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Preface 
 

Extreme weather has affected human society since the beginning of recorded 
history and certainly long before then. Humans, along with every other living thing on the 
Earth, have adapted to a certain range of variability in the weather. Although extreme 
weather can cause loss of life and significant damage to property, people and virtually 
every other creature have, at least to some degree, adapted to the infrequent extremes 
they experience within their normal climatic zone. 

Humans’ use of fossil fuel since the start of the Industrial Revolution has begun to 
modify the Earth’s climate in ways that few could have imagined a century ago. The 
consequences of this change to the climate are seemingly everywhere: average 
temperatures are rising, precipitation patterns are changing, ice sheets are melting, and 
sea levels are rising. These changes are affecting the availability and quality of water 
supplies, how and where food is grown, and even the very fabric of ecosystems on land 
and in the sea. 

Despite these profound changes, climate change and its associated risks still may 
appear distant and remote in both time and space to many people. The natural daily and 
seasonal variability of the weather can mask the changes in the overall climate. However, 
when people experience extreme events that they believe may be occurring with 
different—usually greater—frequency in time or with increased intensity, many ask 
about the connection between climate change and extreme events. 

Effective, rigorous, and scientifically defensible analysis of the attribution of 
extreme weather events to changes in the climate system not only helps satisfy the 
public’s desire to know, but can also provide valuable information about the future risks 
of such events to emergency managers, regional planners, and policy-makers at all levels 
of government. A solid understanding of extreme weather event attribution in the context 
of a changing climate can help provide insight into and confidence in the many risk 
calculations that underpin much of society’s building codes; land, water, health and food 
management; insurance; transportation networks; and many additional aspects of daily 
life. 

There are compelling scientific reasons to study extreme weather event attribution 
as well. The basic physics of how the climate system works and the broad-scale impacts 
of rapid addition of greenhouse gases on the climate system are well understood. 
However, much is still to be learned about how specific weather events are affected by 
the changing climate. Improved attribution, and ultimately prediction of extreme events, 
will demonstrate an even more nuanced and sophisticated understanding of the climate 
system and enhance scientists’ ability to accurately predict and project future weather and 
climatic states. 

The past decade has seen a remarkable increase in interest and activity in the 
extreme event attribution field. The first attempt at attributing an extreme weather event 
to climate change was published in 2004, analyzing the 2003 European summer heat 
wave that killed tens of thousands of people. In 2012 the American Meteorological 
Society started to publish a special annual issue of their Bulletin, compiling articles on 
extreme weather events of the past year. From 2012 to 2015, the number of research 
groups submitting studies to this issue has grown by more than a factor of five. A goal of 
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this report is to provide a snapshot of the current state of the science of attribution of 
extreme weather events and to provide recommendations for what might be useful future 
avenues of both research and applications within this field. 

Like all areas of study, terminology matters. As this field is relatively new, not 
everyone may be familiar with terms such as “counterfactual,” “fraction of attributable 
risk,” or “selection bias”. The committee chose to use the terminology as it is defined and 
used in the relevant literature. We have included a Glossary that defines these key terms. 

A reoccurring theme of this report is the importance of the framing of any 
attribution question. Although climate scientists are frequently asked, “was a given 
observed weather event caused by climate change?” we believe this is a poorly formed 
(or ill-posed) question that rarely has a scientifically satisfactory answer. The report 
discusses appropriate ways to frame attribution questions as well as the interplay between 
meteorological and human-made factors in the realization of extreme events. 

In addition to exploring framing and attribution methods, the report provides a 
synopsis of attribution of nine specific types of extreme events. Not every type of event 
discussed is a pure meteorological event. Droughts, floods, and wildfires all have human, 
as well as natural, components. Land management, controlled burning, and dams and 
levees impact the magnitude and frequency of these extreme events. However the 
committee believes there is a large weather and climate signal to these types of events, 
and climate scientists are frequently asked to comment on them. 

I want to thank our numerous sponsors, the David and Lucile Packard Foundation, 
the Heising Simons Foundation, the Litterman Family Foundation, the National 
Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric 
Administration (NOAA), the U.S. Department of Energy, and the Arthur L. Day Fund of 
the National Academy of Sciences. In addition to meeting the needs of our sponsors, the 
committee hopes this report will be of use to the scientific community, the media, and 
policy-makers who are interested in this topic.  

Over the course of just three months the committee held a number of webinar 
meetings, met twice in person, and conducted a widely-attended community workshop 
where we heard a diversity of views from the international community working on event 
attribution. During these meetings the committee gathered information, discussed and 
debated their views, and crafted this report. Over the course of the study, the committee 
engaged with international and U.S. scientists who spearheaded development of extreme 
event attribution approaches, as well as the broader detection and attribution and climate 
science communities. (See Appendixes B and C for the lists of experts that the committee 
consulted.) 

In closing, I want to personally thank my fellow committee members for their 
sustained hard work and exceptional dedication to this report. When we started this 
process, many people believed it would take over a year to produce such a report. That 
such a report was produced within six months is a testament to the focus and commitment 
of this committee. I also want to thank and note with great appreciation the incisive and 
thoughtful comments of our reviewers, whose efforts significantly improved this report, 
and to thank everyone who gave of their time and expertise to speak at our workshop, on 
our webinars, or otherwise communicate with the committee during our study process. 
Finally, I want to acknowledge the superb efforts of the National Academy of Sciences, 
Engineering, and Medicine staff, led by Katie Thomas who took our many disparate 
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inputs, made them into a collective whole, kept us focused and on time, and did so with 
constant grace, cheerfulness and good humor. Thank you. 

David W. Titley, Chair 
Committee on Extreme Weather Events and Climate Change Attribution 

 



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

 

 



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

PREPUBLICATION COPY 
xi 

Acknowledgments 
 

This report has been reviewed in draft form by individuals chosen for their 
diverse perspectives and technical expertise. The purpose of this independent review is to 
provide candid and critical comments that will assist the institution in making its 
published report as sound as possible and to ensure that the report meets institutional 
standards for objectivity, evidence, and responsiveness to the study charge. The review 
comments and draft manuscript remain confidential to protect the integrity of the 
deliberative process. We wish to thank the following individuals for their participation in 
their review of this report: 

 
Alexis Hannart, Instituto Franco-Argentino sobre Estudios de Clima y sus 

Impactos, Buenos Aires, Argentina 
Brian J. Hoskins, Imperial College London, UK 
Kristina B. Katsaros, Northwest Research Associates, Inc., Freeland, WA  
Kelly Klima, Carnegie Mellon University, Pittsburgh, PA 
Lai-Yung Ruby Leung, Pacific Northwest National Laboratory, Richland, WA 
Katharine Ricke, Carnegie Institution for Science, Stanford, CA 
Sonia I. Seneviratne, ETH Zurich, Switzerland 
Susan Solomon, Massachusetts Institute of Technology, Cambridge 
Dáithí Stone, Lawrence Berkeley National Laboratory, Berkeley, CA 
Peter Stott, UK Met Office, Exeter 
Michael J. Todd, Cornell University, Ithaca, NY 
Thomas H. Vonder Haar, Colorado State University, Fort Collins 
 
Although the reviewers listed above have provided many constructive comments 

and suggestions, they were not asked to endorse the conclusions nor did they see the final 
draft of the report before its release. The review of this report was overseen by M. 
Granger Morgan, Carnegie Mellon University, Pittsburgh, PA, and Andrew Solow, 
Woods Hole Oceanographic Institution, MA, who were responsible for making certain 
that an independent examination of this report was carried out in accordance with 
institutional procedures and that all review comments were carefully considered. 
Responsibility for the final content of this report rests entirely with the authoring 
committee and the institution. 

The committee would like to thank the following individuals who shared their 
expertise with the committee through presentations and discussions: Myles Allen, 
University of Oxford; Elizabeth Barnes, Colorado State University; Heidi Cullen, 
Climate Central; Timothy DelSole, George Mason University; Noah Diffenbaugh, 
Stanford University; Randall Dole, NOAA Earth Systems Research Laboratory; Kerry 
Emanuel, Massachusetts Institute of Technology; Christopher Forest, Pennsylvania State 
University; Stephanie Herring, NOAA National Centers for Environmental Information; 
Martin Hoerling, NOAA Earth Systems Research Laboratory; David Karoly, University 
of Melbourne/University of Oklahoma; Eric Kasischke, NASA; Thomas Knutson, 
NOAA Geophysical Fluid Dynamics Laboratory; Kenneth Kunkel, NOAA Cooperative 
Institute for Climate and Satellites; Jay Lawrimore, NOAA National Centers for 



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

xii Attribution of Extreme Weather Events in the Context of Climate Change 
 

PREPUBLICATION COPY 

Environmental Information; Geert Jan van Oldenborgh, The Royal Netherlands 
Meteorological Institute (KNMI); Naomi Oreskes, Harvard University; Friederike Otto, 
University of Oxford; Tim Palmer, University of Oxford; Judith Perlwitz, NOAA Earth 
Systems Research Laboratory; Thomas Peterson, NOAA National Climactic Data Center; 
Fernando Prates, The European Centre for Medium-Range Weather Forecasts; David 
Rupp, Oregon State University; Leonard Smith, University of Oxford; William Sweet, 
NOAA National Ocean Service; Michael Tippett, Columbia University; Jeffrey Trapp, 
University of Illinois; Kevin Trenberth, National Center for Atmospheric Research; 
Steven Vavrus, University of Wisconsin; Mike Wallace, University of Washington; 
Michael Wehner, Lawrence Berkeley National Laboratory; Antje Weisheimer, The 
European Centre for Medium-Range Weather Forecasts; and Pascal Yiou, Climate and 
Environmental Sciences Laboratory (LSCE), France. 



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

 

PREPUBLICATION COPY 
xiii 

Contents 
	
Glossary ......................................................................................................................................... xv 
Summary ......................................................................................................................................... 1 

Event Attribution Approaches ..................................................................................................... 2 
Assessment of Current Capabilities ............................................................................................. 5 
Presenting and Interpreting Extreme Event Attribution Studies ................................................. 9 
The Path Forward ...................................................................................................................... 11 
Concluding Remarks ................................................................................................................. 14 

Chapter 1: Introduction ................................................................................................................. 15 
Why Investigate the Causes of Extreme Events? ...................................................................... 15 
Overview of Extreme Event Attribution Research .................................................................... 18 
This Study and the Committee’s Approach ............................................................................... 20 
Report Roadmap ........................................................................................................................ 21 

Chapter 2: Framing ........................................................................................................................ 23 
General Considerations ............................................................................................................. 23 
Conditional Attribution ............................................................................................................. 30 
Use of Background Knowledge About Climate Change ........................................................... 32 
Other Factors Affecting Impacts of Extreme Events ................................................................. 33 
Guidance for Framing Event Attribution Questions .................................................................. 37 

Chapter 3: Methods of Event Attribution ...................................................................................... 39 
Methods Based on Observations ............................................................................................... 39 
Methods Based on Climate and Weather Models ..................................................................... 44 
Uncertainties in Model-Based Studies ...................................................................................... 50 
Uncertainty Quantification ........................................................................................................ 55 
The Use of Multiple Methods .................................................................................................... 63 
Rapid Attribution and Operationalization ................................................................................. 64 
Guidance for Increasing the Robustness of Event Attribution .................................................. 65 

Chapter 4: Attribution of Individual Classes of Extreme Events .................................................. 69 
Extreme Heat Events ................................................................................................................. 69 
Extreme Cold Events ................................................................................................................. 74 
Droughts .................................................................................................................................... 77 
Wildfires .................................................................................................................................... 81 
Extreme Rainfall ........................................................................................................................ 84 
Extratropical cyclones ............................................................................................................... 87 
Extreme Snow and Ice Storms .................................................................................................. 89 
Tropical Cyclones ...................................................................................................................... 93 
Severe Convective Storms ......................................................................................................... 96 
Challenges and Opportunities for Attribution of Individual Classes of Extreme Events .......... 98 

Chapter 5: Conclusions ............................................................................................................... 105 
Assessment of Current Capabilities ......................................................................................... 105 
Presenting and Interpreting Extreme Event Attribution Studies ............................................. 106 
The Path Forward .................................................................................................................... 108 

References ................................................................................................................................... 113 
Appendix A: Statement of Task .................................................................................................. 135 
Appendix B: Workshop Agenda ................................................................................................. 137 
Appendix C: Committee Mini Biographies ................................................................................. 141 
 



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

 

PREPUBLICATION COPY 
xiv 



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

 

PREPUBLICATION COPY 
xv 

Glossary1 
 
Attribution: The process of evaluating the relative contributions of multiple causal 
factors to a change or event with an assignment of statistical confidence (Hegerl et al., 
2010) 
Bias: A term used by statisticians to mean the difference between the true quantity and 
the estimates of that quantity based on data from repeated studies with statistically 
equivalent samples of data. 
Causal factors: Influences on the climate system, including both external forcings which 
may be either anthropogenic (greenhouse gases [GHGs], aerosols, ozone precursors, 
land/water use) or natural (volcanic eruptions, solar cycle modulations), and slowly 
varying components of the system (sea surface temperatures [SSTs], sea ice, soil 
moisture, snow cover) that are known to influence climatic conditions on seasonal 
timescales.  
Causality: The relationship between something that happens or exists and an effect, 
result, or condition for which it is responsible.  
Conditioning: The process of limiting an attribution analysis to particular types of 
weather or climate situations. For example, an attribution study may assess whether 
human influence on the climate plays a role in a given type of event when El Niño 
“conditions” prevail. 
Counterfactual: From the perspective of attribution studies, counterfactual or 
counterfactual world refers to a hypothetical “control” world that has only been impacted 
by natural forcings and internal variability. In practice it usually refers to the observed 
climatic conditions (e.g., a specific SST distribution) as they might have occurred had 
anthropogenic forcing been absent. 
Detection: Detection of change is defined as the process of demonstrating that climate or 
a system affected by climate has changed in some defined statistical sense without 
providing a reason for that change (Hegerl et al., 2010). 
Dynamic: Concerning the motion of bodies under the action of forces. In the context of 
event attribution, dynamics would include both large-scale circulation patterns, which can 
modulate temperature and precipitation extremes, and storms. 
Ensemble: A collection of similar entities. In climate science, the term usually refers to a 
collection of simulations by a single model but with different initial conditions (hence 
different internal variations) or to a set of simulations of similar design by different 
climate models. 
Exceedance probability: Probability that a quantity (e.g., temperature or precipitation) 
will exceed some specified threshold. 
Extreme event: A weather or climate event that is rare at a particular place (and, 
sometimes, time of year) including, for example, heat waves, cold waves, heavy rains, 
periods of drought and flooding, and severe storms. Definitions of rare vary, but an 
extreme weather event would normally be as rare as or rarer than a particular percentile 
(e.g., 1st, 5th, 10th, 90th, 95th, 99th) of a probability density function estimated from 
observations expressed as departures from daily or monthly means.  
                                                      
1 The IPCC reports and the National Climate Assessment are excellent resources for climate-related definitions. 
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Factual: From the perspective of attribution studies factual refers to the currently 
observed world as it exists in the context of climate change. 
 (External) Forcing: refers to a forcing agent outside the climate system causing a 
change in the climate system. Examples include volcanic eruptions, solar variations and 
anthropogenic changes in the composition of the atmosphere and land use change.  
Fraction of Attributable Risk (FAR): The fraction of the likelihood of an event that is 
attributable to a specific causal factor. 
Framing: The process of posing scientific questions that arise when an event occurs and 
establishing the context within which they are answered (e.g., whether some kind of 
conditioning is involved). Framing may include translation of a question such as “Did 
human induced climate change cause this event?” into one or more questions that science 
may be better able to answer, such as “Has human influence on the climate increased the 
frequency or intensity of events like the one that has just occurred?” 
Internal variability: The technical term that is often used to describe the natural, 
unforced, chaotic variability that occurs continually in the climate system. It is a 
component of natural variability. 
Model: A set of ideas, a physical representation or set of formulas that describe a process 
or system. In climate science, and in this report, the term usually refers to a set of 
equations describing the physical laws governing the behavior of the atmosphere, ocean, 
sea ice, land surface and other components of the earth system, whose solutions simulate 
the time evolution of the system. 
Natural variability: Internally (such as El Niño-Southern Oscillation) and externally 
(e.g., volcanic eruptions or changes in solar radiance) induced natural climate variability 
that occurs without anthropogenic forcing.  
P0: Counterfactual probability p0 (i.e., the probability of an event in a world without 
human influence on climate). 
P1: Factual probability p1 (i.e., the probability of an event in the currently observed world 
as it exists in the context of climate change). 
Return time: A return time (or period) is a commonly used metric of probability; for 
example, a 100-year return time means that in any given year, there is a 1-in-100 chance 
of the threshold being reached. If the climate were not changing return time could also be 
interpreted as the average time between events, but it should not be interpreted as the 
time that will pass before an event occurs again.  
Risk ratio: The ratio of probabilities under two different conditions or settings; in event 
attribution this is generally the ratio of the probability under anthropogenic forcing (the 
factual scenario) to that under the counterfactual scenario. While well-established in 
epidemiology, the term is a misnomer as it is a ratio of probabilities and does not involve 
risk as formally defined to account for both probability and magnitude of impact. 
Selection bias: A term used by statisticians to describe the systematic errors in 
probabilistic inference that can arise when the data that are collected or analyzed are not 
representative of the population of interest. A famous example is the mis-prediction of 
the outcome of the 1948 U.S. presidential election (Dewey versus Truman) based on a 
telephone survey, since in those days only the wealthier members of society had their 
own telephones. 
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Thermodynamic: Concerning heat and temperature and their relation to energy and 
work. In the context of event attribution, thermodynamics would include behavior related 
to the warming and increased moisture-holding capacity of the atmosphere. 
Variance: A term used by statisticians to mean the variability of an estimate of a quantity 
based on one sample of data around the average estimate of that quantity that would be 
calculated based on data from repeated studies with statistically equivalent samples of 
data. 
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Summary 
 

The observed frequency, intensity, and duration of some extreme weather events 
have been changing as the climate system has warmed. Such changes in extreme weather 
events have also been simulated in climate models, and some of the reasons for them are 
well understood. For example, warming is expected to increase the likelihood of 
extremely hot days and nights (Figure S.1). Warming is also expected to lead to more 
evaporation that may exacerbate droughts and increased atmospheric moisture that can 
increase the frequency of heavy rainfall and snowfall events.  

The extent to which climate change influences an individual weather or climate 
event is more difficult to determine. It involves consideration of a host of possible natural 
and anthropogenic factors (e.g., large scale circulation, internal modes of climate 
variability, anthropogenic climate change, aerosol effects) that combine to produce the 
specific conditions of an event. By definition, extreme events are rare, meaning that there 
typically are only a few examples of past events at any given location.  

