence: <1, 

3, 5, 2, 7, 9, 11, 4, 13, …>; and so on. Thus limiting relative frequencies are sensitive to 

apparently arbitrary choices of ordering, while it appears that probabilities are not. One might 

call this the reference sequence problem. 

A sequence of events is said to be exchangeable with respect to a given probability function 

if all the joint probabilities of the events are invariant under finitely many permutations of the 

sequence: every event has the same probability, every conjunction of two events has the same 



probability, every conjunction of three events has the same probability, and so on. A sequence of 

events is automatically exchangeable with respect to the relative frequency function: the 

frequency of an event is insensitive to which trials the event occurs at. Yet various events 

intuitively are not exchangeable with respect to the relevant probability function. Consider 

someone learning to throw a dart at a bull’s eye: the sequence <MISS, MISS, HIT> is 

presumably more probable than <HIT, MISS, MISS>, because the dart-thrower’s accuracy 

improves with practice. Yet the (finite) relative frequency of ‘HIT’ is 1
3

 either way. Since 

relative frequencies force a kind of symmetry that probabilities need not obey, they cannot be the 

same thing. (Ironically, it was the failure of a more thoroughgoing ‘infinite exchangeability’ that 

proved to be the undoing of hypothetical infinite frequentism in the previous paragraph.) 

The classical interpretation 

The brainchild of such founding fathers of probability as Pascal, Fermat, Huygens and 

Leibniz, and clearly articulated in Laplace (1814), the classical interpretation is the oldest 

interpretation of probability—indeed, it dates back to a time when the axiomatization and 

interpretation of probability were not clearly distinguished. It seeks to characterize the 

probability assignment of a rational agent in a state of epistemic neutrality with respect to a finite 

set of ‘equipossibilities’: the agent has either no evidence, or symmetrically balanced evidence 

regarding the possibilities. It appeals to the so-called principle of indifference: whenever there is 

no evidence favoring one possibility over another, each should be assigned the same probability 

as the others. So  

P(e) = 

  

number of equipossibilities in which e occurs

total number of equipossibilities
 



But the notion of ‘equipossibilities’ seems to presuppose some prior notion of probability. 

After all, the most obvious characterization of ‘symmetrically balanced evidence’ is in terms of 

equality of conditional probabilities: given evidence e and possible outcomes o1, o2, …, on, the 

evidence is symmetrically balanced with respect to the outcomes iff P(o1 | e) = P(o2 | e) = … = 

P(on | e). Perhaps, then, one should regard the classical interpretation as an attempt to reduce 

quantitative probability to comparative probability: all numerical probabilities are ultimately 

based on facts about equalities among probabilities. 

Note the structural resemblance of the classical theory to finite frequentism. Both theories see 

probability as a matter of even-handed counting and ratio-taking:  

P(e) =

  

number of cases favorable to e

total number of cases
   

It is just that for frequentism, the cases are actual outcomes of a repeated experiment, whereas 

for the classical theory they are possible outcomes of a single experiment. And indeed the 

classical theory faces many of the same problems as frequentism. There is the granularity 

problem: clearly, every classical probability is some fraction of the form m
n

, where n is the 

number of possibilities. There is the exchangeability problem: classical probabilities are invariant 

under permutation of the labeling of the possibilities (for example, relabeling the faces of a die 

makes no difference to their probabilities of coming up). Thus, the classical interpretation cannot 

readily provide asymmetric probability distributions (e.g., for biased dice or coins), and it cannot 

handle distributions that evolve over time (e.g., for the dart-thrower’s hitting the bull’s eye).  

Moreover, the reference class problem reappears. If one is truly ignorant about the results of 

some experiment, then presumably there is nothing to favor various competing choices of sample 

space. One should then be indifferent between, for example, {heads, tails} and {heads, tails, 



edge}. And one should be indifferent between various refinements of the original space: for 

example, between spaces that refine in different ways the ‘heads’ outcome according to its final 

orientation relative to due north. Thus, probabilities will be determined by an apparently 

arbitrary choice of sample space. To adapt an example from physics, Bose-Einstein statistics, 

Fermi-Dirac statistics, and Maxwell-Boltzmann statistics each arise by considering the ways in 

which particles can be assigned to states, and then partitioning the set of alternatives in different 

ways (see STATISTICAL MECHANICS). (See, e.g., Fine [1973].) Someone ignorant of which 

statistics apply to a given type of particle can only make an arbitrary choice and hope for the 

best.  

In typical applications of the classical theory—gambling games, for example—one is not 

wholly ignorant, but the evidence that one has is symmetrically balanced regarding the 

possibilities. There are two problems here: in the ‘evidence’, and in the ‘symmetry’. Classical 

probabilities are acutely sensitive to the evidence. If the evidence becomes unbalanced, favoring 

some outcomes over others, then classical probabilities are not merely revised, they are 

destroyed. And there may be competing respects of symmetry, each equally compelling. This 

problem arises especially when there are infinitely many possible outcomes. Then, the 

equipossibilities must be a finite partition of the outcomes. But which partition? 

A tempting answer may be: the most “natural” partition. However, ‘Bertrand’s paradoxes’ 

show that there need not be any such. The trick is to give competing parametrizations of a given 

problem that are non-linearly related to one another, but equally “natural”. Suppose one is told 

only that a car traveled 100 miles at an average speed between 50 and 100 m.p.h. What is the 

probability that its average speed was between 75 and 100 m.p.h? Perhaps: 0.5—since (50, 75) 

and (75, 100) are equipossible intervals for the average speed. But the question could be 



equivalently formulated: a car took between 1 and 2 hours to travel 100 miles. What is the 

probability that it took between 1 hour and 

  

1
1

3
 hours? Now it seems that there are three 

equipossible intervals for the time taken: (1, 

  

1
1

3
), [

  

1
1

3
,

  

1
2

3
), and [

  

1
2

3
, 2); whence the answer 

should be 1
3

.  

 

Logical probability 

Many philosophers—Leibniz, von Kries, Keynes, Wittgenstein, Waismann, Carnap, and 

others—have tried to explicate the following “logical” concept of conditional probability: 

P(p | q) = 

  

the proportion of logically possible worlds in which both p and q are true

the proportion of logically possible worlds in which q is true
 

An obvious problem has been to justify a measure of the “proportion of logically possible worlds 

in which a proposition is true”. Early attempts—including those by Carnap that will be the focus 

here—tried to apply the controversial principle of indifference (see RUDOLF CARNAP). 

Carnap’s early (1950) constructions are very similar to systems developed earlier by W.E. 

Johnson (1921). See (INDUCTIVE LOGIC for further references on Carnapian inductive logic 

and logical probability).  

Begin with a first-order language L containing a finite number of monadic predicates: F, G, 

H, …, and a finite or denumerable number of individual constants a, b, c, …. Then define an (“a 

priori”) unconditional probability function P(•) over the sentences of L, in a way that only 

appeals to their syntactic structure (whence the name “logical” probability). Finally, use the 

standard ratio definition to construct a conditional probability function P(• | •) over pairs of 

sentences of L. 



The results of this procedure will be language-relative: if one describes the same phenomena 

by means of a different language L*—equipped with a different stock of monadic predicates—

one will typically not recover the same probabilities. Consider two languages used to represent 

the outcomes of random draws from an urn filled with colored balls. Let L contain the color 

predicates “blue” and “green”, L* the predicates “grue” and “bleen”. The intended interpretation: 

a draw is grue just in case it is one of the first million and green or a later one and blue; a draw is 

bleen just in case it is one of the first million and blue or a later one and green. Starting with L, 

use whatever is the appropriate procedure to calculate P(draw 1,000,001 is green | the first 

1,000,000 draws are green). Starting with L*, use this procedure to calculate P(draw 1,000,001 is 

grue | the first 1,000,000 draws are grue). If syntax is all that matters, then these conditional 

probability values will be identical—and surely greater than 1
2

, at least if logical probability is to 

have a hope of modeling actual inductive reasoning (see INDUCTIVE LOGIC). The trouble is 

that the second conditional probability, translated into L, is just P(draw 1,000,001 is blue | the 

first 1,000,000 draws are green). One can avoid contradiction, but only by explicitly insisting 

that probability is language-relative. And that raises a serious problem—really, the reference 

class problem in a new guise: if one wishes to employ logical probability as a foundation for 

inductive inference, which is the “right” language to use?  The remainder of this discussion will 

presuppose that an answer to this question has been found (for Carnap, this question was 

“external” to inductive logic anyway, and his later systems did not have this blatant form of 

language relativity—see Carnap [1980] for discussion).  