Nonetheless, this relatively new area of science—often called event attribution—
is rapidly advancing. The advances have come about both because the understanding of 
the climate and weather mechanisms that produce extreme events is improving, and 
because rapid progress is being made in the methods that are used for event attribution. 
This emerging area of science has also drawn the interest of the public because of the 
frequently devastating impacts of the events that are studied. This is reflected in the 
strong media interest in the connection between climate change and extreme events, and 
it occurs in part because of the potential value of attribution for informing choices about 
assessing and managing risk and in guiding climate adaptation strategies. For example, in 
the wake of a devastating event, communities may need to make a decision about 
whether to rebuild or relocate. Such a decision could hinge on whether the occurrence of 
an event is expected to become more likely or severe in the future—and if so, by how 
much.  

The ultimate challenge for the science of event attribution is to estimate how 
much climate change has affected an individual event’s magnitude2 or probability3 of 
occurrence. While some studies now attempt to do this, most consider classes of events 
that are similar to the event that has been observed. Irrespective of whether a specific 
event or a class of events is studied, results remain subject to substantial uncertainty, with 
greater levels of uncertainty for events that are not directly temperature related. The 
conclusions drawn also depend, in general, on choices made when selecting the events, 
framing the questions asked about the role of climate change, designing the modeling 
setup, and selecting statistical tools to quantify uncertainty.  

More event attribution studies are published every year and study results are 
increasingly requested very quickly after events occur. However, some of the methods 
are still relatively novel and there are a range of views about how to conduct and interpret 
the analyses. This report examines the science of attribution of specific extreme 

                                                      
2 In this report “magnitude” and “intensity” are used synonymously. 
3 In this report “probability” and “frequency” are used synonymously. 
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studies use both observations and models to some extent—for example, modeling studies 
will use observations to evaluate whether models reproduce the event of interest and 
whether the mechanisms involved correspond to observed mechanisms, and observational 
studies may rely on models for attribution of the observed changes. 

Some types of observation-based approaches to event attribution use the historical 
context in order to determine changes in the rarity of an observed event based on long-
term data. For example, this might involve comparing the statistical probability of an 
event in today’s climate to its probability in some previous time several decades earlier 
when the concentration of anthropogenic greenhouse gases was much lower. In practice, 
historical observations are often not available for a long enough period to enable a 
reliable statistical evaluation of whether there has been a significant change in event 
frequency or intensity.  

Another observational approach is based on analyzing the characteristics of a 
given weather event (e.g., the large-scale circulation pattern) and looking for historical 
analogues in order to determine how meteorologically similar events have changed. 
These studies might compare the amount of rainfall in the current event to similar past 
events to estimate how the long-term increases in atmospheric temperature and moisture 
affected the event. As such, this approach does not address how climate change may have 
influenced the conditions that gave rise to a particular weather pattern. Some studies have 
also diagnosed the frequency of circulation states in order to determine if these may 
explain or counteract any change in extreme events. In general, it will be challenging to 
attribute any such changes to anthropogenic climate change.  

Weather and climate model-based approaches to extreme event attribution 
compare model-simulated weather and climate phenomena under different input 
conditions, for example with and without human-caused changes in greenhouse gases. 
Many studies rely upon coupled atmosphere-ocean climate models, while others may use 
global atmospheric models, regional models, or models that are constructed specifically 
to represent a particular class of weather events, such as hurricanes. Multiple simulations 
can be conducted to test how changes in sea surface temperature, the levels of 
atmospheric CO2 or aerosols, or other variables affect the extreme event of interest. 
Simulations are often repeated many times with small changes in the initial atmospheric 
or other conditions to estimate some uncertainties and sensitivities. Figures S.2 and S.3 
provide examples of model-based attribution for the extreme heat events in Russia during 
summer 2010 and the extreme flooding events in England and Wales during autumn 
2000, respectively. 

Many studies have used climate models to understand how unusual observed 
conditions are with respect to the distribution of possible conditions in a world that is 
unperturbed by humans. Models are often used to estimate the probability of occurrence 
of an event with human-caused climate changes (p1) and without these changes (p0). 
These estimated probabilities are often used to estimate the fraction of attributable risk 
FAR= (p1-p0)/p1 or the risk ratio RR= p1/p0. These model-based estimates of attributable 
risk or risk ratio hinge on the model used being able to reliably simulate both the event in 
question and any changes in this event that may occur due to human-caused climate 
change or another considered factor. 
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x are simulated adequately in climate models5; and  
x are either purely meteorological in nature (i.e., the event is not strongly influenced 

by built infrastructure, resource management actions, etc.) or occur in 
circumstances where these confounding factors can be carefully and reliably 
considered.  
 
Non-meteorological factors can limit the accuracy of model simulations of 

extreme events and confound observational records. Drought and wildfire are examples 
of events for which non-meteorological factors can be especially challenging in 
attribution studies. 

Furthermore, confidence in attribution results that indicate an influence from 
anthropogenic climate change is strongest when: 

 
x there is an understood and robustly simulated physical mechanism that relates a 

given class of extreme events to long-term anthropogenic climate changes such as 
global-scale temperature increase or increases in water content of a warmer 
atmosphere.  
 
More frequent occurrences of extreme heat and less frequent occurrences of 

extreme cold are examples of changes that are consistent with increasing global mean 
temperatures. 

Using this set of criteria, the committee assessed their confidence in event 
attribution capabilities for different extreme event types, as illustrated in Figure S.4 and 
Table S.1.  

Confidence in attribution findings of anthropogenic influence is greatest for 
those extreme events that are related to an aspect of temperature, such as the 
observed long-term warming of the regional or global climate, where there is little 
doubt that human activities have caused an observed change. In particular, for 
extreme heat and cold events, changes in long-term mean conditions provide a basis for 
expecting that there should also be related changes in extreme conditions. Heavy rainfall 
is influenced by a moister atmosphere, which is a relatively direct consequence of 
human-induced warming, though not as direct as the increase in temperature itself. The 
frequencies and intensities of tropical cyclones and severe convective storms are related 
to large-scale climate parameters whose relationships to climate are understood to 
varying degrees, but in general are more complex and less direct than changes in either 
temperature or water vapor alone. However, atmospheric circulation and dynamics play 
some role in the development of an extreme event, which is different for different event 
types. Changes in atmospheric circulation and dynamics are generally less directly 
controlled by temperature, less robustly simulated by climate models, and less well 
understood. 

                                                      
5 By “adequately,” the committee means that at a minimum, climate models used for event attribution need 
to accurately capture the spatial patterns and variability of relevant climate-related phenomena. See Table 
S.1 and Box 4.1 for the committee’s assessment of the capabilities of climate models to simulate each event 
type. 
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TABLE S.1 This table, along with Figure S.4, provides an overall assessment of the state of 
event attribution science for different event types. In each category of extreme event, the 
committee has provided an estimate of confidence (high, medium, and low) in the capabilities of 
climate models to simulate an event class, the quality and length of the observational record from 
a climate perspective, and understanding of the physical mechanisms that lead to changes in 
extremes as a result of climate change. The entries in the table, which are presented in 
approximate order of overall confidence as displayed in Figure S.3, are based on the available 
literature and are the product of committee deliberation and judgement. Additional supporting 
information for each category can be found in the text of Chapter 4. The assessments of climate 
models capabilities apply to models with spatial resolutions (100km or coarser) that are 
representative of the large majority of models participating in CMIP5 (i.e., Coupled Model 
Intercomparison Project Phase 5). Individual global and regional models operating at higher 
resolutions may have better capabilities for some event types, but in these cases, confidence may 
still be limited due to an inability to assess model-related uncertainty. The assessments of the 
observational record apply only to those parts of the world for which data are available and are 
freely exchanged for research. Most long records rely on in-situ observations, and these are not 
globally complete for any of the event types listed in this table, although coverage is generally 
reasonable for the more densely populated parts of North America and its adjacent ocean regions.   

z = high 
} = medium 
{ = low 

Capabilities of 
Climate Models to 

Simulate Event Class  

Quality/Length of the 
Observational Record 

Understanding of 
Physical Mechanisms 
that Lead to Changes 

in Extremes as a 
Result of Climate 

Change 

Extreme cold events z z z 

Extreme heat events  z z z 

Droughts } } } 

Extreme rainfall } } } 

Extreme snow and ice 
storms } { } 

Tropical cyclones { { } 

Extratropical cyclones } { { 

Wildfires { } { 

Severe convective 
storms { { { 
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Event attribution can be further complicated by the existence of other factors that 
contribute to the severity of impacts. For example, while many studies have linked an 
increase in wildfires to climate change, the risk of any individual fire depends on past 
forest management, natural climate variability, human activities in the forest, and 
possibly other factors, in addition to any exacerbation by human-caused climate change. 

Confidence in attribution analyses of specific extreme events is highest for 
extreme heat and cold events, followed by hydrological drought and heavy 
precipitation. There is little or no confidence in the attribution of severe convective 
storms and extratropical cyclones. Confidence in the attribution of specific events 
generally increases with increased understanding of the effect of climate change on the 
event type. Gaps in understanding and limitations in the historical data lead to differences 
in confidence in attribution of specific events among different event types. 

Attribution of events to anthropogenic climate change may be complicated 
by low-frequency natural variability, which influences the frequencies of extreme 
events on decadal to multidecadal timescales. The Pacific Decadal Oscillation and the 
Atlantic Multidecadal Oscillation are examples of such variability. Characterization of 
these influences is uncertain because the observed record is too short to do so reliably or 
assess if climate models simulate these modes of variability correctly.  

 
 

PRESENTING AND INTERPRETING EXTREME EVENT ATTRIBUTION 
STUDIES 

 
Given the relative newness of the event attribution field, standards have not yet 

been established for how to present results, which can make their interpretation difficult, 
particularly if conflicting evidence is available. Most event attribution studies are subject 
to substantial uncertainty. Results also hinge on how the event that is analyzed is defined, 
the specific questions that are posed, the assumptions made when analyzing the event, 
and the data, modeling, and statistical tools used to conduct the analysis. It is therefore 
essential to communicate the event definition, event attribution questions, assumptions, 
and choices clearly when reporting on the outcome of an event attribution study. The 
technical nature of this information makes it challenging to accurately communicate 
results, uncertainties, and limitations to the broader public.  

There is no single best method or set of assumptions for event attribution, as these 
depend heavily on the framing of the question and the amount of time available to answer 
it. Time constraints may themselves affect framing and methodological choices by 
limiting analyses to approaches that can be undertaken quickly.  

A definitive answer to the commonly asked question of whether climate 
change “caused” a particular event to occur cannot usually be provided in a 
deterministic sense because natural variability almost always plays a role. Many 
conditions must align to set up a particular event. Extreme events are generally 
influenced by a specific weather situation, and all events occur in a climate system that 
has been changed by human influences. Event attribution studies generally estimate how 
the intensity or frequency of an event or class of events has been altered by climate 
change (or by another factor, such as low-frequency natural variability). Thus, examples 
of questions that the scientific community can attempt to address include:  
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x “Are events of this severity becoming more or less likely because of climate 
change?”  

x “To what extent was the storm intensified or weakened, or its precipitation 
increased or decreased, because of climate change?”  
 
Statements about attribution are sensitive to the way the questions are posed 

and the context within which they are posed. For example, when defining an event, 
choices must be made about defining the duration of the event (when did it begin and 
when did it end) and the geographic area it impacted, but this may not be straightforward 
for some events (e.g., heat waves). Furthermore, different physical variables may be 
studied (e.g., drought might be characterized by a period with insufficient precipitation, 
excessively dry soil, or reduced stream flow) and different metrics can be used to 
determine how extreme an event was (e.g., frequency, magnitude). Whether an 
observation- or model-based approach is used, and the observations and/or models 
available for studying the event, will also constrain the sorts of questions that can be 
posed.  

Attribution studies of individual events should not be used to draw general 
conclusions about the impact of climate change on extreme events as a whole. Events 
that have been selected for attribution studies to date are not a representative sample (e.g., 
events affecting areas with high population and extensive infrastructure will attract the 
greatest demand for information from stakeholders). Also, events that are becoming less 
likely because of climate change (e.g., cold extremes) will be studied less often because 
they occur less often than events whose frequency is increasing because of climate 
change. Furthermore, attribution of individual events is generally more difficult than 
characterizing the statistical distribution of events of a given type and its dependence on 
climate. For example, it may be possible to make confident statements about how some 
class of extreme events is expected to change because of human-induced climate change, 
while at the same time an attribution study of an individual event of that type may be 
unable to make a confident statement about the human influence on that one specific 
event. Thus for all of these reasons, counts of available attribution studies with either 
positive, negative, or neutral results are not expected to give a reliable indication of the 
overall importance of human influence on extreme events. 

Unambiguous interpretation of an event attribution study is possible only 
when the assumptions and choices that were made in conducting the study are 
clearly stated and uncertainties are carefully estimated. The framing of event 
attribution questions, which may depend strongly on the intended application of the study 
results, determine how the event will be studied and can lead to large differences in the 
interpretation of the results. Event attribution studies presented in the following manner 
are less likely to be misinterpreted: 

 
x Assumptions about the state of one or more aspects of the climate system at the 

time of the event (e.g., sea surface temperature anomalies, atmospheric circulation 
regimes, specific weather situations) are clearly communicated.  

x Estimates of changes in both magnitude and frequency are provided, with 
accompanying estimates of uncertainty, so users can understand the estimated 
degree of change from the different perspectives. 



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

Summary  11 
 

PREPUBLICATION COPY 

x Estimates of changes in frequency are presented as a risk ratio, that is, in terms of 
the ratio of the probability of the event in a world with human-caused climate 
change to its probability in a world without human-caused climate change. 
Equivalently, one can compare the return periods of the event (i.e., how rarely an 
event occurs) in the world without climate change to that in the world with 
climate change. 

x The impact of assumptions (e.g., of how estimates of changes in magnitude and 
frequency depend on sea surface temperature anomalies or atmospheric 
circulation regimes) is discussed. 

x Statements of confidence accompany results so users understand the strength of 
the evidence.  
 
Bringing multiple scientifically appropriate approaches together, including 

multiple models and multiple studies helps distinguish results that are robust from 
those that are much more sensitive to how the question is posed and the approach 
taken. For example, robust attribution analyses typically show that the results are 
qualitatively similar across a range of event definitions, acknowledging that quantitative 
results are expected to differ somewhat because of differences in definition. Utilizing 
multiple methods to estimate human influences on a given event also partially addresses 
the challenge of characterizing the many sources of uncertainty in event attribution. 

Examples of multiple components that can lead to more robust conclusions 
include: 

 
x Estimates of event probabilities or magnitudes based on an appropriate modeling 

approach that has been shown to adequately reproduce the event and its 
circumstances, such as the dynamic situation leading to the event. 

x Reliable observations against which the model has been evaluated and that give 
an indication of whether the event in question has changed over time in a manner 
that is consistent with the model-based attribution. 

x Assessment of the extent to which the result is consistent with the physical 
understanding of climate change’s influence on the class of events in question. 

x Clear communication of remaining uncertainties and assumptions made or 
conditions imposed on the analysis. 

 
 

THE PATH FORWARD 
 

Improving Extreme Event Attribution Capabilities 
 

Continued research efforts are necessary to increase the reliability of event 
attribution results, particularly for classes of events for which attribution of is presently 
poorly understood. Some of this research is covered in the ongoing work to understand 
the connection between climate change and long-term statistics of extremes. 
Improvements in attribution capability for all event types require improvements in 
observations, models, theoretical understanding of the links between climate change and 
extremes, and analysis techniques.  
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A focused effort to improve understanding of specific aspects of weather and 
climate extremes could improve the ability to perform extreme event attribution. 
Because extreme event attribution relies strongly on all aspects of the understanding of 
extremes and their challenges, the committee endorses the recommendations identified in 
the World Climate Research Programme Grand Challenge: Understanding and 
Predicting Weather and Climate Extremes (Box S.1; Zhang et al., 2014) as necessary to 
make advances in event attribution. 

In particular, this committee recommends research that aims to improve event 
attribution capabilities, which includes increasing the understanding of: 

 
x the role of dynamics and thermodynamics in the development of extreme events; 
x the model characteristics that are required to reliably reproduce extreme events of 

different types and scales; 
x changes in natural variability, including the interplay between a changing climate 

and natural variability, and characterization of the skill of models to represent low 
frequency natural variability in regional climate phenomena and circulation;  

x the various sources of uncertainty that arise from the use of models in event 
attribution;  

x how different levels of conditioning (i.e., the process of limiting an attribution 
analysis to particular types of weather or climate situations) lead to apparently 
different results when studying the same event;  

x the statistical methods used for event attribution, objective criteria for event 
selection, and development of event attribution evaluation methods; 

x the effects of non-climate causes—such as changes in the built environment (e.g., 
increasing area of urban impervious surfaces and heat island effects, land cover 
changes), natural resource management practices (e.g., fire suppression), coastal 
and river management (e.g., dredging, seawalls), agricultural practices (e.g., tile 
drainage), and other human activities—in determining the impacts of an extreme 
event;  

x expected trends in future extreme events to help inform adaptation or mitigation 
strategies (e.g., calculating changes in return periods to show how the risk from 
extreme events may change in the future); and  

x the representation of a counterfactual world that reliably characterizes the 
probability, magnitude, and circumstances of events in the absence of human 
influence on climate.  
 
Research efforts targeted specifically at extreme events, including event 

attribution, could rapidly improve capabilities and lead to more reliable results. In 
particular, there are opportunities to better coordinate existing research efforts to further 
accelerate the development of the science and improve and quantify event attribution 
reliability. Also, it would be beneficial to encourage interdisciplinary research at the 
interface between the climate, weather and statistical sciences to improve analysis 
methods. Event attribution capabilities would be improved with better observational 
records, both near-real time and for historical context. Long homogeneous observed 
records are essential for placing events into a historical context and evaluating to what  
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BOX S.1  
Key recommendations from the WCRP Grand Challenge: Understanding and 

Predicting Weather and Climate Extremes (Zhang et al., 2014) 
 

x substantial advances in modelling (including but not limited to model resolution)  
x advances in the understanding of the physical mechanisms leading to extremes 
x increased effort to extend the historical observational record, including planned 

climate quality reanalyses over longer historical periods 
x improvements in remote sensing products that extend long enough to document 

trends and sample extremes 
 
extent climate models reliably simulate the effect of decadal climate variability on 
extremes. 

Event attribution could be improved by the development of transparent 
community standards for attributing classes of extreme events. Such standards could 
include an assessment of model quality in relation to the event/event class. They could 
also include use of multiple lines of evidence, developing a transparent link to a detected 
change that influences events in question, and clear communication of sensitivities of the 
result to how the question of event attribution is asked.  

Systematic criteria for selecting events to be analyzed would minimize 
selection bias and permit systematic evaluation of event attribution performance, 
which is important for enhancing confidence in attribution results. Studies of a 
representative sample of extreme events would allow stakeholders to use such studies as 
a tool for understanding how individual events fit into the broader picture of climate 
change. Irrespective of the method or related choices, it would be useful to develop a set 
of objective event selection and definition criteria. This would help to reduce selection 
bias and in some cases lead to methodological improvements. This is also a prerequisite 
for the development of a formalized approach to evaluating event attribution results and 
uncertainty estimates, similar to existing approaches used to evaluate weather forecasts. 