Returning now to Carnap’s early systems, consider a simple language with only two monadic 

predicates ‘F’ and ‘G’ and only two individual constants ‘a’ and ‘b’. This language yields 

exactly 16 maximally specific descriptions of the world—the state descriptions of L: (Fa !  Ga 



!  Fb !  Gb), (Fa !  Ga !  Fb !  ¬Gb), etc. Two state descriptions S1 and S2 are permutations 

of each other if S1 can be obtained from S2 by some permutation of the individual constants. For 

example, Fa !  ¬Ga !  ¬Fb !  Gb and ¬Fa !  Ga !  Fb !  ¬Gb’ are permutations of each 

other. A structure description in L is a disjunction of state descriptions, closed under 

permutation. L provides these 10 structure descriptions: 

Fa!Ga! Fb!Gb 

(Fa!Ga! Fb! ¬ Gb)∨(Fa! ¬ Ga! Fb!Gb) 

(Fa!Ga! ¬ Fb!Gb)∨( ¬ Fa!Ga! Fb !Gb) 

(Fa!Ga! ¬ Fb! ¬ Gb)∨( ¬ Fa! ¬ Ga! Fb!Gb) 

Fa! ¬ Ga! Fb! ¬ Gb 

(Fa! ¬ Ga! ¬ Fb!Gb)∨( ¬ Fa!Ga! Fb! ¬ Gb) 

(Fa! ¬ Ga! ¬ Fb! ¬ Gb)∨( ¬ Fa! ¬ Ga! Fb! ¬ Gb) 

¬ Fa!Ga! ¬ Fb!Gb 

(¬ Fa!Ga! ¬ Fb! ¬ Gb)∨( ¬ Fa! ¬ Ga! ¬ Fb!Gb) 

¬ Fa! ¬ Ga! ¬ Fb! ¬ Gb 

Now, assign non-negative real numbers to the state descriptions, so that these 16 numbers 

sum to one. Any such assignment will constitute an (“a priori”) unconditional probability 

function P(•) over the state descriptions of L. To extend P(•) to the entire language L, note that 

the probability of a disjunction of mutually exclusive sentences is the sum of the probabilities of 

its disjuncts. Since every sentence in L is equivalent to some disjunction of state descriptions, 

and all the state descriptions are mutually exclusive, this gives a complete unconditional 

probability function P(•) over L—typically called a measure function. The standard ratio 

definition then yields a conditional probability function P(• | •) over pairs of sentences in L. 

Carnap (1950) discusses two “natural” measure functions. The first, m†, treats each state 

description as equiprobable a priori: if there are N state descriptions in L, then m† assigns 1
N

 to 

each. However natural this measure function may seem, it has the consequence that the resulting 

probabilities cannot undergird learning from experience. To see why, observe that  



P(Fb | Fa) = 
 

!†
(Fb ! Fa)

!†
(Fa)

= 1
2

 = m†(Fb) = P(Fb).  

So ‘learning’ that one object has property F cannot affect the probability that any other object 

will also have property F. Indeed, it can be shown that no matter how many objects are assumed 

to be F, this will always be irrelevant (according to probability functions based on m†) to the 

hypothesis that a distinct object will also be F—a feature widely viewed as a serious 

shortcoming of m†. 

As a result, Carnap formulated an alternative measure function m*: First, assign equal 

probabilities to each structure description. Then, each state description entailing a given structure 

description is assigned an equal portion of the probability assigned to that structure description. 

So, in the present toy language, the state description ‘Fa !  Ga !  ¬Fb !  Gb’ gets assigned a 

priori probability of 1
20

 ( 1
2

 of 1
10

), but the state description ‘Fa !  Ga !  Fb !  Gb’ receives 

an a priori probability of 1

10
 (1
1

 of 1
10

). Unlike m†, m* does allow for “learning from 

experience”: e.g. P(Fa | Fb) = 3
5

 > 1
2

 = P(Fa). Still, even m* can give unintuitive results in 

more complex languages (see Carnap [1952] for discussion). Also, note that the state 

descriptions are exchangeable with respect to m*, an omen that logical probabilities will face 

some of the problems that plagued the frequentist and the classical probabilist. 

Carnap (1952) presents a more complicated “continuum” of conditional probability 

functions. This continuum depends on a parameter λ intended to reflect the “speed” with which 

learning from experience is possible. λ = 0 corresponds to the “straight rule”, which says that the 

probability that the next object observed will be F, conditional upon a sequence of past 



observations, is simply the frequency of F objects in that sequence; λ = +∞ yields a conditional 

probability function much like that derived from the measure function m† (i.e., λ = +∞ implies 

that there is no learning from experience); λ = κ (which is the number of independent families of 

predicates in Carnap’s more elaborate [1952] linguistic framework) yields a conditional 

probability function equivalent to that generated by the measure function m*.  

Problems remain. None of the Carnapian systems allow universal generalizations to have 

non-zero probability. (Hintikka, and Hintikka and Niiniluoto provide alterations of the Carnapian 

framework that do allow for non-zero probabilities of universal generalizations.) Carnap’s early 

systems also failed to allow for analogical effects, since according to them the fact that two 

objects share several properties in common is (in many cases) irrelevant to whether they share 

any other properties in common. Carnap’s most recent (and most complex) theories of logical 

probability (1980) include two additional parameters designed to provide the theory with enough 

flexibility to overcome these (and other) limitations. Unfortunately, no Carnapian logical theory 

of probability to date has dealt successfully with the problem of analogical effects (see Maher 

2001 for further discussion). The consensus now seems to be that the Carnapian project of 

constructing an adequate logical theory of probability is all but hopeless: the syntactical 

constraints implicit in any such theory will inevitably prevent the theory from being able to 

model certain essential features of statistical inference and/or inductive logic (see INDUCTIVE 

LOGIC).  

Subjectivism 

In slogan form, subjectivism regards probabilities as degrees of belief, or credences. But 

what are credences? Subjectivists since Ramsey (1926) have insisted that they must be intimately 



tied to the behavioral dispositions of suitable agents. On one influential account, advocated by de 

Finetti (1937),  

an agent’s credence in e is p  

iff  

p units of utility is the price at which the agent would buy or sell a bet that pays 1 unit of 

utility if e, 0 if ¬e. 

This is at best a first approximation to an analysis of credence. One surely should allow the 

buying and selling prices of at least some bets to come apart. And even when they agree, there 

are problems. How does one separate the agent’s epistemic attitude to e from his or her attitude 

(favorable, unfavorable, or neutral) to gambling? Indeed, one may insist on separating epistemic 

attitudes from desire-based attitudes altogether; one can imagine, for example, a chronic 

apathetic who has opinions, but who lacks corresponding desires (for bets, or for anything). 

Moreover, the very placement of the bet may change the world in ways that affect the agent’s 

credences. 

Be that as it may, there are famous arguments that credences must conform to the probability 

calculus, at least if one demands that the agent be in some sense ideally rational. For example, if 

one’s credences do not so conform, one is susceptible to a Dutch Book, a sequence of bets that 

one regards as acceptable taken individually, but that collectively guarantee one’s loss, however 

the world turns out. Conversely, if one’s credences do so conform, one is immune to a Dutch 

Book. Rationality, it is concluded, requires obedience to the probability calculus (see DUTCH 

BOOK ARGUMENT). 

Utilities (desirabilities) of outcomes, their probabilities, and rational preferences are all 

intimately linked.  The Port Royal Logic showed how utilities and probabilities together 

determine rational preferences; de Finetti's betting interpretation derives probabilities from 

utilities and rational preferences; von Neumann and Morgenstern (1944) derive utilities from 

probabilities and rational preferences. And most remarkably, Ramsey (1926) (and later, Savage 



[1954] and Jeffrey [1966]) derives both probabilities and utilities from rational preferences 

alone. (See RAMSEY, FRANK PLUMPTON.) 

First, Ramsey defines a proposition to be ethically neutral—relative to an agent and an 

outcome—if the agent is indifferent between having that outcome when the proposition is true 

and when it is false. Suppose that the agent prefers a to b. Then an ethically neutral proposition n 

has probability 1
2

 iff the agent is indifferent between the gambles: 

a if n, b if not 

b if n, a if not. 