 
 

Event Attribution in an Operational Context 
 

As more researchers begin to attempt event attribution, their efforts would benefit 
from coordination to make sure that there is a systematic approach and that uncertainties 
are explored across methods and framing. Event attribution can benefit from links to 
operational numerical weather prediction where available. Some groups are moving 
toward the development of operational extreme event attribution systems to 
systematically evaluate the causes of extreme events based on predefined and tested 
methods. Objective approaches to compare and contrast the analyses among multiple 
different research groups based on agreed event selection criteria are yet to be developed.  

In the committee’s view, attributes of a successful operational event attribution 
system would include: 

 
x objective event-selection criteria to reduce selection bias so stakeholders 

understand how individual events fit into the broader picture of climate change; 
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x provision of stakeholder information about causal factors within days of an event, 
followed by periodic updates as more data and analysis results become available;  

x clear communication of key messages to stakeholders about the methods and 
framing choices as well as the associated uncertainties and probabilities; and 

x reliable assessments of performance of the event attribution system through 
evaluation and verification processes utilizing observations and seasonal forecasts 
and skill scores similar to those used routinely in weather forecasting. 
 
Some future event attribution activities could benefit from being linked to an 

integrated weather-to-climate forecasting effort on a range of timescales. The 
development of such an activity could be based on concepts and practices within the 
Numerical Weather Prediction community. Ultimately the goal would be to provide 
predictive (probabilistic) forecasts of future extreme events at lead times of days to 
seasons or longer, accounting for natural variability and anthropogenic influences. These 
forecasts would be verified and evaluated using observations, and their routine 
production would enable the development and application of appropriate skill scores. The 
activity would involve rigorous approaches to managing and implementing system 
enhancements to continually improve models, physical understanding, and observations 
focused on extreme events. Although situating some future event attribution activities in 
an integrated weather-to-climate forecasting effort would lead to more coordination, the 
committee encourages continued research in event attribution outside of an operational 
context to ensure further innovation in the field. 

 
 

CONCLUDING REMARKS 
 
The ability to understand and explain extreme events in the context of climate 

change has developed very rapidly over the past decade. In the past, a typical climate 
scientist’s response to questions about climate change’s role in any given extreme 
weather event was “we cannot attribute any single event to climate change.” The science 
has advanced to the point that this is no longer true as an unqualified blanket statement. 
In many cases, it is now often possible to make and defend quantitative statements about 
the extent to which human-induced climate change (or another causal factor, such as a 
specific mode of natural variability) has influenced either the magnitude or the 
probability of occurrence of specific types of events or event classes. The science behind 
such statements has advanced a great deal in recent years and is still evolving rapidly. 
Still further advances are necessary, particularly with respect to evaluating and 
communicating event attribution results and ensuring that event attribution studies meet 
the information needs of stakeholders. Further improvement will depend not only on 
addressing scientific problems specific to attribution, but also on advances in the basic 
underlying science, including observations, modeling, and theoretical understanding of 
extreme events and their relation to climate change. 
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Chapter 1: Introduction 
 

Extreme weather and climate events (e.g., heat waves, droughts, heavy rainfall, 
hurricanes) have always posed risks to human society. A matter of growing interest, 
however, is the degree to which humans are changing these risks through anthropogenic 
climate change. This concern has been driven by the growing impacts on ecosystems, 
communities, and infrastructure of recent extreme events across the United States and the 
world. 

Efforts to attribute the causes of individual extreme events need to be understood 
in the broader context of what we already know about climate change. Humans have 
contributed to warming of the climate system globally (predominantly due to 
anthropogenic greenhouse gas emissions). This finding is supported by multiple lines of 
evidence that originate from data from observing systems across the globe on land and 
sea and in the atmosphere, and structurally different analyses of multiple components of 
the climate system. There is also a substantial body of evidence showing that climate 
change has led to discernible and quantifiable changes in the intensity and/or frequency 
of some types of extremes (Donat et al., 2013; IPCC, 2014; Melillo et al., 2014; 
Seneviratne et al., 2012; Figure 1.1).  

Extreme weather is one way that people experience climate change. Extreme 
events are abrupt, occur in the present, and are highly visible, as opposed to long-term 
climate change trends that seem abstract, distant, gradual, and complicated (Howe et al., 
2014). The global news includes reports on extreme weather or climate events on a 
regular basis, including a “1,000-Year rainfall event” in South Carolina in October 
(Figure 1.2), a May-June India-Pakistan heat wave, and Hurricane Patricia, the “strongest 
eastern Pacific or Atlantic hurricane in the historical record,” as well as widespread 
flooding in Northern England in December, all in 2015. Each of these cases has led to 
questions from the media and the public about whether the events were “caused” by 
climate change. Attribution draws the explicit connection between climate science as a 
whole and the specific event in the news, making the science concrete in a way that 
statements about broader trends and future projections do not. 

 
 

WHY INVESTIGATE THE CAUSES OF EXTREME EVENTS? 
 

Given that climate change affects the climate system globally, it is impossible to 
rule out some contribution from climate change to any extreme event. However, each 
extreme event has a host of possible natural and anthropogenic causes in addition to 
anthropogenic climate change. Examples of natural causes include large-scale circulation, 
internal modes of climate variability, and some aerosol effects (e.g., marine aerosol, 
stratospheric and volcanic aerosol). Further, the resulting impacts of that event can be 
mitigated or exacerbated by other factors (e.g., the local topography, land use).  
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anticipated impacts can be reduced through management strategies such as land use 
planning if the connections between climate change and extreme events like intense 
precipitation are better understood. Such planning would ideally be based on a broad risk 
assessment, including projections of future trends in extreme events, and need not rely 
specifically on attribution of individual events.  

As they improve, event attribution studies can be a tool for informing choices 
about assessing and managing risk and guiding adaptation strategies. Such information 
may be critical to multiple decision-makers including insurers, elected officials and 
policymakers, local and regional land and resource managers, zoning and infrastructure 
planners and engineers, litigators, and emergency managers who focus on disaster risk 
reduction.  

 
 
OVERVIEW OF EXTREME EVENT ATTRIBUTION RESEARCH 

 
In the past decade, the field of extreme event attribution has moved from 

generalized statements about expecting certain events to increase in frequency or 
magnitude, to documented increases in frequency or intensity of extreme events, to 
probability-based attribution of individual events. Following an extreme climate or 
weather event, the standard response from scientists has typically been that global 
warming does not “cause” any single event in a deterministic sense, but it can make some 
of them more likely to occur or more intense when they do. However, because of 
advances in the relatively young science of extreme event attribution, it is now possible 
in some cases to provide quantitative information about how climate change may have 
impacted the probability or intensity of an individual event, and cast this within a 
probabilistic causal framework.  

In 2004, in perhaps the first attempt at extreme event attribution, Stott et al. 
showed that climate change had at least doubled the chance of the record-breaking 2003 
European summer heat wave that has been associated with the death of more than 70,000 
people by some accounts (Robine et al., 2008). Since then, advances in the field have 
prompted numerous studies (e.g., the 2010 Russian heat wave [Dole et al., 2011; Otto et 
al., 2012]; the Texas drought and heat wave in 2011 [Hoerling et al., 2013; Rupp et al., 
2012]; and the ongoing California drought [Cheng et al., 2016; Diffenbaugh et al., 2015; 
Williams et al., 2015]). The Bulletin of the American Meteorological Society (BAMS) 
now publishes annual special issues on event attribution (Herring, 2014; Herring et al., 
2015b; Peterson et al., 2012, 2013b), which include a compilation of short studies on 
events that occurred during the previous year. An indication of the developing interest in 
event attribution is highlighted by the fact that in four years (2012-2015), the number of 
papers increased from 6 to 32.  

 
 

Detection and Attribution of Long-Term Changes 
 

Many elements of extreme event attribution research are derived from the more 
mature field of detection and attribution of long-term changes in the characteristics of the 
climate, such as changes in the frequency or intensity of extremes as well as changes in 
average climatic conditions.  
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The primary approach used in detection and attribution research is to compare 
observations (e.g., of spatial patterns of decadal mean temperatures) to expected changes 
derived from climate model simulations. The methods used for detection of change 
continue to evolve, but have repeatedly been demonstrated to be robust to variations in 
methodology (see for example, Allen and Stott, 2003; the appendices in Hegerl, 2007, 
and Bindoff et al., 2013; the review of Hegerl and Zwiers, 2011; and recent papers that 
suggest further changes to the methods, such as Ribes et al., 2013, 2015; Ribes and 
Terray, 2013; and Hannart et al., 2015a). 

 
 

Considerations Specific to Attribution of Extreme Events 
 

Attribution is defined as the process of evaluating the relative contributions of 
multiple causal factors to a change or event with an assignment of statistical confidence8 
(Hegerl et al., 2010). Many causal factors impact any given extreme event, so attribution 
to any of them could be studied in principle. Our statement of task covers attribution to 
both human-induced climate change and natural variability. In a number of respects, the 
scientific issues are similar whether human influence or natural variability is being 
assessed in an attribution study, so much of our discussion is general. Where attribution 
to human influence raises distinct scientific issues, our discussion prioritizes those, and 
our conclusions and recommendations do as well. 

The occurrence of any individual extreme event, by itself, does not prove or 
disprove that the climate is changing. However, event attribution studies seek to calculate 
how much human-induced climate change has affected an individual event’s magnitude 
or probability of occurrence (Stott et al., 2015).  

Conclusions regarding attribution of extreme events are strongly affected by the 
way “extreme” is defined by scientists. Seneviratne et al. (2012) defines climate extremes 
(extreme weather or climate events) as “The occurrence of a value of a weather or 
climate variable above (or below) a threshold value near the upper (or lower) ends of the 
range of observed values of the variable.” In fact, the threshold that is selected as 
“extreme” is generally based on 20th century observations, but the baseline of what is 
“normal” is changing over time. In the future, events that are currently considered 
extreme may eventually be considered normal. Therefore, scientists generally establish 
metrics to characterize the extreme nature of the event being attributed in the context of a 
baseline period. 

There are several important challenges related to event attribution (discussed in 
more detail in other chapters) including defining and interpreting an ”event” and 
characterizing a ”cause,” or a causal link. Further issues arise from the many different 
ways that scientists (who are often working with different sources of data and models) 
describe the degree of certainty about their findings and characterize the uncertainty.  

 
 

  

                                                      
8 In practice, not all attribution studies include statistical confidence. 
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THIS STUDY AND THE COMMITTEE’S APPROACH 
 

This committee was asked to examine the science of attribution of extreme 
weather events to human-caused climate change and natural variability by reviewing 
current understanding and capabilities; assessing the robustness of the methods; 
providing guidance for interpreting analyses; and identifying priority research needs (see 
Appendix A for the full statement of task). 

This study is sponsored by the Department of Energy (DOE), the Heising Simons 
Foundation, the Litterman Family Foundation, The David and Lucile Packard 
Foundation, the National Aeronautics and Space Administration (NASA), the National 
Oceanic and Atmospheric Administration (NOAA), and the National Academy of 
Sciences. Beyond the sponsors, the intended audiences for this report are the scientific 
community, decision makers, and the media. The committee’s goal for this report is to 
provide these audiences guidance in interpreting new attribution studies and on the 
robustness of extreme event attribution science. The committee also hopes that this report 
guides future support and development of high priority attribution and detection projects. 

Although it is clear to the committee that communication is a critical issue in 
extreme event attribution, communication is not discussed in detail in this report, as it is 
not part of the committee’s charge. Indeed, a careful and comprehensive treatment of the 
many issues associated with science communication related to climate attribution could 
be a study in its own right. However, the committee recognizes the importance of 
communicating clearly and accurately framing any climate-related issue. Framing of 
event attribution questions—how they are posed, and the context within which they are 
posed—is a key issue, both in terms of communicating study results and in designing and 
conducting event attribution studies (e.g., Otto et al., 2013; Otto et al., 2015a; Trenberth 
et al., 2015). Different event framing can lead to large differences in the interpretation of 
evidence of whether human influence on the climate system played a role. The committee 
has included a detailed discussion on the framing of extreme event attribution questions 
in Chapter 2 and offers guidance on communicating event attribution study results in 
Chapter 3.  

Although this report focuses almost exclusively on the physical aspects of the 
causes of extreme events, including the effect of anthropogenic climate change, it is 
important to acknowledge that there are significant human aspects (other than human 
induced greenhouse gas emissions) that influence the severity of extreme events. This 
includes the perception of what is regarded as being “extreme” and the role that human 
activity plays in creating the vulnerability and exposure that determines the impacts of 
extreme events (Cardona, 2012). Event attribution is important because of its 
relationships to risk perception, disaster risk, climate change adaptation, disaster risk 
reduction, communication, and decision-making. Human behavior can either exacerbate 
or mitigate the impacts of extreme events. For these reasons, understanding the social, 
ethical and human behavior issues that are connected to the experience of extreme events 
are important research needs.  
.  
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REPORT ROADMAP 
 

This report focuses on several topics related to the committee’s statement of task. 
Chapter 2 discusses the framing of event attribution questions. Chapter 3 discusses the 
challenges and uncertainties associated with the implementation of the different 
approaches to extreme event attribution. In Chapter 4 the committee provides an 
evaluation of the robustness of the attribution work that has been completed for specific 
types of extreme events as well as identifying anticipated progress in research efforts. 
Chapter 5 provides guidance for future research. 
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Chapter 2: Framing 
 
“What we observe is not nature itself, but nature exposed to our method of questioning.” 

—Werner Heisenberg 
 

To answer a question scientifically, the question needs to be posed in a way that is 
amenable to scientific analysis. The question often asked by the public and the media, 
“Was this extreme event caused by anthropogenic climate change, yes or no?” is not well 
posed because “cause” can have several different meanings. For a record-breaking 
extreme event, a potential rephrasing of this question might be “Could an event of this 
severity have happened in this location and time of year without climate change?” 
Generally speaking the answer will be “yes” because observational records are too short 
to have well sampled the full range of climate possibilities. In this case a more 
informative rephrasing of the question could be “Are events of this severity becoming 
more or less likely because of climate change?” For a weather event such as a storm, 
which in detail is always unique, a potential rephrasing of the question might be “To what 
extent was the storm intensified, or its precipitation increased, because of climate 
change?” 

How event attribution questions are posed, and the context within which they are 
posed, is referred to as framing. The developing literature on event attribution has shown 
that the framing of questions is fundamental to the choice of method that is used and can 
lead to large differences in the interpretation of evidence of whether human influence on 
the climate system played a role. This chapter explores the different ways in which event 
attribution studies can be framed.  

The chapter begins with a number of framing issues that arise in any event 
attribution study. It goes on to discuss the additional framing issues that arise when the 
attribution is conditional on the state of the climate system (e.g., for a given sea surface 
temperature (SST) pattern, such as that associated with ENSO (El Niño–Southern 
Oscillation), a naturally occurring source of interannual variability). Since all event 
attribution is performed and interpreted within the broader context of the scientific 
understanding of climate change, this too represents part of the framing and so is 
explicitly discussed in that vein. The interest in extreme events is typically driven by their 
impacts on society, which raises further framing issues when non-climate anthropogenic 
factors come into play. Finally, the choice of which events to study is also an aspect of 
framing, so the possible role of selection bias in affecting the interpretation of collections 
of attribution studies is discussed. 

 
 

GENERAL CONSIDERATIONS 
 
The traditional and perhaps easiest-to-interpret approach to event attribution 

estimates probabilities of events related in some way to the observed event using model 
simulations or observational data. It does this for both the factual (currently observable) 
world as it exists in the context of climate change, and a hypothetical counterfactual 
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world without climate change; the difference between the factual and counterfactual 
probabilities is taken to represent the effect of climate change.  

Attribution refers to causation, but there are different kinds of causation. In the 
classical (deterministic) context, causation can be either necessary or sufficient, and these 
concepts have probabilistic counterparts (Hannart et al., 2015b; Pearl, 2009). Necessary 
causation means that the event can only occur in the presence of the causal factor, but it 
could be that other causal factors are necessary too. This situation of multiple causation is 
typical with weather-related extremes, where many conditions must align to set up a 
particular event. An example would be a record-breaking heat wave that occurred in the 
presence of a summertime blocking anti-cyclonic circulation, a condition known to lead 
to heat waves. One possibility is that the observed temperature conditions could have 
occurred in either the factual or the counterfactual world (and just had not previously 
been observed because of the shortness of the observational record), but that the 
likelihood is substantially higher in the factual world because of the increase in mean 
temperature. Another possibility is that the temperature conditions would have been 
effectively impossible in the counterfactual world, and were only possible in the factual 
world (though still rare) because of the mean warming. In this latter case, it may be said 
that the event could only have occurred because of climate change.  

In contrast, sufficient causation concerns whether the presence of the causal factor 
alone is enough in order for the event to occur. For extreme events, for which the 
probability of an event is generally low, climate change (which is always present in the 
factual climate) cannot be a sufficient cause. Sufficient causation would only arise when 
climate change has caused an event to have become very likely and no longer be extreme 
in the current climate, only relative to the historical baseline.  

 
 

Interpretation of Single Events and Causation 
 

Event attribution questions are often posed in terms of a specific actual event, but 
definitive attribution of a specific event in a deterministic manner is generally not 
possible. This is because on the one hand, most events could have happened in the 
counterfactual world (so the probability of necessary causation is less than 100%), while 
on the other hand, the entire climate system, and therefore all extreme events, are being 
affected by climate change, as discussed further below, thereby obviating the question. 
Therefore, event attribution is usually a matter of changing probabilities rather than a 
deterministic yes or no. For example, a scientific researcher might re-pose the question 
“was Hurricane Sandy caused by climate change” as “by how much did human influence 
on climate increase the odds of a tropical or post-tropical storm with winds greater than 
65 knots making landfall in northern New Jersey?” Moreover, analysts necessarily 
estimate relevant probabilities using more than just the event in question. In fact, 
probabilities are usually estimated using a definition of an event that differs from the 
specific event, such as by estimating the probability of an event as or more extreme than 
the event of interest. As a result, the answers obtained are no longer directly about the 
actual event. Epidemiology concentrates heavily on such a probabilistic framing, which is 
discussed in relation to other possible framings in Parascandola and Weed (2001). For 
example, Rothman’s Epidemiology text (Rothman, 2012) frames strength of causation as 
relating to probabilities that pertain to collections of events, in contrast to his 



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

Chapter 2: Framing  25 
 

PREPUBLICATION COPY 

deterministic perspective on individual events: “With respect to an individual case of 
disease, however, every component cause that played a role was necessary to the 
occurrence of that case.”  

Hannart et al. (2015b) present a causal framework for event attribution that 
provides probabilities of necessary and of sufficient causation. They show that the metric 
known as the Fraction of Attributable Risk (FAR), which was introduced to extreme 
event attribution by Allen (2003), can be interpreted as an estimate of the probability of 
necessary causation (by anthropogenic forcing) of an event. It is interesting to note that 
the argument made by Allen (2003) for interpreting the FAR as applying to an individual 
event was actually a legal one rather than a physical one; namely that an uninsured loss 
should be equated with the cost of insurance against a similar loss.  