One may assign arbitrarily to a and b any two real numbers u(a) and u(b) such that u(a) > u(b), 

thought of as their respective desirabilities. Having done this for the one arbitrarily chosen pair a 

and b, the utilities of all other propositions are determined. Given various assumptions about the 

richness of the preference space, and certain 'consistency assumptions', Ramsey can define a 

real-valued utility function of the outcomes a, b, etc—in fact, various such functions will 

represent the agent's preferences. He is then able to define equality of differences in utility for 

any outcomes over which the agent has preferences.  It turns out that ratios of utility-differences 

are invariant—the same whichever representative utility function one chooses.  This fact allows 

Ramsey to define degrees of belief as ratios of such differences.  For example, suppose the agent 

is indifferent between a, and the gamble "b if x, c otherwise".  Then his or her degree of belief in 

x, P(x), is given by: 
 

 P(x) = u(a)! u(c)
u(b)! u(c)

. 

Ramsey shows that degrees of belief so derived obey the probability calculus (with finite 

additivity). He calls what results "the logic of partial belief". 

Ramsey avoids some of the objections to the betting interpretation, but not all of them. 

Notably, the essential appeal to gambles again raises the concern that the wrong quantities are 



being measured. And his account has new difficulties. It is unclear what facts about agents fix 

their preference rankings. It is also dubious that consistency alone requires one to have a set of 

preferences as rich as Ramsey requires, or that one can find ethically neutral propositions of 

probability 1
2

. This in turn casts some doubt on Ramsey's claim to assimilate probability theory 

to logic.  

Savage (1954) likewise derives probabilities and utilities from preferences among options 

that are constrained by certain putative 'consistency' principles.  For a given set of such 

preferences, he generates a class of utility functions, each a positive linear transformation of the 

other (i.e. of the form u1 = au2 + b, where a > 0), and a unique probability function. Together 

these are said to 'represent' the agent's preferences.  Jeffrey (1966) refines the method further.  

The result is theory of decision according to which rational choice maximizes 'expected utility', a 

certain probability-weighted average of utilities. 

So far, this is a static picture of a rational agent. How should one update one’s degrees of 

belief in the light of new evidence? The favored rule among subjectivists is conditionalization: 

where e is the strongest proposition of which one becomes certain, one’s new credence function 

is related to the old by: 

(Conditionalization)  Cnew(•) = Cold(• | e), 

using here and in what follows “C(•)” to distinguish credence from other kinds of probability. 

So-called subjective Bayesianism holds that an agent’s epistemic trajectory is rational iff at 

any moment his her credences are representable by a probability function, and he or she always 

updates by conditionalization. This is at once a highly demanding and highly permissive 

epistemology. It is demanding, because conformity to probability theory is demanding. It is 

permissive, because there is no requirement that degrees of belief in any way correspond to the 



way the world is. So someone who assigns probability 1 to the universe being ruled by a rubber 

chicken can meet the Bayesian standards for rationality—as long as they obey the probability 

calculus in all their other assignments and always update by conditionalizing. Bayesians reply 

that various convergence theorems show roughly that in the long run, agents who do not give 

probability 0 to genuine possibilities, and whose stream of evidence is sufficiently rich, will 

eventually be arbitrarily close to certain regarding the truth about the world in which they live. 

For skepticism about the value of these theorems, see Earman (1992). 

In any case, there are numerous proposals for further constraints on priors. Some—e.g., by 

Jeffreys and Jaynes—appeal to a version of the principle of indifference. Some can be regarded 

as instances of a certain schema, proposed by Gaifman (1988). He coins the term “expert 

probability” for a probability assignment that a given agent strives to track, codifying this idea as 

follows: 

(Expert)  C(a | pr(a) = x) = x, for all x such that C(pr(a) = x) > 0. 

Here pr(a) is the assignment that the agent regards as expert. For example, if one regards the 

local weather forecaster as an expert, and he or she assigns probability 0.1 to it raining 

tomorrow, then one may well follow suit: 

C(rain | pr(rain) = 0.1) = 0.1. 