However, the FAR is perhaps the easiest to interpret when an “event” is taken to 
be a class of events (e.g., all events as intense or more intense than the event that has 
been observed) rather than an individual event. In this case, a FAR of 80% would mean 
that 4 of 5 events belonging to the class of events in the factual world would not have 
happened in the counterfactual world. This interpretation corresponds to the probabilities 
that are currently estimated in event attribution studies, which are not those of the actual 
event but are of a broader class.  

While Hannart et al (2015b) provides some very useful insights, a focus on formal 
analysis of causation may distract attention from important questions about changing 
probabilities of extreme events and their impacts on risk, which may be the more 
important questions from scientific and impacts/adaptation perspectives. Physically, the 
notion that an event may not have been affected by climate change can be difficult to 
justify in a climate system in which everything is connected. This point is made by 
Trenberth (2012), Hansen et al. (2014b), and Solow (2015), who suggest that given the 
pervasive effects of anthropogenic influence on the climate (unlike, for example, the 
isolated effect of smoking on an individual smoker), it may not make sense to speak 
about whether an event has or has not been caused or affected by anthropogenic 
influence, as all events are occurring in a world influenced by anthropogenic climate 
change, but one can still clearly talk about changes in probability.  

 
 

Frequency Versus Magnitude 
 

If an extreme event truly is rare in the current climate, then almost by definition it 
required some unusual meteorological situation to be present, and the effect of climate 
change is only a contributing factor. For example, a heat wave induced by an unusually 
persistent summertime atmospheric high pressure system situation (termed blocking) 
would be exacerbated by anthropogenic warming of several degrees Celsius (leaving 
aside possible amplifiers such as soil-moisture feedbacks, for simplicity), but it may have 
been a heat wave nonetheless. In this case, both the unusual blocking situation and the 
anthropogenic warming were necessary conditions to reach the recorded temperature 
extreme. Attribution in such a case with several necessary causal factors is heavily 
dependent on the framing and liable to misinterpretation. In studies of the 2010 Russian 
heat wave, for example, one study concluded that the event was largely natural because 
the temperature anomalies were greatly in excess of those explainable by long-term  
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trends (Dole et al., 2011), whereas another concluded that the anthropogenic influence 
was significant because long-term climate change, though small, greatly increased the 
probability of exceeding specified temperature thresholds (Rahmstorf and Coumou, 
2011). This apparent contradiction in conclusions can be reconciled by understanding that 
these two studies aim at answering the attribution question in two different ways. In this 
particular case, a small change in the magnitude of the mean can correspond to a large 
change in the frequency of extremes (Otto et al., 2012; see Figure 2.1) because of 
anthropogenic influence. Interpretation therefore ultimately depends on whether the 
interest in a particular type of event is predominantly related to changes in frequency for 
a given magnitude (which might be the case if, for example, exceedance of a fixed 
extreme temperature threshold leads to a marked impact such as a reduction in crop 
yield), or to changes in magnitude for a given frequency (which might be the case if, for 
example, it was required to design structures capable of withstanding the event 
magnitude associated with a prescribed return time). 

 
 

Event Definition 
 

In order to facilitate probabilistic analysis, a particular event is usually 
generalized to a broader class of event. Analyses may use the magnitude of an actual 
event and quantify probabilities of exceeding that observed magnitude, or they may use a 
percentile from the climatology in place of the magnitude of an actual event. Analyses 
may also focus on events over a longer time scale and larger region than of the event 
itself, considering the causes of the prevailing climatic conditions that provide the context 
for the event rather than the specifics of the event itself (e.g., Stott et al., 2004). Generally 
speaking, using a larger spatio-temporal footprint will emphasize more strongly the 
anthropogenic role (e.g., Fischer et al., 2013).  

Furthermore, in some cases different physical variables may be considered. For 
example, studies of the recent California drought focusing on precipitation deficit have 
tended to find no discernible anthropogenic influence (Seager et al., 2015), while those 
focusing on a combination of precipitation deficit and high temperature (which affects 
evaporation) have tended to find an anthropogenic influence (Diffenbaugh et al., 2015; 
Williams et al., 2015). These different definitions of drought can lead to confusion if the 
difference is not recognized. 

Event definitions should take the limitations of both observations and models into 
account. For example, if an observationally based approach (Chapter 3) is to be used to 
estimate changes in the probability or magnitude of an event by comparing an earlier 
period with a recent period, then it would be necessary to ensure that (1) the 
observational data are of high quality (e.g., free of non-climatic heterogeneities), (2) the 
record is long enough to allow reliable comparison of extremes between two subperiods, 
and (3) human influences are accounted for in a defensible manner and that natural 
influences or non-climatic human influences do not confound the estimate. In the case of 
model-based approaches (Chapter 3), event definitions should be constrained in such a 
way that the focus is on events that the model can simulate reliably and for the correct 
reasons. 

A robust attribution analysis would show that results are qualitatively similar 
across a range of event definitions, acknowledging that quantitative results are expected 
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to differ somewhat because of differences in definition. Results for particular spatial 
regions or scales or particular temporal periods, seasons, or scales may differ from results 
for other regions, scales, or periods, but for a robust result, one would expect that results 
would be similar for events defined by similar characteristics, without strong sensitivity 
to the exact definition. One would also hope that results using different magnitudes for 
defining an event class would be similar, though as the magnitude becomes either non-
extreme or very extreme, quantitative results are expected to differ. For example, using 
structurally different methods, different regions, and different seasonal temperature 
thresholds, Christidis et al. (2014) and Sun et al. (2014) develop qualitatively similar 
estimates of the FAR of an extremely warm summer in China. 

 
 

Fraction of Attributable Risk Versus Risk Ratio 
 

Another aspect of framing concerns how the difference between the factual 
probability p1 and the counterfactual probability p0 (that is, the probability of the same 
event in a world that is identical but for the human influence on climate) is expressed. 
One choice is to express it as the so-called Fraction of Attributable Risk, FAR = (p1-
p0)/p1. The limitations of FAR are well recognized in other fields (e.g., see the World 
Health Organization statement concerning the equivalent metric used in attributing causes 
of disease risk9). One difficulty in interpretation of the FAR is its tendency to saturate at 
values near one for very rare events. (For very rare events, that is, events for which the 
estimated p0 is very close to zero, even small increments in the estimated likelihood p1 of 
the event when considering the effects of human influence lead to a FAR close to 1, with 
little discrimination between smaller and larger increments in p1 relative to p0.) It is also 
not designed for describing cases where the likelihood decreases, which can be the case 
with climate change (e.g., of cold extremes, which in some regions have become 
substantially less frequent, see, e.g., Cattiaux et al., 2010, and assessment in Bindoff et 
al., 2013). Hannart et al. (2015b) show that the probability of necessary causation is the 
maximum of 0 and the calculated FAR, and will therefore be zero in cases of decreasing 
likelihood. Hence aggregation of attribution results using this metric would provide a 
biased overview of human influences on extremes.  

Another important limitation occurs when events have more than one causal 
factor, as will generally be the case for extreme events, as discussed above. For example, 
one can easily imagine an extreme event that was affected both by anthropogenic factors 
and a particular SST anomaly pattern (such as ENSO) such that both factors cause an 
increase in the probability of the event, but that neither factor on its own is sufficient to 
make its frequency exceed a certain threshold. (Treating the factors separately assumes 
that the particular SST anomaly pattern is unrelated to climate change, an assumption that 
may or may not be justified.) If p0 is sufficiently small, then the FAR could be close to 
one for both causal factors. In an event attribution study of such an event, if only 
anthropogenic factors were considered, then a FAR near one could easily be interpreted 
to mean that anthropogenic factors are fully responsible for the event even when there are 
other causes. Rothman (2012) points out that the sum of FAR values across multiple 

                                                      
9 See http://www.who.int/healthinfo/global_burden_disease/metrics_paf/en/. 
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causes is not constrained to sum to one. Failure to appreciate this feature of the FAR can 
lead to apparently conflicting viewpoints concerning a specific event.  

Another potential weakness of the FAR is that the strength of necessary causation 
may be confused with the strength of the statistical evidence. For example, as a 
probabilistic extension of necessary causality, a FAR of 0.8 could be interpreted as there 
being 80% likelihood that anthropogenic forcings were a necessary cause of the event. 
However, in analyses using statistics, “likely” is generally used to refer to the strength of 
the statistical evidence. To give a concrete example, one could have little statistical 
certainty for an estimated FAR of 0.8, with a broad confidence interval of (0.1, 0.95) that 
indicates considerable ignorance about the true FAR. However, a reader might be 
inclined to believe that one is confident of the result if the focus is solely on the single 
value 0.8. Alternatively, one could have high statistical certainty in a small FAR, e.g., a 
confidence interval of (0.05, 0.15) around an estimated FAR of 0.1, indicating little 
uncertainty about the true FAR. The difficulty lies in the fact that event attribution studies 
estimate a probability, so the discussion of likelihood may pertain to the magnitude of the 
estimated probability or to the uncertainty about that probability. 

An alternative way of comparing probabilities is the risk ratio, RR = p1/p0. The 
FAR and the RR are mathematically equivalent—there is a one-to-one mapping between 
the two quantities—but the RR directly frames the result in terms of the relative 
probabilities under the two scenarios and is analogous to how epidemiological results are 
presented to the public. For example, a member of the public is apt to be familiar with a 
statement such as “Smoking increases the probability of lung cancer by a factor of X.” 
Although the RR does not have the same causal interpretation as the FAR (Hannart et al., 
2015b), that may not be disadvantageous if, as suggested earlier, the probabilistic causal 
interpretation of individual extreme events (as opposed to collections of events) is 
inappropriate in the case of climate extremes. Furthermore, a probabilistic analysis done 
using model output can always be framed as reporting a ratio of probabilities explicitly as 
estimated based on the model such that this dependence on model quality is very clear. In 
contrast, a causal statement about a single real-world event is a much stronger statement 
directly about the real world, and the dependence on the model to estimate the causal 
quantity may not be as easily communicated and is easily overlooked.  

 
 

The Null Hypothesis 
 

Estimating the unconditional probabilities of very rare events is extremely 
challenging because of observational and model limitations, and it is difficult to quantify 
the uncertainties in the calculations. In addition, it becomes more difficult to discern 
human influence at smaller spatio-temporal scales (Angelil et al., 2014; Bindoff et al., 
2013; Fischer et al., 2013) because analysis on these scales offers less opportunity to 
reduce the magnitude of natural variability through spatial and temporal averaging or 
other techniques. Although it is perfectly reasonable (and even advisable; Nicholls, 2001) 
to report an estimated magnitude of effect with an uncertainty interval that includes zero 
(i.e., no effect), there is a tendency in climate science to regard such results as null results 
of there being no effect. However, that interpretation is incorrect: Failure to reject the null 
hypothesis of no effect should not be regarded as evidence in favor of there being no 
effect. An inability to rule out there being no effect (i.e., lack of statistical significance) 
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does not necessarily mean that the effect is small; it may just mean that the uncertainties 
are large. Therefore, it could be misleading to report a result of no detectable effect of 
climate change as no effect of climate change. To avoid misunderstanding, it is always 
advisable to focus on effect size and report confidence intervals (or Bayesian analogues) 
rather than focusing on statistical significance (Nicholls, 2001). 

 
 

CONDITIONAL ATTRIBUTION 
 

Rather than attempting to answer questions about changes in probability or 
intensity considering only the influence of external forcing, one may attempt to answer 
these questions after limiting or constraining the state of one or more slowly varying parts 
of the climate system. This “conditional attribution” approach has been used in many 
recent studies (Chapter 3) that investigate the role of external forcing conditional upon 
the prevailing pattern of SST anomalies. The reasoning is often that the SST anomaly 
structure likely had an influence on the atmospheric circulation that prevailed during the 
event, and that the effect of external forcing can be more clearly assessed by controlling 
for such internal influences.  

A very similar approach involves conditioning on the state of the large-scale 
atmospheric circulation (Cattiaux et al., 2010; Yiou et al., 2007). While to date this has 
mainly been applied to observational analysis (Chapter 3), it could in principle be applied 
to a climate model through some kind of nudging.10 For example, specifying the state of 
the stratosphere seems sufficient to constrain the winter-mean North Atlantic Oscillation 
in climate models (Douville, 2009), and spectral nudging of winds (leaving the 
thermodynamic quantities free to respond to forcing) is an established method in regional 
climate modeling (von Storch et al., 2000; Waldron et al., 1996). One could also imagine 
conditioning on the state of the tropical atmosphere (thereby overcoming potential model 
errors in the local response to tropical SSTs), or anomalous Arctic sea-ice extent, or other 
such factors. In short, a logical extension of conditioning on the prevailing pattern of SST 
anomalies is to condition on various aspects of the large-scale circulation or the 
atmosphere’s lower boundary conditions (sea-ice, snow cover, soil moisture, etc.) that are 
known to be important in altering the likelihood of extreme events. 

One can go even further and condition on the specific weather situation (Chapter 
3), asking how large-scale, long-term changes in thermodynamic quantities of the 
atmosphere such as temperature or humidity—which are more directly attributable to 
greenhouse gas increases than is any specific weather event (e.g., Bindoff et al., 2013)—
may have changed the severity of an event (Trenberth et al., 2015). For example, given 
the landfall of a hurricane at a certain point, how might its intensity have changed 
because of sea surface temperature or atmospheric humidity anomalies along its path, and 
to what extent might those anomalies (defined relative to long-term historical averages) 
be attributable to human influence? How was the coastal flooding the storm induced 
increased by long-term sea level rise? How were rainfall amount and intensity and 
                                                      
10 A well-known scientific technique in which observations are used to guide a dynamic model, such as a climate or 
weather model. Nudging (Lorenc et al., 1991) is an example of a type of data assimilation, which refers to a broad class 
of methods that are used to introduce observations into dynamic models. Improvement in data assimilation techniques 
has been a key factor in the steady improvement of weather forecast skill that has been achieved over the past three 
decades. 
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subsequent inland flooding affected by the warmer, moister atmosphere? These could be 
useful questions for local authorities planning future resilience, who use past extremes as 
benchmarks. Although the attribution question is now framed in a deterministic 
manner—uncertainties in the calculations need to be estimated, but that is a different 
issue (see Uncertainty Quantification in Chapter 3)—this approach can be given a 
probabilistic interpretation if one adopts a “nowcasting” perspective: Given the state of 
the atmosphere as estimated from the meteorological observing system, what is the 
probability distribution of specific weather features such as intense rainfall in a particular 
catchment? However, the probability distribution is certainly narrower than would result 
when conditioning on a large-scale circulation state or SST anomaly (see Shepherd, 
2016).  
 
 

Probabilistic Formulation 
 

The trade-off involved in conditioning is that it improves the signal-to-noise ratio 
of the anthropogenic influence while providing a more realistic simulation of the event, 
but a full estimate of the change in likelihood of the event would require an explicit 
estimate of the change in the probability or intensity of the anomalous climatic or weather 
state upon which the inference is conditioned (see below). Such a change could either 
increase or decrease the conditional anthropogenic effect. (Strictly speaking, it may also 
require an estimate of the change in probability when the conditional state is absent, but 
this would not be relevant if the conditional state was necessary for the event to occur 
[Shepherd, 2016].) Note that this issue applies as much to conditioning on an SST pattern 
as it does to conditioning on a specific weather situation. Whether it is necessary to make 
the additional effort to estimate the change in probability of the climatic or weather state 
would be a matter for the user of the information to determine (Otto et al., 2015b). 
Trenberth et al. (2015) argue that for extreme weather events that cannot be adequately 
simulated in global models, it is the only credible approach. Even for large-scale 
circulation patterns, if anthropogenic changes in their likelihood did matter, then one 
would need to assess one’s confidence in the simulated changes. This would seem to be 
extremely challenging, given the low confidence in these aspects of climate change 
compared with thermodynamic aspects (Bindoff et al., 2013; Shepherd, 2014). 

When considering the probability of an event, use of the RR rather than the FAR 
would allow one to represent conditional analyses in their broader context. For a simple 
example, consider a conditional analysis of an event under El Niño conditions (e.g., 
Zhang et al., 2010). The conditional RR (see equation 2.1) for the probability of the 
event, ܧ, conditioning on the El Niño conditions, denoted N,	is 

 

 ௙ܲሺܧ ∣ ܰሻ
௖ܲሺܧ ∣ ܰሻ (2.1)

 
where Pf is the probability under the factual world (i.e., the currently observable world as 
it exists in the context of climate change) and Pc is the probability under the 
counterfactual world without anthropogenic influence. If we now want to add information 
about how forcings affect El Niño conditions (see equation 2.2), we can consider 
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 ௙ܲሺܧ ∣ ܰሻ
௖ܲሺܧ ∣ ܰሻ ൈ

௙ܲሺܰሻ
௖ܲሺܰሻ

ൌ ௙ܲሺܧ, ܰሻ
௖ܲሺܧ, ܰሻ

 (2.2)

 
to get an unconditional RR concerning the joint occurrence of the event and El Niño in 
the factual and counterfactual worlds. This multiplication of risk ratios is not possible if 
one uses the FAR. Note that the product above is now the RR for an altered event 
definition that includes the condition of the system and the meteorological outcome (such 
as heavy precipitation), as opposed to either an unconditional RR that considers the 
meteorological outcome under all possible states or a conditional RR that considers the 
meteorological outcome under a specified climatic state. This is analogous to what was 
done in Figure 2.1, where the anticyclonic circulation associated with a high pressure 
system was part of the definition of the heat wave, and is often a sensible choice if the 
extreme can only occur under unusual dynamic conditions. If there is little information 
about the risk ratio for the dynamics, it may be sensible to concentrate on the conditional 
risk ratio, treating the ratio for the dynamics as one. This is the approach taken by 
Diffenbaugh et al. (2015) in their analysis of the recent California drought, where 
precipitation is controlled by storm-track dynamics, which are highly variable and 
uncertain, but the persistent warming is leading to increasing risk of drought conditions. 
Cattiaux et al. (2010) also use such a factorization of the RR via conditioning to argue 
that cold extremes are becoming less likely despite the occurrence of the cold European 
winter of 2010, although their results also suggest that the probability of the circulation 
situation itself has not changed. 

As discussed above, one can also consider multiple causes of an event, such as 
anthropogenic influence and El Niño, such that we have a RR for each, 

 

 
௉೑ሺாሻ
௉೎ሺாሻ

 and 
௉೑ሺா∣ேሻ
௉೑ሺா∣ே೎ሻ

  
 
respectively, where Nc indicates non-El Niño conditions. However these RR values 
cannot be used together in a quantitative fashion because different variables are being 
conditioned on. 
 
 

USE OF BACKGROUND KNOWLEDGE ABOUT CLIMATE CHANGE 
 

In conditional attribution, background knowledge about climate change is 
explicitly included through the choice of the counterfactual conditions, e.g., the 
counterfactual SSTs. However background knowledge is also often included in 
unconditional attribution, by couching the event attribution within the broader context of 
climate change science. There is a firmer basis for an event attribution result that 
identifies a human influence if one can demonstrate that there has been human influence 
on a related aspect of the climate—that is, if there are detection and attribution results 
that demonstrate that human influence has altered the mean state in some way in the 
region where the event occurred. That is almost certain to be the case for temperature-
related events, but the detection and attribution literature on precipitation generally deals 
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with precipitation change on very large scales, as the signal of precipitation change is 
emerging more slowly due to high climate variability (e.g., Zhang et al., 2010; see 
Bindoff et al., 2013; Collins et al., 2013; Kirtman et al., 2013). 

In general, there is a higher degree of confidence concerning the understanding of 
purely thermodynamic aspects of climate change associated with warming and increased 
moisture-holding capacity of the atmosphere, compared with dynamic aspects of climate 
change (Shepherd, 2014). The latter include both large-scale circulation patterns, which 
can modulate temperature and precipitation extremes, and storms. Thus, in any event 
attribution study, it is important to distinguish between the purely thermodynamic and the 
dynamic drivers. If the response of the dynamic drivers to climate change is a significant 
component of the anthropogenic influence, then the plausibility of that response needs to 
be established. Confident attribution is not possible in the absence of adequate 
understanding (see further discussion in Chapter 4 and Figure 4.6).  

 
 

OTHER FACTORS AFFECTING IMPACTS OF EXTREME EVENTS 
 

Attribution of extreme events is primarily anchored in discussions about 
anthropogenic climate change, yet many extreme events are also affected by other types 
of anthropogenic processes, which raise additional framing issues in terms of event 
impacts. Human-related activity not directly linked to anthropogenic climate change, can 
worsen an extreme event. The urban heat island effect is an example of such an effect of 
human activity on temperature extremes. Heat wave characteristics such as duration and 
magnitude may be increasing in large U.S. cities because of the combination of global 
warming and urban heat (Habeeb et al., 2015; Zhou and Shepherd, 2010). 

Beyond heat waves, increases in temperature can also lead to other kinds of 
extreme events, including drought and wildfire. The occurrence of these events is closely 
related to the drying effect associated with higher temperatures when evapotranspiration 
is moisture-limited, and this depends strongly on the nature of the land cover 
(Seneviratne et al., 2016).  

An important effect of intense precipitation is related to flooding of the land 
surface, which is affected by a wide range of factors other than changes in the climate. 
For example, the intensity of flooding is affected by a range of human land use decisions, 
including urbanization and river channelization efforts (Melillo et al., 2014). In 
particular, precipitation is falling onto more impervious surfaces. Du et al. (2015) 
confirm that an increase in impervious surfaces associated with rapid urbanization has led 
to greater peak discharge and flood volume in parts of China over the past 30 years. 
Shepherd et al. (2011) also note increased flow rates of floodwater in cities due to 
impervious surfaces. In some cases, upstream flood control efforts actually increase 
damages downstream in the same watershed. Further, the “extreme” nature of flooding is 
often defined in human terms, since the impact of flood events is often calculated in 
dollars. These costs are directly affected by the value of infrastructure that has been 
constructed in the floodplain (Downton et al., 2005; Downton and Pielke, 2005).  

There are multiple ways that increasing temperatures and changes in precipitation 
are related to evaporation from the land surface and the water demand of plants 
(transpiration). In fact, feedbacks from the land surface and land management practices 
have been shown to affect local and regional drought events. A classic example is the so-
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part because of the high value of coastal investments, much of it knowingly constructed 
in areas of high vulnerability. The “extreme” nature of coastal flooding is therefore a 
product of a combination of different anthropogenic impacts some of which have little to 
do with climate-mediated effects like sea level rise.  

Human-related activity not directly linked to anthropogenic climate change (such 
as urban impervious surfaces, land cover changes, and dredging) can worsen an extreme 
event. Therefore, attribution studies should clearly distinguish such climate factors from 
the effects of climate change and the results should be framed accordingly. Apart from 
more accurately isolating the anthropogenic climate change effect, this also has the 
benefit of identifying risk factors that could potentially be mitigated at the local level.  

 
 

Selection Bias and Systematic Event Attribution 
 

Most of the currently available literature on event attribution focuses on events 
selected by researchers. In recent years, collections of such studies have been published 
in the BAMS yearly supplements (e.g., Herring, 2014; Herring et al., 2015b; Peterson et 
al., 2012, 2013b). There is a desire to summarize anthropogenic influence across all of 
the events and ask whether it is causing a change in extreme events generally. This has 
led to the presentation of a summary of the BAMS results in tabular form, from which 
one might calculate the proportion of events for which anthropogenic influence is found. 
However, as the editors acknowledge, the studies presented in the supplements are not a 
representative sample of any well-defined population, and hence summarizing across the 
studies does not provide direct information about changes in extreme events collectively.  

Scientifically, a “bias” refers to an unintentional but systematic error in a 
quantitative estimate arising from the particular way in which the estimate was made, and 
it is to be distinguished from random errors due to insufficient data or an intentional 
selection of cases to achieve a pre-determined result. In statistics, “selection bias” refers 
specifically to potential systematic errors in probabilistic inference arising when the data 
that are collected or analyzed are not representative of the larger population about which 
one wants information. In the context of event attribution, selection bias can arise when 
the studies are based on events that actually occurred and that are chosen for study by the 
researcher. Selection bias does not affect the validity of any particular result, but it is 
relevant for meta-analyses of collections of results. 

Potential biases in attribution results are of concern for collective assessment of 
anthropogenic influence on extreme events, but may not be relevant if the focus is on 
climatological understanding of events or on implications of attribution analyses for 
adaptation and planning in specific contexts. Some of the issues discussed below also 
arise in meta-analysis in the medical literature, in which the goal is to improve statistical 
power by analyzing results from multiple studies that assess the same scientific question. 

There are several potential forms of selection bias, with shorthand labels for each 
in parentheses: 

 
1. bias from studying only events that occur (occurrence bias), 
2. bias from choosing to study events for which the researcher suspects either 

anthropogenic influence in general or an increase in likelihood from 
anthropogenic influence specifically (choice bias), 
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3. bias from publishing studies about events for which the study finds either 
anthropogenic influence in general or an increase in likelihood from 
anthropogenic influence specifically (publication bias), and 

4. bias in choosing regions or event definitions of interest to the analyst (type 
bias). 

 
Occurrence bias is more subtle and likely more easily overlooked than the other 

types of selection bias listed above. The simplest example of occurrence bias is an event 
class for which ݌ଵ is zero or vanishingly small, while ݌଴ is rather larger. Such events will 
never occur in the current world and never be analyzed. As a result, few publications in 
the literature exist that find event classes that are much less likely in the factual world. 

The influence of occurrence bias can also occur in less drastic settings. 
Occurrence bias could result in a scientific literature that suggests that extreme events are 
generally becoming more common because of anthropogenic influence. Suppose there 
are 100 event classes (across regions and types of events) that can occur, and we consider 
the probability of occurrence over the course of a year. Suppose that for 50% of those 
event classes ݌ଵ ൌ 0.04 and ݌଴ ൌ 0.02 and that for 50% of the classes, the reverse is 
true: ݌ଵ ൌ 0.02 and ݌଴ ൌ 0.04. An example of a generally decreasing likelihood of an 
event class under climate change is cold events. Collectively, the probabilities across all 
event classes are equal under both scenarios. Now consider the events that occur in a 
given year. On average, there will be 6 events, 4 representing classes that are more 
frequent under the factual world and 2 representing classes that are more frequent under 
the counterfactual world. If a study of each event is done, and assuming the study can 
determine the RR or FAR without statistical uncertainty, 4 of the 6 studies will show that 
the event is more likely under the factual world and 2 of the 6 less likely under the factual 
world. A general conclusion across the 6 studies would be that extreme events are more 
likely because of anthropogenic influence. A more realistic scenario is that because of 
statistical uncertainty, no firm conclusions can be drawn in some of the studies. However, 
for those studies in which anthropogenic influence is found, a similar imbalance would 
persist, with more studies showing an increase in extreme events in the factual world than 
a decrease.  

The remaining three types of bias are more straightforward to understand. Choice 
bias could arise because scientists are actively interested in finding events that are related 
to climate change or simply to subtle factors in the choice of what events to study. 
Publication bias is a well-known problem that distorts results obtained from doing 
collective analysis across published studies. Finally, a clear example of type bias is 
simply the geographic bias where attribution studies are done, focusing more attention on 
understanding extreme events in areas such as North America and Europe, although this 
is beginning to change. Due to these biases, a meta-analysis of event attribution results 
based on tabulating results from an ad hoc collection of studies could be severely 
misleading.  

The potential for selection bias does not contradict that there can be good reasons 
to examine particular events if one is interested in those events themselves, such as for 
reasons of public curiosity, liability, or as historical benchmarks for resilience. 
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GUIDANCE FOR FRAMING EVENT ATTRIBUTION QUESTIONS 
 

The notion that an event may not have been affected by climate change can be 
difficult to justify in a climate system in which everything is connected. In any extreme 
event, multiple contributing factors are involved (both human-induced and natural). 
Therefore, results of event attribution studies should not be framed as the cause being 
either anthropogenic or natural, as frequently it will be a combination of both. 

Statements about attribution are sensitive to the way the questions are posed and 
the context within which they are posed. Results of event attribution studies with respect 
to the extent of anthropogenic influence can differ depending on how the results are 
framed. Therefore, in any attribution analysis, one should be explicit about the framing 
choices, and explain why those particular choices were made. 
Framing choices include: 
 

x how single events are interpreted; 
x the type of conditioning involved, if any; 
x whether changes in frequency or in magnitude of an event are assessed;  
x how the event is defined; 
x how the factual and counterfactual probabilities are compared (e.g., FAR versus 

RR); and 
x whether the results are cast as a null hypothesis significance test. 

 
The RR has many advantages over the FAR and is less prone to misinterpretation. 

The RR directly frames the result in terms of the relative probabilities under a world with 
anthropogenic climate change and a world without. The FAR, by contrast, does not 
represent a share of causation because for a given event, multiple factors can have FARs 
that are close to one. Further framing issues arise for impacts of extreme events, because 
other anthropogenic factors (e.g., land use) apart from climate change often significantly 
affect the magnitude of impacts.  

It is also useful to present results in more than one way (e.g., magnitude and 
frequency), so that users understand there are different ways of looking at the event. 
Relevant quantities (probabilities or magnitudes) should be estimated, with 
accompanying uncertainty intervals, to help users understand the strength of the 
evidence. This approach is more useful and less prone to misinterpretation than null 
hypothesis significance testing. Furthermore, results should be presented in terms of the 
overall understanding of the climate system, as this is important prior information that 
affects the interpretation of the result.  

An essential part of the framing involves whether the attribution is conditioned 
(e.g., on the current climatic or specific weather state), because that affects the 
quantitative estimates of the extent of anthropogenic influence and more closely relates 
the study to the factors driving the particular event. An unconditional attribution analysis 
of a joint probability can be considered a product of conditional attribution analyses (see 
equation 2.3), i.e., 

 

 ௙ܲሺܧ, ܰሻ
௖ܲሺܧ, ܰሻ

ൌ ௙ܲሺܧ ∣ ܰሻ
௖ܲሺܧ ∣ ܰሻ ൈ

௙ܲሺܰሻ
௖ܲሺܰሻ

 (2.3)
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where E is the event, N is a conditioning factor (such as SST anomaly pattern), Pf is the 
probability under the factual world (i.e., the currently observable world as it exists in the 
context of climate change) and Pc is the probability under the counterfactual world that 
might have been without anthropogenic influence. If the response of N to climate change 
is highly uncertain, then the last factor might be assumed to be one in which case the 
unconditional and conditional probabilities are equal. 

Various sources of selection bias are almost inevitable in event attribution applied 
to individual events. Such selection biases interfere with the ability to draw general 
conclusions about anthropogenic influence on extreme events collectively.  

Overall, it is useful to perform event attribution with all factors explicitly assessed 
and discussed: thermodynamic and dynamic aspects of anthropogenic climate change, 
non-climate anthropogenic factors, and natural variability. This helps the user understand 
the uncertainties in the calculation, the resilience to current climate variability, and other 
anthropogenic factors that might be relevant. 
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Chapter 3: Methods of Event Attribution 
 

The findings of event attribution studies are not only influenced by how questions 
about a human or natural influence on an event are asked, but also by the methods used to 
answer the questions. A natural first step in event attribution is the study of observations, 
for example, in order to determine the rarity of the event in historical context, or to study 
the circulation and other aspects of the state of the climate that prevailed when the event 
occurred. While observations are useful, attribution studies generally use climate models, 
which incorporate knowledge of the physics of the climate system, to quantify how 
human or natural influences have changed the frequency or intensity of events like the 
observed event relative to a baseline forcing scenario. Climate and other numerical 
models are useful because they can be used to investigate responses to controlled forcing 
(see conditioning in the previous chapter) and also to generate a larger sample size than is 
possible from observations—for example, “control” runs of 1,000 years with no changes 
in greenhouse gas forcing. The various options for using observations and models for 
event attribution are discussed in subsequent sections.  

 
 

METHODS BASED ON OBSERVATIONS 
 

The Role of Observations 
 

Observations are used to a varying extent in all approaches to event attribution. 
Many studies determine the rarity of an observed event in the context of long-term 
historical data, often using statistical methods. For example, Swain et al. (2014) fit a 
statistical distribution to Northeastern Pacific circulation anomalies related to the recent 
California drought in order to determine that the very persistent ridge type of circulation 
pattern11 that sustained the drought is extremely rare in the historical context (see Figure 
3.1). Also, many studies begin by setting out the dynamic context from observations as 
an analysis of the combination of factors and events that contributed to the extreme event, 
and often later as a benchmark for model simulations of similar events (e.g., Hoerling et 
al., 2013; Pall et al., 2011).  

A requirement for the attribution of a change in probability of events to human (or 
natural) influence is detection of a change in either observations of the event analyzed, or 
appropriately related climate variables (see Hegerl et al., 2010). In practice, statistically-
confident detection of a change in the frequency or intensity of the event type itself is 
only possible for a subset of event types (the most common example being temperature 
extremes) because it takes a long observational record and well observed statistics of 
extremes to be able to do so (see, e.g., King et al., 2015, for Central England 
Temperature). Trend detection is often challenged by the limitations of the observational 
record (both quality and record length). It is also complicated by unforced natural 
variability that can cause apparent trends that may last decades.  

 
                                                      
11 An elongated area of relatively high atmospheric pressure; the opposite of trough. 
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have known relationships to large-scale climate parameters whose relationships to 
climate are somewhat better understood than those of the events themselves.  

Event attribution is most reliable when the link to an attributed long-term change 
is made explicitly and is fairly tightly connected to the event. The attribution of long-term 
change (e.g., as assessed in Hegerl et al. [2007] and Bindoff et al. [2013]), necessarily 
involves both observations and models. The link between long-term change and event 
frequency or intensity may, in some cases, be demonstrated through the use of climate 
models, but in other instances, will rely on physical reasoning or conceptual models (e.g., 
see Hegerl and Zwiers, 2011). The establishment of a strong link may not be possible in 
all cases, with the result that the link to the observed attributed changes may be fairly 
indirect in some studies. In principle, the changing probability of a type of event could be 
evaluated based on climate model simulations in the absence of any trend detection in 
historical observations, but in most cases confidence would be lower than for attribution 
of changes that have actually been observed. Also, any positive result from such studies 
is likely to be challenged, as models are not perfect replications of reality. 

 
 

Statistical Analysis of Observations 
 

Statistical analysis of observations can be used to quantify the changing 
probability of specific events even in the absence of the use of climate models. Such 
approaches are attractive, because results do not hinge on the reliability of a particular 
climate model, nor its ability to simulate the event in question. They do, however, hinge 
on the availability of long-term, high quality data. Also, an observation-based analysis 
requires a statistical analysis that quantifies changes in extremes over time, for example, 
the kind of changes that might be expected from greenhouse gas or aerosol forcing. Such 
a statistical model for human influence in particular needs to be strongly supported by 
understanding of the causes of related changes in the climate system (Hegerl et al., 2010). 
If this is the case, such studies can be complementary to attribution studies based on 
climate models. 
 
 
Statistical Analysis of Observed Change in Events 
 

This type of approach uses historical observations to characterize the distribution 
of a type of event that is similar to a particular observed event (generally excluding the 
particular event itself to avoid some aspects of selection bias; see Chapter 2). In order to 
address the human influence, it identifies a trend or covariate in observed data that may 
be related to human influences. This approach is only justifiable if there is supporting 
evidence that the covariate indeed has a causal link to human influences. Otherwise, 
trends caused by other factors or natural variability may be aliased, leading to an over (or 
under-) estimate of the human influence.  
 An example of such work is King et al. (2015), who analyze Central England 
annual temperatures (CET) and rely on an earlier paper that attributes at least part of CET 
warming to human influences (Karoly and Stott, 2006). They fit a generalized Pareto  
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distribution12 (GPD) to the warmest 20% of annual temperatures above a time-varying 
threshold that increases linearly with CO2 concentration. This statistical model assumes 
no change in variability in the upper tail of the annual temperature distribution, and also 
assumes that the temperature response to rising CO2 is linear. When available evidence 
points to a strong human contribution to the mean temperature change at that location, as 
in King et al. (2015), this suggests a two-step attribution (Hegerl et al., 2010) of some of 
the change in extremes to the human forcing. The FAR is calculated based on the 
probability of an extreme annual temperature (in particular, exceedance of the second 
highest annual temperature) for the present compared to the probability for early in the 
20th century.  

Similarly, van Oldenborgh et al. (2015) apply a Generalized Extreme Value 
distribution13 (GEV) to seasonal and daily winter minimum temperature from station data 
in De Bilt, Netherlands, and Chicago, United States. The study leaves out the extreme 
event in question (which occurred in 2013/2014 winter in both locations) and allows the 
GEV location parameter to shift with climate change (represented by global mean 
temperature). Such an approach allows comparison of the return time of an extreme event 
between the climate of the 1950s and the present. Results indicate that very cold events 
have become significantly more rare, and very warm events more frequent. Again, results 
hinge on the time evolution of global mean temperature being a good approximation to 
the time evolution (although not magnitude) of the human influence at that location. 

Overall, attribution using statistical analysis of observed time series works best 
for temperature or variables that are closely related to temperature, as global and many 
regional results are available that quantify the human contribution to long-term 
temperature change. For example, regional temperature scales reasonably well with the 
global temperature evolution on longer timescales for many, but by far not all regions 
(see Sutton et al., 2015). Studies that rely on such supporting evidence attributing the 
trend should point this out clearly. It would be preferable if such studies could explicitly 
include uncertainty in the fraction of trend that is due to human influences in the analysis 
as well as additional uncertainty due to the indirect relationship of the variable in 
question to the larger-scale attributed trend. In the example of temperatures in De Bilt, for 
example, the human contribution to global mean temperature is a range, not a single 
value, and uncertainty increases further when going to the regional scale. Any 
anthropogenic trend may be enhanced or reduced by decadal climate variability (Box 
3.1). For example, multidecadal variability can influence regional precipitation patterns 
and cause apparent trends (Dai, 2013), such as found for storminess over Great Britain 
(Alexandersson et al., 2000).  