More generally, one might speak of an entire probability function as being such a guide for 

an agent, over a specified set of propositions—so that (Expert) holds for any choice of A from 

that set. A universal expert function would guide all of the agent’s probability assignments in 

this way. Van Fraassen (1995) argues that an agent’s future probability functions are universal 

expert functions for that agent—his Reflection Principle:  

Ct(a | Ct′(a) = x) = x, for all a and for all x such that Ct(Ct′(a) = x) > 0, 



where Ct is the agent’s probability function at time t, and Ct′ his or her function at later time t′. 

The principle encapsulates a certain demand for ‘diachronic coherence’ imposed by rationality. 

Van Fraassen defends it with a ‘diachronic’ Dutch Book argument (one that considers bets 

placed at different times), and by analogizing violations of it to the sort of pragmatic 

inconsistency that one finds in Moore’s paradox. For example, suppose that one is certain that 

one will tomorrow assign probability 1
2

 to it raining the day after, but that one nonetheless 

assigns it probability 1
3

 now. While this is not logically inconsistent, it is surely puzzling. 

One may go still further. There may be universal expert functions for all rational agents. The 

Principle of Direct Probability regards the relative frequency function as a universal expert 

function. Let a be an event-type, and let relfreq(a) be the relative frequency of a (in some 

suitable reference class). Then for any rational agent, one has: 

C(a | relfreq(a) = x) = x, for all a and for all x such that C(relfreq(a) = x) > 0. 

The next section takes up what many consider the most important such universal expert 

function. 

 

Objective Chance 

De Finetti, the great probabilist, quipped that “Probability does not exist” (1990, 1). What he 

meant was that all probability is subjective. Yet there is a strong prima facie case for recognizing 

the existence of objective chances: probabilities that attach to physical systems and their 

behavior independently of anyone’s mental state, and that capture contingent facts about those 

systems, and not merely quasi-logical relations among propositions concerning them. One 

wonders, for example, whether a certain coin is biased, and if so, to what degree and in what 



direction. Translation: One wonders what the chance of heads would be, were the coin tossed 

fairly.  

This example would not faze a committed subjectivist such as de Finetti, nor a frequentist 

like von Mises (1957) who denies that probability ever applies in the single case. But more 

serious examples from physics suggest that, ultimately, resistance is futile. For starters, statistical 

physics says that the entire universe could evolve towards a state of lower entropy, but that the 

chance of its doing so is vanishingly small. Such chances are seemingly compatible with 

determinism at the level of the fundamental dynamical laws (this is controversial: see 

IRREVERSIBILITY; STATISTICAL MECHANICS), and following Bernoulli, various authors 

have for that reason doubted their credentials. However, see Levi (1990) for a valuable 

discussion of authors since Cournot and Venn who countenance such compatibilist chances. The 

compatibility is putatively secured by relativizing chances to a kind of trial. For example, a coin 

may have chance 1
2

 of landing heads relative to the specification of being tossed high above a 

flat surface, say, while having a chance 1 of landing heads relative to a precise specification of 

the initial conditions of a particular toss in a deterministic world. Levi argues that the 

applicability of chance hypotheses and statistical techniques does not presuppose an underlying 

indeterminism, and so a theory of chance should remain neutral vis-à-vis determinism. 

In any case, commitment to chances has a second source: “collapse” theories of quantum 

mechanics explicitly introduce indeterministic dynamical laws that not only specify what courses 

of evolution are possible for a given physical system with a given initial state, but also specify 

exact probabilities for each such trajectory. (See QUANTUM MEASUREMENT PROBLEM; 

QUANTUM MECHANICS.) The subjectivist or von Mises-style frequentist seems left only with 

the option of denying—from the armchair!—that the physical theories that postulate them are 



true or coherent. It is better simply to acknowledge that objective chances are or at least could be 

real, and then to go on to consider what sort of account one could give of them.  