 
 

Observed Circulation Analogues  
 

A second approach is based on analysis of the synoptic situation of a given event 
and looks for historical analogues with similar circulation states (e.g., Cattiaux et al., 
2010; Yiou et al., 2007) in order to determine how meteorologically similar events have 
changed (e.g., due to the thermodynamic effects of climate change). As such, this 

                                                      
12 A statistical distribution used to model exceedances about a specified threshold level. 
13 A statistical distribution used to model the extremes of blocks of data of fixed lengths, such as a season or a year. 
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approach conditions on a particular synoptic situation (or sequences of situations) 
although studies have also diagnosed the frequency of circulation states in order to 
determine if these may explain or counteract any change in extreme events when 
conditioned (e.g., Cattiaux et al., 2010; see discussion in Chapter 2).  

Cattiaux et al. (2010) analyze the synoptic situation of the winter of 2009/2010 in 
Europe and find that it was less cold than would have been expected based on 
temperatures from days in earlier winters with similar synoptic situations, particularly 
given how extreme some of the daily circulation indices were in the winter of 2009/2010. 
They used several indicators for circulation (e.g., NAO [North Atlantic Oscillation] index 
and blocking frequency) and selected atmospheric flow analogues for a period around 
each winter day of the winter in question from the past 61 years. The composite average 
temperature for these analogues, which were based on prior years, was significantly 
colder than the 2009/2010 winter mean temperature for most stations (see Figure 3.3). 
Subtracting the global warming trend from the 2009/2010 winter temperatures yielded 
similar temperatures to those of the analogues, and no trend was found in synthetic winter 
temperatures derived from the analogue situations, suggesting that the observed trend is 
not explained by changes in circulation. 

The uncertainties in observation-based analyses are considerable, but different 
and complementary to the uncertainties in attribution approaches that rely strongly on 
climate models to estimate the difference between present conditions and those that 
would have occurred without human influences.  

 
 

METHODS BASED ON CLIMATE AND WEATHER MODELS 
 

In nearly all attribution studies of extreme events, climate and weather models are 
an indispensable tool. While the specific type and configuration of the model depends on 
the type of extreme event being studied, most studies use some version of a global 
atmospheric model. Some may also use one or more coupled climate models (e.g., from 
the Coupled Model Intercomparison Project Phase 5 [CMIP5] modeling project) or a 
model that is constructed specifically to represent a particular type of phenomenon, such 
as tropical cyclones. Such models represent important atmospheric processes including 
the transport of heat, moisture, and momentum by winds, the interaction of solar and 
infrared radiation with atmospheric gases and clouds, the exchange of heat and moisture 
between the atmosphere and the land or ocean surface, and many more.  
The advantages of using climate and weather models include the ability to utilize specific 
input conditions (e.g., sea surface temperature, levels of atmospheric CO2 or aerosols) 
and to compare results between simulations using different input conditions, generally for 
the factual (currently observable) world as it exists in the context of climate change, and 
hypothetical counterfactual worlds without climate change, to assess changes in event 
frequency. It is also necessary and useful to repeat the simulation many times, for 
example, by making small random perturbations to the initial conditions, in order to 
generate a larger sample of simulations and thus obtain better estimates of some of the 
uncertainties and sensitivities involved in event attribution.  
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Coupled Climate Models 
 

Many studies use coupled climate models, such as the models that participated in 
CMIP5 (Taylor et al., 2012). Such models incorporate interactive representations of the 
atmosphere, ocean, sea ice, and the land surface and often also include representations of 
the carbon cycle. CMIP5 and similar earlier experiments are coordinated efforts of 
modeling groups around the world to provide simulations with global climate models 
using several scenarios of relevance to extreme event attribution. Some simulations of the 
recent past (typically 1850-2005) use only estimates of natural forcing such as changes in 
solar radiation and volcanic eruptions (CMIP5-NAT). Others are run using only 
anthropogenic forcing (CMIP5-ANT), or only greenhouse gas changes (CMIP5-GHG, as 
distinct from anthropogenic forcing that also includes, for example, changes in sulfate 
aerosol distributions). The most realistic simulations of historic global climate change are 
usually those that include all of the above (CMIP5-ALL). For simulations covering 
periods after 2005, extreme event attribution studies usually draw from one or more of 
the four scenarios of future greenhouse gas concentrations known as Representative 
Concentration Pathways or RCPs (note that differences between scenarios only emerge 
later in the 21st century, so the scenario choice has little influence for the period between 
2006 and the present). Some modeling groups have provided as many as 40 simulations 
of the 21st century. Pre-industrial control simulations, many several hundred years long, 
are sometimes used to define the counterfactual world (e.g., Sun et al., 2014), while in 
other cases CMIP5-NAT simulations are used for this purpose (e.g., King et al., 2015).  

Coupled climate models can be used to assess the changes in the likelihood of 
breaking current regional average monthly or seasonal temperature or rainfall records. 
The chances of breaking an existing record is compared in the simulated current climate 
with the chances in the counterfactual world and used to provide a lookup table of the 
FAR values for whenever a new record is set (Lewis et al., 2014). 

Studies using coupled models would typically be considered unconditional 
attribution studies14 (see Chapter 2) unless the study specifically attempted to control for 
some feature of the state of the climate system. In the CMIP5 models, SSTs from a given 
year do not correspond to those observed in that year. Therefore, studies that condition on 
an observed SST anomaly pattern (conditional attribution;  see Chapter 2 and discussion 
below) do not use CMIP5 outputs. However, they may use the atmospheric components 
of coupled models that participated in CMIP5, or higher-resolution atmospheric models 
that are most closely related to weather prediction models.  

It is also possible to use coupled models for conditional attribution studies, such 
as for El Niño years by selecting specific years that have the same phase of El Niño as 
observed (Lewis and Karoly, 2013). 

CMIP5 is most suitable for studying extremes with large spatial scale (e.g., heat 
waves, droughts, and cold events), though other types of studies have also used CMIP5. 
CMIP5 simulations have two key advantages over atmosphere-only simulations: the 
inclusion of the oceans, and the large number of simulations already available, which can 

                                                      
14 Although they normally include conditioning on natural external forcing of climate, such as volcanic 
activity and variations in solar output: this has not been a significant issue since event attribution was 
proposed simply because we have not seen an explosive volcanic eruption on a scale likely to significantly 
impact the statistics of weather events. However this will of course happen eventually. 
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be used to generate more robust statistics. For example, large multi-model ensembles, on 
the order of 100 simulations or more, have been used for studies detecting human 
influence on the frequency of record high central England temperatures, such as occurred 
in 2014 (King et al., 2015), for study of the California drought (Seager et al., 2015), and 
for studies of the record warm summer in eastern China in 2013 (Sun et al., 2014).  
 
 

Atmosphere-Only Models Using Observed SSTs 
 

A second type of model simulation uses an atmospheric general circulation model 
(GCM) in which the observed historical evolution of SSTs and sea ice extent is specified. 
These are often called “AMIP” runs,15 and are usually coupled to a land model. Specific 
patterns of SSTs and greenhouse gases (or other boundary conditions) can be imposed, 
exerting a degree of conditioning on the results that is not present in CMIP simulations. 
Atmosphere-only model studies are most valuable when the coupling between the ocean 
and atmosphere is primarily one-way, that is, when feedbacks of the atmosphere to the 
ocean can be neglected for the purposes of the phenomenon being studied. The number of 
ensemble members in such studies can vary from a relatively small number of runs for 
analysis of large-scale events (order 10s of runs, e.g., Funk et al., 2013; Wilcox et al., 
2015) to others using large ensembles with 100 or more simulations (e.g., Christidis and 
Stott, 2012). In some cases, atmospheric model ensemble simulations may consist of 
many thousands of model runs (e.g., Otto et al., 2015c; Pall et al., 2011; Schaller et al., 
2016). Such studies are often facilitated by the climateprediction.net/weather@home 
infrastructure (see Box 3.4). Two common features of studies that use very large 
ensembles is that they are often restricted to a single model, and they use a large number 
of short simulations (e.g., less than a year to perhaps a decade) in contrast to a smaller 
number of multi-decade or longer simulations.  

Three types of perturbations are relevant for generating ensemble members: initial 
condition, model physics, and SSTs. Initial condition ensembles (the model is run with a 
variety of slightly different initial conditions at the start) are used in almost all model-
based event attribution studies (including unconditional studies using ensembles such as 
CMIP5) to provide the replication needed to quantify the frequency of events or 
distribution of event magnitudes. One approach to producing such ensembles is to perturb 
initial condition using next-day differences from a separate simulation (e.g., see Massey 
et al., 2014).  

Perturbed physics experiments are not generally used in attribution studies—
primarily because with a prescribed-SST design, perturbations that do not significantly 
degrade the model climatology have also been found to have relatively little impact on 
variables of interest—but could be. The opportunity for this kind of perturbation arises 
because processes in the models that occur at scales smaller than the resolved scale are 
normally approximated using information from resolved-scale fields (e.g., temperature, 
geopotential, winds). These approximations involve adjustable parameters with values 
determined from empirical studies and are usually fixed for all model runs. Atmospheric 
convection, which occurs on spatial scales of a few kilometers, is an example of the type 

                                                      
15 Originally referring to the Atmospheric Model Intercomparison Project, a specific experiment using observed SSTs 
from 1979 to 1993 (Gates, 1992) 
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of process that must be parameterized in models that have resolutions that are too coarse 
to allow convection to be well-simulated on the explicit model grid. In perturbed physics 
experiments, these parameters are varied across a range of plausible values. Simulations 
using particular parameter combinations are evaluated both to determine the realism of 
the simulated climate compared with observed (20th century) climate, and to span a range 
of uncertainty in future climate or climate parameters, such as the climate sensitivity 
(Stainforth et al., 2005).  

For attribution experiments, SST perturbations of the counterfactual world are 
sometimes used as well. Instead of simply using control simulations as in CMIP5, 
experiments using fixed SSTs include “counterfactual” SSTs in which an estimate of the 
anthropogenic contribution to modern SST patterns is subtracted from the observed SSTs 
(e.g., Pall et al., 2011). Perturbations to the SST patterns are done to assess sensitivity or 
quantify uncertainty in event attribution results to the choice of the counterfactual SST. 
Different climate models generate different patterns of SST changes in response to 
human influences, for example, because they exhibit different aerosol forcing or cloud 
feedbacks to warming. The choice of different SST patterns to be removed matters in 
practice, and this uncertainty is discussed below (e.g., see Figure 3.4). Studies using 
multiple estimates of counterfactual SSTs have employed both global atmospheric 
models (e.g., Feser et al., 2015a; Massey et al., 2014; Pall et al., 2011; Rupp et al., 2012) 
and a regional climate model (discussed further in the next subsection) that is nested 
within a global atmospheric model (e.g., Bergaoui et al., 2015; Black et al., 2015; King et 
al., 2015).  

 
 

Studies Conditioning on Seasonal Forecasts 
 

On the seasonal timescale, Hoerling et al. (2013), studying the 2011 Texas 
drought, use the NOAA Climate Forecast System (CFS) initialized at 6-hourly intervals 
starting 1 June 2011, with CO2 concentrations set at either 1988 or modern values, for a 
total of 240 runs and also additional ensembles of 15 and 24 runs started on 1 June of 
each summer between 1981 and 2011. Hence they explore the impact of the increase in 
CO2 concentrations since 1988 conditioned on that component of climate variability that 
was predictable on a seasonal timescale. The Weather@Home contribution to the near-
real-time attribution studies in the World Weather Attribution project also uses an 
ensemble of seasonal forecast SSTs (from the UK Met Office GLOSEA5 forecast 
system) to define present-day conditions prior to subtracting a range of signals of 
anthropogenic warming. In both of these cases, the definition of “present day conditions” 
in the conditioning of attribution statements is restricted to the component of present-day 
weather that is predictable on a seasonal timescale. In many cases, this may be more 
consistent with the expectations of stakeholders interpreting attribution statements than 
conditioning on SSTs precisely as observed.  

 
 

Downscaling 
 

Some types of extreme events are not well simulated by global models, either 
coupled or atmosphere-only, often because these models are not run at sufficiently high 
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spatial resolution. Additional models, embedded within a global model to provide large-
scale environmental conditions, may be used to represent these events better. Since these 
models are meant to represent finer scales than the global models in which they are 
embedded, such methods can be collectively termed “downscaling.” One example is a 
high-resolution regional atmospheric model that runs on a subset of the global domain 
and is forced at the lateral boundaries by the global model (e.g., Marthews et al., 2015). 
Other downscaling models may be designed especially to capture a specific event type. 
For example, Emanuel (2006) embeds an efficient, idealized tropical cyclone model 
within large-scale fields obtained from global models. Other downscaling methods are 
statistical, not involving any dynamic model at all. Examples include environmental 
indices used to predict the genesis of tropical cyclones (Emanuel and Nolan, 2004; 
Tippett et al., 2011) or of tornadoes (Brooks et al., 2003; Diffenbaugh et al., 2013; 
Tippett et al., 2012; Trapp et al., 2007). These indices are derived from statistical 
analysis, using observations, of spatio-temporal relationships between large-scale 
variables and the extreme event in question. As with any other kind of model, it is 
important to test such specialized models — independently, and in combination with the 
global climate model as used in any attribution study — in order to determine model 
adequacy. 
 

 
Highly Conditioned Simulations 

 
The studies just discussed constrain the state by specifying SST anomaly patterns 

(or the component thereof that is predictable on a seasonal timescale) for factual and 
counterfactual world simulations. As discussed in Chapter 2, some approaches provide 
much stronger constraints on the current state of the climate system than conditioning on 
SST patterns, corresponding to different framings of the attribution question. Such highly 
conditioned studies, which are fewer and less well developed than the types discussed 
above, constrain the initial conditions closely to observed, and perform forecast-type 
simulations.  

Some of these highly conditioned studies use ensembles of forecast simulations in 
order to improve estimates of uncertainty. Two types of forecasts have been undertaken: 
weather-type forecasts, over time periods of days, and seasonal forecasts over a period of 
a few months. In the first case, the model must be initialized within the predictability 
window, that is, only a few days in advance of the event, so that the model may actually 
simulate the development of the event from the beginning. For example, Meredith et al. 
(2015), who studied the floods that affected the Black Sea town of Krymsk in July, 2012, 
use a triply nested configuration of the Weather Research and Forecasting model, 
initialized at 6-hourly intervals over a 30-hour period (hence 6 runs) for two different 
SST forcings, for a total of 12 runs. Another recent example is Lackmann (2015), who 
use a nested modelling approach to study Hurricane Sandy.  

Closely related to the forecasting approach, Hannart et al. (2015a) recently 
proposed using a data assimilation system for event attribution. The idea is to define 
events in a highly specific fashion such that the probability of the event is very small in 
both the factual and counterfactual worlds, which implies that the probability of sufficient 
causation (Hannart et al., 2015b) is also very small. Such definitions are possible for 
variables such as temperature, precipitation, and the central pressure of storm systems 
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that are measured on continuous scales, and where differentiation between minutely 
different values is at least possible, in principle. For example, the probability of an event 
defined in terms of maximum temperature that lies within a narrow range of an observed 
value, ௠ܶ௔௫,௢௕௦ െ ϵ	 ൏ 	 ௠ܶ௔௫ ൏ 	 ௠ܶ௔௫,௢௕௦ ൅ ϵ where ߳	 ൐ 	0, converges to zero as ߳ 
approaches zero for all values of ௠ܶ௔௫,௢௕௦ even though the probably density function 
݂൫ ௠ܶ௔௫,௢௕௦൯ ൐ 0 for all physically plausible values of ௠ܶ௔௫,௢௕௦.

16 Under these conditions 
the FAR, which Hannart et al (2015b) relates to the probability of necessary causation, 
converges to one minus the ratio of probability density functions in the two worlds for the 
variable defining the event. A data assimilation system (such as an Ensemble Kalman 
Filter based system of the type used at many weather forecasting centers) can then be 
used to estimate these probability density functions.   

Development of this idea is currently in its very preliminary stages, but it suggests 
a path towards operational event attribution that exploits current operational weather 
forecasting capabilities. It would, however, be restricted to sharply focused event 
definitions that are based on quantities that are assimilated in numerical weather 
prediction systems. 

 
 

UNCERTAINTIES IN MODEL-BASED STUDIES 
 

Many event attribution methods and analyses rely on estimating event 
probabilities or distributions of event magnitudes from model simulations. As a result, 
confidence in attribution results necessarily depends on the skill of the model in 
simulating the event type under analysis in both of the scenarios. This dependence is 
well-known in the event attribution community (e.g., Christidis et al., 2013b), but 
emphasis on assessing models varies across attribution studies and may be little 
recognized amongst stakeholders, policymakers, and the general public.  

Model quality with regard to event attribution requires careful thought. Christidis 
et al. (2013b) contrast the ability of a model to accurately represent the climatology (i.e., 
the distribution of weather over time) in terms of frequency and climatological features of 
the event of interest with the model’s predictive skill. They argue that robust event 
attribution is possible even when only the climatology is well represented. The quality of 
the model(s) in representing an event or the climatology of an event class is best assessed 
using the factual simulations, since these are expected to correspond most closely to the 
observed climate. However, even then only limited information is available from 
observations for extreme events. For instance, Stott et al. (2004) considered whether the 
model’s inter-annual variability corresponded to that of the observations, while Pall et al. 
(2011) considered the model’s quality with respect to dynamic features, and Christidis et 
al. (2013b) considered the reliability of hindcasts.  

Such evaluations are necessary, but they are not a sufficient demonstration of 
model quality. The quantitative correspondence of the statistics of variables such as 
temperature and precipitation between model output and observations does not 
necessarily imply that the mechanisms that produce variability and extremes are well 

                                                      
16 Note	that	the	relationship	between	the	probability	of	the	event	 ௠ܶ௔௫,௢௕௦ െ ϵ	 ൏ 	 ௠ܶ௔௫ ൏ 	 ௠ܶ௔௫,௢௕௦ ൅ ϵ	and	the	
probability	density	function	݂ሺ ௠ܶ௔௫ሻ	is	given	by	ܲ൫ ௠ܶ௔௫,௢௕௦ െ ϵ	 ൏ 	 ௠ܶ௔௫ ൏ 	 ௠ܶ௔௫,௢௕௦ ൅ ϵ	൯ ൌ ׬ ݂ሺݐሻ்݀ݐ೘ೌೣ,೚್ೞାఢ

்೘ೌೣ,೚್ೞିఢ . 
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represented in the model. Thus, assessment of the model needs to go beyond a 
quantitative comparison that accounts for sampling uncertainty and must assess key 
processes that lead to or exacerbate the event.  

The quality of a model under the counterfactual scenario may be difficult to 
evaluate. A counterfactual scenario that describes the present-day climate, absent the 
influence of anthropogenic forcing but accounting for contemporaneous volcanic and 
solar forcing, does not exist, and thus its quality is not directly assessable by comparison 
against observations that have been made under exactly those forcing conditions. In this 
case, quality can only be determined from the evaluation of model performance under 
other forcing scenarios for which observational data are available.  

Such assessment includes the evaluation of model quality for the factual world 
with anthropogenic forcing over the past several decades, and may be based on 
instrumental data for time periods before extensive anthropogenic influence and possibly 
using paleo-climate reconstructions of earlier periods. Also, knowledge of fundamental 
climate science and of model structure can provide an understanding of what kinds of 
events may or may not be well characterized by models in terms of the variables that are 
used to define the events, dependence on circulation patterns, dependence on SSTs, 
spatial scales, and temporal scales. 

As discussed in Chapter 2, a key decision in the framing of a model-based event 
attribution study is the degree of conditioning that is imposed on the model. The optimal 
choice of both conditioning and model will depend on the question being addressed and 
the event under consideration.  

 
 

Unconditional Attribution 
 

At one level, the most comprehensive and most easily interpretable kind of 
attribution is unconditional. For this, a model must be global and coupled to a dynamic 
ocean. It must then be run for sufficiently long periods to reliably determine the statistics 
of the extreme in question—the rarer the extreme, the longer this needs to be. Those two 
constraints will limit the spatial resolution and the degree of complexity of the model that 
can be used. In general, at present, models that can be run in this mode will be something 
like CMIP5-class models (e.g., King et al., 2015; Knutson et al., 2014). The challenging 
part of this kind of attribution is supporting the assumption that the model is a reliable 
mimic of reality. Given the known capabilities (and deficiencies) of this class of model, 
which have been comprehensively assessed in the Intergovernmental Panel on Climate 
Change (IPCC) reports, this requirement has implications in terms of which kinds of 
extreme events can be addressed.  

Most coupled models exhibit substantial biases in mean climate and variability 
relative to observations, especially at the regional scale, so some bias correction will 
almost certainly be required, and the validity of this must be established. Typically, 
model output is bias corrected by computing anomalies, either by subtracting or dividing 
by some climatological mean and potentially adjusting the variance (e.g., Sippel and 
Otto, 2014). A further intervention requiring even stronger assumptions entails 
adjustments to quantiles to make the distribution of the model output correspond better to 
that of the observations (e.g., Edwards et al., 2014). The argument for such adjustments is 
that a model may represent long-term climate change reasonably but be offset in terms of 
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the magnitudes of variables of interest (e.g., Bindoff et al., 2013). Such adjustments 
should ideally be founded in physical arguments, since it is not clear what type of 
evaluation against observations could be done to give confidence to estimated changes in 
probability or magnitude in such circumstances. Also, it should be recognized that the 
bias adjustments rely on observations that may be uncertain for a variety of reasons in 
and of themselves. Sources of observational bias and uncertainty are multiple and include 
insufficient or changing instrumental coverage; bias from sources such as poor placement 
of the instrument; inhomogeneity arising for a variety of reasons including changes in 
exposure, instrument, observing protocol, and location in the case of in situ observations 
and, for example, orbital drift in the case of satellite data; and uncertainty associated with 
gridding and analysis procedures (see previous section on observational approaches). 

Temperature extremes can probably be addressed with some degree of confidence 
using CMIP5-class models, although there may be challenges for heat extremes where 
land-atmosphere coupling provides a strong feedback. In contrast, droughts would be 
somewhat more challenging as they depend on precipitation over land, which models 
generally find challenging, as well as on the land surface and its feedbacks (Seneviratne 
et al., 2010). To the extent that both phenomena depend on atmospheric blocking and 
storm track dynamics, however, these models are unlikely to be fully reliable since they 
continue to exhibit deficiencies in these phenomena (Flato et al., 2013). Moreover, events 
such as large intense storms may not be addressable with such models, since most do not 
adequately simulate such events (e.g., Seiler and Zwiers, 2015b). In general, such models 
should only be used to address extremes that are under a strong thermodynamic control. 
If dynamic processes are the dominant feature of the event, as would be the case for an 
explosive extratropical storm or a tropical cyclone, then model uncertainty needs to be 
addressed, and this may be extremely challenging. The effects of dynamic and 
thermodynamic processes may also be difficult to disentangle, for example, as in a 
flooding event, because dynamic processes may control the circulation that transports and 
converges the moisture that produced the flood, while thermodynamic processes may 
determine the amount of moisture that was actually transported to the drainage basin 
where the flooding occurred. 

Multi-model ensembles can be used for event attribution either in a sensitivity 
analysis framework, repeating the analysis for each model, or by averaging across models 
in some fashion. While a multi-model ensemble may have less bias than any single 
model, both when representing the mean state (e.g., Flato et al., 2013; Gleckler et al., 
2008) and indices of moderate extremes (e.g., Sillmann et al., 2013a), even results 
averaged across models may be biased relative to the true earth system because of shared 
inadequacies in their representation of the system. An example is the general equatorward 
bias in the North Atlantic storm track (Zappa et al., 2013b). In addition, the fact that 
model ensembles are generally ensembles of opportunity, with some models being 
closely related (see Knutti et al., 2013) further complicates the issue. In general, as 
discussed further below (see Uncertainty Quantification), model bias is difficult to 
quantify, particularly for extremes for which large observational uncertainty hinders the 
ability to compare to the truth (Kharin et al., 2007, 2013) and even more so for the 
counterfactual scenario. 
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Conditional Attribution 
 

In conditional attribution analyses, model quality should ideally be assessed 
conditionally: Does the model accurately represent the climatology given the forcings 
and the conditioning factors, and does it produce extremes similar to the observed event 
for similar reasons?  
 
 
Conditioning on Patterns of Sea Surface Temperatures  
 

The first level of conditioning is by SST anomaly pattern. Because the SST 
pattern is imposed, an atmospheric model can be used. This has two practical benefits: 
First, model biases associated with the ocean state will be mitigated, and second, because 
only the atmosphere and land surface are simulated, the model can be run for longer 
periods of time to quantify more extreme statistics, at higher spatial resolution, or include 
more complete representations of the land-surface or key model components.  

In general, models that can be run in this mode may be something like seasonal-
forecast or previous-generation weather-prediction models, which might have better 
representations of storm track dynamics and moist processes than CMIP5-class models, 
although the atmospheric components of CMIP5-class models are also often used. 
Because biases are usually reduced when specifying the ocean state and with potentially 
better representations of relevant processes, it might be possible to more confidently 
address some types of drought. Extratropical cyclones may also be addressable at some 
level. However, it is unlikely that it would be possible to perform reliable event 
attribution on tropical storms and intense convective precipitation with such models, even 
if resolution and the representation of moist processes are somewhat better than for 
CMIP5 models. Although dynamically driven extremes may be reasonably well 
represented in such models, the dynamic response of the atmosphere to climate change 
remains uncertain. This uncertainty must be addressed in any attribution study, which at a 
minimum argues for using more than one model, although this is often not sufficient (see 
the section on Uncertainty Quantification, below).  

Additional uncertainties arise in studies that condition on the SST patterns. One 
issue is the uncertainty that is associated with estimating the counterfactual ocean state. 
This uncertainty arises because such studies condition on the ocean state in the factual 
(i.e., currently observable) world and therefore condition on a feature of that world, but 
one needs a corresponding ocean state in the counterfactual world. Nevertheless, studies 
that use atmospheric models often use multiple estimates of the ocean warming due to 
human influences and results, particularly in studies of precipitation, and can be 
surprisingly sensitive to this (see Otto et al., 2015b; Pall et al., 2011; Figure 3.4). The 
uncertainty associated with estimating the counterfactual ocean state is driven by the 
uncertainty in estimating the anthropogenic component of the factual world SSTs, which 
is performed using regression based detection and attribution formalisms (e.g.,  
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Other kinds of conditioning on large-scale aspects of the climate state, such as 
soil-moisture anomalies, sea-ice extent, or stratospheric circulation, would be subject to 
similar considerations. 

 
 

Conditioning on the Features of an Event  
 

The options change yet again for conditioning on the space and time scale of a 
single large storm event such as one of the named European winter storms or a tropical 
cyclone,which can be done with data assimilation and/or short-term forecasts. In this case 
a high-resolution weather forecast model with a detailed representation of topography, 
and perhaps even with explicit convection, can be used because the simulations need only 
be performed for a few days or weeks at most. Thus, tropical storms and severe 
precipitation events can be studied (see e.g., Lackmann, 2015; Meredith et al., 2015), but 
tornadoes remain a challenge. Since the factual simulation can now be directly compared 
with the observed event, in all its relevant details, evaluation of whether the model is fit-
for-purpose can be performed at a level that is not possible in frameworks that are more 
weakly constrained by observations (i.e., less strongly conditioned). Nevertheless, the 
description of the counterfactual remains a challenge since it is necessary to determine 
the anthropogenic component of the thermodynamic conditions relevant for the event; 
this introduces uncertainties comparable to those of determining the counterfactual ocean 
state in atmosphere-only model simulations, as discussed above.  

In general, uncertainties that result from model skill limitations are difficult to 
describe precisely and are circumstance specific; these uncertainties are discussed further 
below.  

 
 

UNCERTAINTY QUANTIFICATION 
 

Uncertainty arises from many sources; some of this uncertainty is amenable to 
statistical characterization, while other aspects are difficult to quantify. Sampling 
uncertainty is the inherent uncertainty from trying to quantify the intensity and frequency 
of extreme weather or climate events using datasets of limited size from either 
observations or model ensembles. Additional uncertainties arise from the use of models 
in event attribution.  

 
 

Quantifying Sampling Uncertainty 
 

Sampling uncertainty arises from using a dataset of limited size to estimate event 
probabilities or distributions of event magnitudes, either an observational dataset or an 
ensemble of model simulations. In the context of event attribution, the main source of 
sampling uncertainty is the chaotic unforced variability that is a pervasive feature of the 
climate system and that is simulated to various extents by climate models, even when run 
without any type of time-varying natural or anthropogenic external forcing. This can 
include substantial contributions from the low-frequency natural variability of the climate 
system (Box 3.1), including the effects of long-term oscillations that may confound the  
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BOX 3.1 
Unforced Natural Variability 

 
Natural variability includes both the response to natural external forcings such as 

volcanic eruptions and the unforced, chaotic variability that occurs continually in the climate 
system (also known as internal variability). We experience some of that variability as weather, 
but it also occurs on much longer time scales, resulting in extended periods that may be cooler, 
warmer, dryer or wetter than average. Such low-frequency internal variations at decadal-to-
multidecadal timescales represent a major challenge in the attribution of extreme events to 
anthropogenic climate change. Over these timescales these variations can dominate externally 
forced changes (Deser et al., 2014; Hawkins and Sutton, 2009) by producing temporarily large 
trends in key climate variables. The decadal and multidecadal trends associated with internal 
variations impact not only the mean values over periods of decades, but also their distributions in 
space and time, including the tails of the distributions and hence the frequencies of extreme 
events (Sardeshmukh et al., 2015).  

The following are examples of the impacts of low-frequency natural variability on 
extreme events of the type addressed in this report. First, by one definition, the occurrence of heat 
waves in the United States peaked in the Dust Bowl decade of the 1930s, and the record 
frequencies of heat waves during that decade have yet to be exceeded (Peterson et al., 2013a; 
Figure 3.5). These heat waves occurred during a period of rapid global warming over the period 
1900 to 1950 that probably had a human component on the global scale (Hegerl, 2007) as well as 
a natural variability component, but it was also a period of anomalous circulation and strong 
variability (see Bindoff et al., 2013). Second, hurricane activity in the North Atlantic displays 
multidecadal variability associated with low-frequency variations in Atlantic Ocean sea surface 
temperatures (Camargo et al., 2013), although human-caused greenhouse gas increases and 
particulate pollution have also been implicated in recent hurricane trends in the North Atlantic 
(Booth et al., 2012). Third, the North Pacific and adjacent land areas are influenced by 
multidecadal variations in temperature and precipitation associated with the Pacific Decadal 
Oscillation (Dai, 2013). The latter has a longer timescale than the El Niño/Southern Oscillation, 
although the connections between these two modes of ocean-atmosphere variability are still being 
investigated (Wang et al., 2014). Both of these large-scale climate oscillations have been linked 
to variations in the risk of intense precipitation over North America (e.g., Fuentes-Franco et al., 
2015; Zhang et al., 2010). Observationally derived annual probabilities of extreme events (or their 
inverses, return periods) may be misleading if the available record length is too short to 
adequately reflect the full range of variation from low frequency natural variability (e.g., Jain and 
Lall, 2001) or if the underlying statistical methodology does not account for the presence of such 
variability. 

In model-based attribution studies, the use of large ensembles of simulations can enable 
averaging that removes much of the unforced natural variability. Thus externally forced signals 
may be more prominent in unconditional attribution studies. However, when attribution of 
extreme events is conditioned on observed SSTs (for which there is only one historical 
realization), unforced natural variability may impact conclusions about likelihoods. In the case of 
a counterfactual SST state, for example, the counterfactual climate would have its own natural 
variability that might or might not be comparable to that of the present climate, with implications 
for the likelihoods of SST anomalies of a particular magnitude in the two climates. Finally, 
anticipation of future changes in extreme events over the next decade or two, the timescales of 
interest for many risk assessments (e.g., by insurers), must consider the role of natural variability 
in the likelihood of particular types of events.  
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climate system and, if run for sufficiently long or with sufficiently large ensembles, 
should, in principle, represent the full distribution of natural variability as a component of 
sampling uncertainty. However, for a representative sample, very long time series may be 
needed (Wittenberg et al., 2014), and models may not capture dynamics in response to 
forcing or teleconnections well. 

As discussed earlier, observation-based approaches that avoid the use of models 
often compare a recent time period intended to represent the world under anthropogenic 
influence to a historical time period (e.g., the early or mid-20th century) with weaker 
anthropogenic influences (e.g., Hansen et al., 2014b; King et al., 2015; van Oldenborgh et 
al., 2014) as proxies for the factual and counterfactual scenarios. Sampling uncertainty 
considerations discussed above apply to estimating probabilities for both time periods. 
For extreme events, one generally needs adequate replication over time, requiring a long 
time period, to reduce uncertainty, and uncertainty is often high because of a paucity of 
data. However, a statistical bias may arise when using data from long time periods 
because the climate is not stationary over that period, though some statistical techniques 
are able to account for some aspects of non-stationarity (King et al., 2015; van 
Oldenborgh et al., 2015). In addition, uncertainty can be high because the length of the 
time period under consideration may not represent the full range of natural variability. In 
the face of natural variability that includes decadal-scale variability that will not be well-
sampled in most observational samples, it will be difficult to even adequately quantify the 
uncertainty.  

A technical concern with the statistical analyses in the event attribution literature 
is that studies often mix frequentist and Bayesian perspectives (Box 3.2) and 
methodologies without a clearly defined probabilistic framework. In particular, analyses 
often use the well-established bootstrap technique to quantify uncertainty in quantities 
such as FAR and RR (Stone and Allen, 2005; Christidis et al., 2013b; Pall et al., 2011). 
The bootstrap is a technique that estimates the sampling distribution of a statistic 
(Davison and Hinkley, 1997), such as an empirical probability, ̂݌. In other words it 
quantifies the variability of ̂݌ (around the true ݌) that would occur in repeated analyses 
with statistically equivalent samples of data; this is the “repeated sampling” discussed in 
Box 3.2. In the most straightforward approach to the bootstrap, this involves resampling 
with replacement from the data, for example, resampling from the ensemble members in 
a model-based attribution analysis. This sampling distribution can then be used to 
estimate a standard error or confidence interval. This is a frequentist approach because 
the sampling distribution is the probability density function (PDF) of the statistic, ̂݌, not 
the PDF of the true value, p. In the frequentist approach, p is not random and therefore 
cannot have a distribution. Necessarily, only a Bayesian approach can provide a PDF for 
the true value of the quantity of interest, such as p, FAR, or RR based on the available 
observational or modeling data.  

However, event attribution analyses generally plot the sampling distribution and 
carry out calculations with it that are presented and interpreted in a Bayesian framework. 
An early example of this is Stott et al. (2004), who report PDFs (they also call these 
normalized likelihoods) for return probability and FAR, where these PDFs are based on  
the bootstrap and are actually sampling distributions. This interpretation of a sampling 
distribution as a PDF for the quantity of interest (i.e., as a Bayesian posterior distribution) 
is akin to the common statistical misinterpretation that a hypothesis test provides a 
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probability that the null hypothesis is true. In certain simple circumstances, the numerical 
results from interpreting the sampling distribution as a Bayesian posterior coincide with 
the Bayesian posterior distribution that would have been computed from implementing a 
Bayesian approach to the problem (Gelman et al., 2013). However, there is no statistical 
result that shows that this is in general the case, so use of the bootstrap to compute results 
that are then interpreted in a Bayesian fashion is not in general justified by statistical 
theory. Rather than carrying out a frequentist analysis and giving it a Bayesian 
interpretation, an analysis that seeks to provide a PDF for a quantity such as FAR or RR 
should use the Bayesian framework with a stated prior distribution and determine the 
resulting posterior distribution rather than using the bootstrap. This would require the 
analyst to specify a prior distribution, which can be difficult to decide upon and may be 
subjective. A frequentist alternative that will often be straightforward to implement is to 
report a confidence interval calculated using standard statistical methods, such as the 
bootstrap. 

 
 

Quantifying Uncertainty in Model-Based Analyses 
 

In studies based on model output, one can quantify sampling uncertainty as 
described in the previous section, and one can reduce sampling uncertainty as much as 
desired by using larger ensembles, limited only by computational time and resources. 
However, uncertainty from using a model (or models) to approximate the climate system 
is difficult to quantify or to reduce, although there is a large body of literature on 
uncertainty quantification for deterministic models (Santer et al., 2003; see also some of 
the discussion in Uncertainties in Model Based Studies, above). In particular, all models 
have biases in representing the climate system that carry over into bias in estimated event 
probabilities, even for events for which a model is carefully evaluated before its use for 
event attribution. As discussed further below, bias may be reduced but will not be 
avoided entirely by using multiple models. 

The following sources of uncertainty affect estimates of event probabilities and 
magnitudes in model-based analyses (Hawkins and Sutton, 2009): 

 
x Boundary condition uncertainty (sometimes called scenario uncertainty): This 

includes aspects of the system that are fixed in the model and therefore not 
simulated by the model. For example, depending on the model details, this can 
include some aspects of land surface characteristics.  

x Model uncertainty: This is the uncertainty from the inability of any model to fully 
represent the system, including uncertainty that arises from the need to 
parameterize (approximate) the representation of sub-grid scale processes. The 
nature of this uncertainty will vary with the type of model that is used for event 
attribution (e.g., ranging from global coupled models, to nested regional climate 
models, to very high resolution convection permitting models). 
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BOX 3.2 
Frequentist Versus Bayesian Approaches to Statistics17 

 
Both the frequentist and Bayesian approaches to statistics attempt to use data to estimate 

quantities of interest and to quantify our uncertainty in making such estimates, but the approaches 
differ in how probability is used. Frequentists use probability only to model certain processes that 
relate to how data are collected and are broadly described as “sampling.” Bayesians use 
probability more widely to model sampling as well as other kinds of uncertainty and variability. 
Both approaches then use well-established principles to calculate estimates of the quantity of 
interest and uncertainty bounds on those estimates.  