Reductionist accounts attempt to reduce facts about objective chances to the totality of non-

modal facts about a world. Non-reductionist accounts deny that chance even supervenes on the 

non-modal facts. Actual frequentism is clearly a reductionist view. More sophisticated is Lewis’s 

“best systems” approach (1994), which sees the laws for a world w as, roughly, being theorems 

of that axiomatic system for describing non-modal facts about w that achieves an optimal balance 

of simplicity and informativeness. In the case of probabilistic laws, Lewis invokes a third 

criterion: a system for w is ‘better’ to the extent that it assigns a higher probability to the total 

history of w. The simplest form of non-reductionism is primitivism, which takes chances to be 

unanalyzable features of the world. Alternatively, one might try to explain one’s non-reductionist 

chances by appeal to some other bit of metaphysical gadgetry—e.g. Armstrong takes chances to 

consist in higher-order relations of “probabilification” that obtain between universals.  

No mention has been made so far of “propensity” interpretations of probability. Everyone, 

reductionist and non-reductionist alike, can agree that in a chancy world, some physical systems 

will have “propensities” to exhibit certain behaviors under certain conditions. For all one need 

mean by that is that counterfactuals of the following form are true of these systems: “were the 

system in conditions C, there would be a chance of x that it would manifest behavior B”. So 

propensities—understood as tendencies, or variable-strength dispositions—can be analyzed 

straightforwardly in terms of subjunctive conditionals whose consequents make reference to 

objective chances.  

Propensity interpretations of probability aim to reverse this order of analysis, explaining 

objective chances directly in terms of propensities. For some authors (Popper, Gillies), chances 



are dispositions for a chance set-up to produce long-run relative frequencies; for others (Giere, 

Fetzer, Miller) they are dispositions for a chance set-up to produce outcomes on single trials. 

Subtle variations can be found in the work of Hacking, Mellor, and Levi.  (See Gillies 2000 and 

Hájek 2003 for surveys.) 

But there are some general problems that any propensity account faces. Suppose that system 

S has a certain tendency to manifest behavior B under conditions C. One must be able to attach 

numbers to such a tendency as a measure of its strength without appealing to the concept of 

chance; it is not clear how this is to be done, nor why the results should obey the probability 

calculus. Moreover, how do propensities for distinct systems yield propensities for the composite 

systems they make up? Here are two coins, each with a propensity of 0.5 of landing heads if 

tossed. Suppose both are tossed at once. If there is a chance that both will land heads, then there 

must be a propensity possessed by the combined two-coin system. If so, what guarantees that the 

marginal probabilities (for each coin considered separately) will be recovered correctly from this 

composite propensity? And one cannot stop here: one had better say, of the world as a whole, 

that it exhibits, at each moment, propensities to evolve in various different ways. Having gone so 

far, one might as well simply say that instead of exhibiting “propensities”, the world exhibits 

chances, thus avoiding (by stipulation) the original problem of their conformity to the probability 

calculus—and thus arriving at primitivism about chance. If that is right, then it is not clear that 

propensity accounts offer a genuinely new option for understanding probability.  

Although distinct, objective and subjective probability display an extremely important 

connection. Lewis (1980) formulates it in his Principal Principle:  

(PP)  C0(a | e !  cht(a) = x) = x. 



Here C0 is some reasonable “initial” (a priori) credence function, a an arbitrary proposition, 

cht(a) = x the claim that the chance, at time t, of a is x, and e an “admissible” proposition—one 

that does not contain information relevant to a beyond that given by its chance at t. (Thus, e.g., a 

itself is inadmissible.) 

One can apply (PP) to a “non-initial” agent by modeling her credence C as the result of 

conditionalizing some reasonable initial credence C0 on some suitable evidence. Let h describe a 

complete possible course of history until time t. Let l describe some possible fundamental laws 

compatible with h, and assume that the way in which chances depend on history is underwritten 

by these laws.  Then the conjunction h !  l picks out a unique chance-distribution P(•) for time t. 

Thus, if a proposition of the form (h !  l !  cht(a) = x) is consistent, then the third conjunct is 

entailed by the first two. Assuming, as seems reasonable, that the conjunction h !  l is 

admissible, it follows that 

(PP*)  C0(a | h !  l) = P(a). 

Much of the debate between reductionists and non-reductionists consists in a war of 

intuitions: e.g., the reductionist claims to find the non-reductionist’s extra, irreducibly modal 

feature of metaphysical reality unintelligible; the non-reductionist claims to “show” that distinct 

chances can give rise to exactly the same total histories of non-modal fact—a draw, perhaps. But 

(PP) and (PP*) appear to open up new lines of argument.  

The non-reductionist alleges that reductionism is inconsistent with (PP*). Typical 

reductionist views will allow that the chance-laws can have some non-zero chance of failing to 

obtain. For the reductionist says that these laws are determined by the total history of non-modal 

fact. But these laws issue in chance-distributions over possible total histories of non-modal fact. 

Thus, it may turn out that positive chances are assigned to total histories that would specify 



different laws—the so-called “undermining” of the chance-laws by themselves. (See Lewis 

[1994].) Example: A coin is about to be tossed exactly 1010 times. As it happens, exactly half the 

tosses will land heads. A reductionist might say that it follows that the chance of heads on each 

toss is 0.5, adding that the correct chance-laws will treat the tosses as independent. So there is 

now a large chance that the frequency of heads will be different from what it actually is—and if 

so, the laws will be different as well.  

The inconsistency with (PP*) is now manifest. Consider those consistent history-law 

conjunctions h !  l that entail that P(l) < 1. Pick such a conjunction; by (PP*), 

C0(l | h !  l) = P(l) < 1. 

But by the probability calculus, 

C0(l | h !  l) = 1. 

Lewis responds by amending (PP*) to what he calls the “New Principle”: 

(NP)  C0(a | h !  l) = P(a | l), 

thus avoiding the inconsistency. The consensus in the literature seems to be that unlike the 

original Principal Principle, (NP) is unintuitive and, in application, unwieldy.  

The reductionist (e.g. Lewis [1994]) retorts that non-reductionists are hard-pressed to show 

how chances, understood their way, constrain rational credences according to (PP). But can the 

reductionist himself meet this challenge? Presumably, he ought to provide a derivation of (PP) 

from constraints on rational credence to which he is already committed, and his reductionist 

analysis of chance. The literature provides no such derivation. And while a non-reductionist may 

be unable to supply such a derivation it is not clear why she needs to. Arguably, all are 

committed to the existence of substantive constraints on rational credence; why can’t the non-



reductionist simply include (PP) as one of them? (See Hall 2003 for further discussion.) Perhaps, 

then, the debate between reductionism and non-reductionism remains a stalemate. 

Finally, a ‘deflationary’ account of chance, associated with de Finetti and his followers, has 

proved to be very influential. Consider an infinite exchangeable sequence of events with respect 

to a probability function P. De Finetti’s representation theorem states that the probability 

according to P of exactly k of the events occurring in n trials is given by  
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for all n and k and for some density function f. The upshot is that any such probability 

distribution is representable as a ‘weighted average’ of distributions. Each distribution 

corresponds to a hypothesis about the value of the probability p of an event occurring on a single 

trial; it gives the probability of k such events occurring in n independent, identically distributed 

trials, given that fixed value of p. One can then average these distributions using the probabilities 

of their corresponding hypotheses about the value of p as weights. The result is significant 

because it enables a subjectivist to ‘simulate’ an objectivist about chance when the 

exchangeability assumption holds, and for many situations this seems reasonable. If P is one’s 

subjective probability function, then it is as if one spread probability over various hypotheses 

about the single case objective chance of the event, which remains fixed across infinitely many 

independent trials of the experiment in question. See Skyrms (1994) for an excellent discussion 

of generalizations of exchangeability and their use in formulating various Goodmanian theses 

about projectability. Indeed, commonsense often (but not invariably) seems to require one’s 

probabilities to be exchangeable over ‘green’-like hypotheses, but not ‘grue’-like hypotheses.  

 



Conclusion 

Feller (1957, 19) writes: “All possible definitions of probability fall short of the actual 

practice.” Certainly, a lot is asked of the concept of probability. It is supposed at once to capture 

a quasi-logical notion, a subjective notion, and an objective notion instantiated in the mind-

independent world. Perhaps one would do better to think of these as distinct concepts of 

probability. Each of the leading interpretations, then, attempts to illuminate one of these 

concepts, while leaving the others in the dark. In that sense, the interpretations might be regarded 

as complementary, although to be sure each may need some further refinement. Clearly, much 

work remains to be done on the philosophical foundations of probability. Equally clearly, we 

have come a long way since the Port Royal Logic. 
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