The easiest way to appreciate the differences between the two approaches is to first 
consider a simple example that is unrelated to climate science. Thus imagine that we are 
interested in the average height h in inches of all adult males in the United States.  

A Bayesian statistician would begin with a “prior distribution,” meaning a probability 
distribution that describes what we know about h before collecting any data. Some prior 
information is available: h is certainly between 60 and 84 inches, and more likely near the middle 
of this range. A reasonable way to describe this knowledge might be to use a bell-shaped curve 
that gradually rises from a value of zero for values of h greater than 60, reaches a peak at 72 
inches, and then gradually declines again until again becoming zero at 84 inches. The curve is 
drawn so that the area under the curve is one, indicating that the true value of h has to be 
somewhere between 60 and 84, and the peak at 72 indicates our prior belief that this is the most 
likely value of h. After collecting some data (e.g., the heights of a random sample of U.S. adult 
males), the Bayesian would use established techniques to update this prior distribution in light of 
the data to get a new probability distribution for h called the posterior distribution. The posterior 
distribution reflects our state of knowledge about h after collecting data. Using the posterior 
distribution, the Bayesian can make a statement such as P(70≤h≤74)=0.95—that is, there is a 95% 
chance that the average height of all males in the United States lies between 70 and 74 inches.  

Frequentists do not allow themselves to make such statements. For a frequentist, h is 
simply an unknown constant that could in principle be known (such as by measuring the heights 
of all adult males at a given time). To the frequentist, the probability statement above is  
 

x Parametric uncertainty: This represents uncertainty in the appropriate values for 
parameters in the climate model. Parametric uncertainty could be considered to be 
one component of model uncertainty.  
In addition there are additional sources of uncertainty in conditional analyses: 

x Counterfactual boundary condition uncertainty: For the counterfactual scenario, 
there is uncertainty in boundary conditions such as the SSTs in atmosphere-only 
model simulations.  

x Conditioning uncertainty: This is the uncertainty that arises because conditional 
results pertain directly only to the state of the system that is conditioned on, such 
as the SST state in atmosphere-only models. As discussed in Chapter 2, 
conditional attribution inherently ignores changes in the likelihood of the 
conditioning state and whether the attribution result would differ when 
conditioning on other possible states of the system. 

 
 

                                                      
17 Adapted from https://www.quora.com/What-is-the-difference-between-Bayesian-and-frequentist-statisticians  
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meaningless because h is a fixed value and they only make probability statements that describe 
what happens with repeated sampling. An example of an acceptable probability statement for a 
frequentist would be P(70≤H≤74)=0.65, where H is the height of a randomly drawn individual 
from the population of adult males in the United States. Such a statement would tell us that 65% 
of U.S. males have heights between 70 and 74 inches. We might judge from this that the average 
height h also lies in this range, but a frequentist would not assign a probability to that judgment. 
However, he or she might give a confidence interval for h. In this case, the end points of such an 
interval are constructed from the heights of a random sample of males in such a way that, if the 
sampling process were repeated, the interval would cover h with a specified probability, such as 
90%. That is, if the sampling process were repeated 100 times, and if a 90% confidence interval 
were calculated each time, then we would expect approximately 90 out of the 100 of the 
confidence intervals to include the unknown constant h. The confidence level and the length of 
this interval together give an indication of the precision of the estimate of h that is obtained from 
the available sample. 

The sampling variability that is described by frequentists can arise in a number of ways. 
In the example above, it originates from the process of randomly selecting individuals from the 
U.S. population of adult males. In climate science, it can arise from observing different periods in 
the evolution of a weather or climate process that exhibits chaotic variability (e.g., 30-year 
temperature trends calculated from different 30-year periods would almost surely be different 
even if there were no external influences on the climate), by selecting different periods from a 
single climate or weather model simulation, or using different simulations from the same climate 
or weather model that have been started from different initial conditions. In all cases, a frequentist 
describes the uncertainty that arises from using different samples drawn in statistically equivalent 
ways, whereas a Bayesian will also use additional knowledge that is described in the form of 
probability distributions that quantify what is known or judged to be more or less likely given the 
available understanding before gathering further data. This can include descriptions of 
uncertainties, such as model and parametric uncertainty, that may rely on expert judgment (to 
greater or lesser extents in different situations) to describe the relative likelihoods of different 
possibilities. 
 

Standard statistical analysis is not well suited to deal with these sources of 
uncertainty, and these uncertainties have not been broadly addressed in the large majority 
of studies, although some studies have addressed limited aspects of model 
uncertainty.One approach that can help to characterize the parametric uncertainty 
component of model uncertainty is the use of perturbed physics ensembles (PPEs) to 
sample from parameter distributions (e.g., Christidis et al., 2013b). The use of multi-
model ensembles can help to characterize model uncertainty, as done in studies using the 
CMIP5 archive. In addition, some studies have done event attribution with atmosphere-
only models using multiple SST patterns meant to quantify the uncertainty related to the 
state of the system under natural forcings (Christidis et al., 2013a; Pall et al., 2011).  

Some studies account for these types of uncertainties by using methods that 
involve drawing samples. For example, in a PPE, one draws multiple parameter samples 
and runs a model simulation for each draw of the parameters. In a multi-model ensemble, 
the simulations available can be viewed as drawing a sample from the space of models. 
However, interpretation of such a sample based on an ensemble of opportunity of climate 
models, such as those that participated in CMIP3 or CMIP5, remains a challenging topic 
(Annan and Hargreaves, 2010; Rougier et al., 2013). Estimation of event probabilities 
(and derived quantities such as FAR or RR) and uncertainties then proceeds by treating 
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the variability induced by varying the parameters or using multiple models as sampling 
variability from a frequentist perspective.  

While implementation of such a procedure is straightforward computationally, the 
statistical framework for the interpretation of the results remains underdeveloped and 
requires careful thought and further research. Such analyses are not easily interpreted 
from a frequentist statistical perspective because they combine uncertainty from 
conceptually different sources (e.g., chaotic variability generated spontaneously by the 
climate system versus deliberate investigator imposed variations of parameter values 
versus the sequence of difficult to characterize decisions that are made in constructing a 
given CMIP5 climate model). However, they might be considered as Bayesian analyses 
that sample from prior distributions over parameters and/or models (Tebaldi et al., 2005), 
although this interpretation may require some alteration to the details of the statistical 
analysis. Finally, it is important to recognize that while a Bayesian analysis quantifies the 
uncertainty for the given prior distribution (e.g., over parameters or models), results 
depend on that prior distribution, and the prior distribution may be difficult to 
characterize.  

Such analyses, either frequentist or Bayesian, do not eliminate or quantify 
statistical bias from systematic differences between model results and the real climate 
system (see Box 3.3). Since observations are not available to assess the quality of model-
based estimates of p0, and will often be inadequate to assess estimates of p1, it is not 
possible to determine whether estimates of p1, p0, RR, and FAR are unbiased estimates of 
their real-world counterparts. Viewed from a Bayesian perspective, the prior distribution 
over parameters or models is not updated based on observed data as in a standard 
Bayesian analysis.  

This concern about statistical bias can be stated in another way in the context of 
multi-model analyses. Agreement among models in estimates of p1, p0, RR and FAR may 
be considered a necessary, but not sufficient, condition for confidence in an attribution 
statement since agreement does not limit the possibility of inadequacies and unknown 
errors that are common amongst models.  
In light of the difficulties that arise in trying to quantify overall uncertainty in model-
based analyses, one alternative to formal uncertainty quantification is simple sensitivity 
analysis that assesses how sensitive the results are to choices such as model or parameter 
values. For example, there is work in the statistics literature that attempts to quantify the 
extent to which a potential source of bias could change the conclusions of an analysis 
(e.g., VanderWeele and Arah, 2011). Alternatively, analyses could make use of 
observations to weight parameter values and models based on a comparison of factual 
world simulations to observations. However, choosing the metric on which to judge the 
skill of different models remains difficult, and rankings of models can vary widely 
depending on the metric and outcome under consideration (e.g., Flato et al., 2013; 
Gleckler et al., 2008). Furthermore, such a weighting assumes that it also holds in the 
counterfactual world. As yet, there has been limited success in identifying “emergent 
constraints” (e.g., Bracegirdle and Stephenson, 2012; Hall and Qu, 2006) that use 
observations to identify models that will perform similarly under future forcing, and 
similar difficulties can be expected when considering model performance in the 
counterfactual world. 
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BOX 3.3 
Bias versus Variance 

 
In considering the frequentist statistical properties of a statistical procedure, statisticians 
distinguish bias from variance. Bias is the systematic difference between the true quantity and 
data-based estimates of that quantity that is present across repeated studies with statistically 
equivalent samples of data. Variance is the variability of the estimates across repeated studies. In 
principle it is straightforward (though not necessarily practical) to reduce variance by increasing 
the sample size. In contrast, bias is hard to quantify and to reduce in either frequentist or Bayesian 
analyses, particularly if it is fundamentally related to the manner in which the data are collected. 
For example, if there is no limit on computing resources, then the variance of a model-based 
estimate of RR can be reduced to any specified small level by generating sufficiently large 
ensembles of the factual and counterfactual simulations from that model. But because the 
estimate is from a model that inherently has limitations, it will nevertheless be biased relative to 
the true RR. Because one cannot carry out a controlled experiment by drawing samples of real 
Earth systems, it will be difficult to avoid bias. 
 

In summary, given the complicated nature of the various sources of uncertainty in 
model-based analyses, efforts at uncertainty quantification in event attribution analyses 
mix frequentist and Bayesian ideas and may not carefully define the statistical framework 
being used. The lack of a defined statistical framework makes it difficult to evaluate the 
uncertainty statements, yet such evaluation is a critical component of the overall 
evaluation of event attribution methods. As with operational weather forecasting, it is 
important to evaluate not just the best estimate in the attribution statement but also the 
uncertainty stated for that estimate. 

 
 

THE USE OF MULTIPLE METHODS 
 

Any study on event attribution will be influenced by the way the event is selected 
and framed, the way uncertainties are estimated and communicated, and the extent to 
which the model is suitable for purpose. However, it is clear that satisfyingly addressing 
uncertainties in all these aspects is difficult if not impossible. In the absence of being able 
to do so, some studies have started using multiple, different methods to estimate human 
influences on a given event. King et al. (2015) use an observations-only detection method 
to estimate changes in return period of an unusually warm year in Central England 
temperature, in comparison with a CMIP5 modeling-based approach. The latter approach 
uses climate model simulations, selecting models that reasonably simulate the variability 
of Central England temperature, and compares the probability of an anomalously hot year 
between simulations with natural forcings only and those that include anthropogenic 
forcings. Results were not identical but were comparable, and the authors chose to 
communicate the conservative result. However, while unusually hot years are an 
interesting test bed, they pose greatly reduced difficulties compared to other types of 
extremes. Hence multi-approach papers for non-temperature extremes in particular are 
recommended.  

There are also a variety of papers analyzing similar events in the BAMS reports 
(Herring, 2014; Herring et al., 2015b), such as multiple analyses of the California drought 
(Funk et al., 2014 Swain et al., 2014; Wang and Schubert, 2014). The case of the 
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California drought illustrates that careful analysis of contradictory results in particular is 
required and that using a single study may provide incomplete information: Swain et al. 
(2014) show that the atmospheric conditions, such as the anomolous ridge that 
contributed to the drought may have been made more likely due to global warming (at 
least in CMIP5 models). Thermodynamic changes such as more available water vapor 
may counteract human influences on circulation (Wang and Schubert, 2014), which 
means human influences on California precipitation are unclear (all three papers).  

Bringing multiple studies together, when there is robust scientific understanding, 
helps separate results that are reasonably robust from those that are more sensitive to 
framing and approach.  

 
 

RAPID ATTRIBUTION AND OPERATIONALIZATION 
 

The media, public, and decision makers increasingly ask for results from event 
attribution studies during or directly following an extreme event. To meet this need, some 
groups are developing rapid and/or operational event attribution systems to provide 
attribution assessments on faster timescales than the typical research mode timescale, 
which can often take years (Box 3.4).  

Efforts to develop rapid event attribution (hours to days) are often being 
developed in a research setting by university based groups and because they tend to 
operate in a reactionary mode, analyze events that draw interest and that fall within their 
capabilities.  

While some groups are working to provide attribution statements on rapid 
timescales, a key focus of operational attribution is to provide attribution assessments on 
seasonal timescales. Operational attribution is defined as a regular activity with well-
established protocols to systematically evaluate the causes of extreme events based on 
predefined and tested methods. It would provide results on a range of time scales: during 
and immediately following an event, monthly or seasonally, and for publication in annual 
assessments (Stott et al., 2015). Such results would be supported by subsequent in-depth 
study of key events and regular updates on the performance of the event attribution 
system. By utilizing predetermined, objective, event selection criteria, selection bias 
(Chapter 2) would be minimized, helping stakeholders understand how individual events 
fit into the broader picture of climate change (Stott et al., 2015). The nascent efforts to 
operationalize event attribution employ many of the methods discussed in this chapter.  

Objective approaches to compare and contrast the analyses among multiple 
different research groups based on agreed event selection criteria are yet to be developed, 
although the annual BAMS special issues on event attribution (Herring, 2014; Herring et 
al., 2015b; Peterson et al., 2012, 2013b), could be considered an initial step in the on-
going operationalization of event attribution.  

Groups engaging in various near-operational and rapid event attribution efforts 
acknowledge that careful consideration must be given to the assessment of uncertainties 
and communication of the results. As discussed in Chapter 2, the ways in which the 
research questions are framed can influence the outcomes and results of event attribution 
analyses. The time constraints associated with rapid attribution may affect framing and 
methodological choices by limiting analyses to approaches that can be undertaken 
quickly. Examples of possible limitations are: reliance on a primarily observationally 
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based approach and possibly on station data that has not yet been quality-controlled; 
inability to assess the robustness of model-based results through reliance on single 
models with specified SSTs or “off the shelf” global model runs from an ensemble of 
opportunity; and insufficient time to investigate causal mechanisms, or to evaluate the 
model for the particular extreme events. Providing robust attribution statements on very 
short timelines is therefore difficult and results are likely to be less robust. This has to be 
balanced against the need for timely information. Hence it is important to follow up on 
any rapid attribution with studies that are not subject to such limitations in order to 
evaluate and improve the reliability.  

Clearly communicating key messages to stakeholders about the methods and 
framing choices as well as the associated uncertainties and probabilities is critical to 
ensuring successful operational services. Furthermore, an important component of an 
operational system would be the use of methods to routinely evaluate the reliability of the 
event attribution assessments in much the same way that objective skill scores are an 
important aspect of the monitoring and evaluation of the performance of seasonal 
forecasting systems. Additionally, such systems should have rigorous approaches to 
managing and implementing system improvements, again akin to the methods used to 
continually improve models and data assimilation systems in operational weather 
prediction centers.  

 
 
GUIDANCE FOR INCREASING THE ROBUSTNESS OF EVENT 

ATTRIBUTION  
 

There is no single best method or set of assumptions for event attribution as these 
depend heavily on the framing of the question and the amount of time that is available to 
respond to the question. Time constraints may themselves affect framing and 
methodological choices by limiting analyses to approaches that can be undertaken 
quickly (e.g., van Oldenborgh et al., 2015). This could mean relying primarily on 
observations, or using conditioned or highly-conditioned modeling approaches that can 
be undertaken with computationally fast dynamic models, or using unconditional 
approaches based only on available simulations, such as the CMIP5 ensemble of 
historical climate change simulations.  
Assessment of model quality in relation to the event or event class of interest is critical 
for enhancing confidence in event attribution studies. Different event types pose different 
requirements for model fidelity. In general, larger-scale and longer-timescale events 
should be representable in global models, although representation of land-surface 
processes may be important for drought and heat waves and may lead to biases in event 
amplitude, for example, in some models (e.g., Hanlon et al., 2013). Smaller-scale and 
shorter-timescale events may require high-resolution models, which generally will be 
regional and could either be embedded within a global model or run in weather-forecast 
mode; they could also be based on a well-performing downscaling tool. Community-
developed standards could help to encourage careful assessment. 

For extremely rare meteorological events (e.g., Hurricane Sandy), the 
combination of rarity and spatial scale makes an unconditional attribution approach 
challenging from a modeling perspective. In this case, following the event itself in a 
highly conditional manner, either through short-term forecasts or through data  
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BOX 3.4 
Examples of Rapid and/or Near-Operational Event Attribution Efforts 

 
A brief summary of the main groups engaging in the development of operational and/or 

rapid attribution systems is included below. 
 

EUCLEIA 
The EUropean CLimate and weather Events: Interpretation and Attribution project, or 

EUCLEIA, is a 3-year project funded by the European Union that studies the attribution of 
weather and climate risks, primarily for Europe. The project aims to “provide well-verified 
assessments of the extent to which weather-related risks have changed due to human influences 
on climate” and to “identify those types of weather events where the science is still too uncertain 
to make a robust assessment of attributable risk.” 18  

A key deliverable of this project is an operational attribution system based on HadGEM-
A,19 which will run on a seasonal cycle, delivering attribution assessments for each season 
together with estimated uncertainty. A component of the project in its pre-operational phase is to 
test developing capability to assess specific weather and climate events, using test cases of heat 
waves, cold spells, droughts, floods, and storm surges that are being conducted. An early example 
is the exploration of the role of atmospheric circulation and climate change in the extreme rainfall 
in the United Kingdom during the winter of 2013-2014 (Christidis and Stott, 2015). EUCLEIA is 
working closely with stakeholders to derive the requirements for this operational system and 
involves social scientists as well as natural scientists in order to better obtain insights from the 
stakeholder perspective.  

EUCLEIA also collaborates with Weather@home and World Weather Attribution, whose 
efforts are described below. 

 
World Weather Attribution20  

World Weather Attribution, or WWA, is an international effort coordinated by Climate 
Central21 designed to sharpen and accelerate the ability of the scientific community to not only 
analyze, but also communicate the possible influence of climate change on extreme weather 
events. The project relies on a range of approaches described in this chapter, including 
observationally based approaches, the use of existing ensembles of climate change simulations 
such as those produced for CMIP5, and the generation of very large ensembles with the 
weather@home infrastructure. In the latter case, WWA uses the weather@home experimental 
design, but replaces the observed SSTs with seasonal forecasts in order to predict the probability 
of extreme events under current climate conditions one month ahead. The counterfactual world is 
simulated as in other weather@home experiments. The intent is to shorten the response time of 
attribution studies following an event, to almost real-time response, and also to restrict the  

 
assimilation, allows the use of high-resolution modeling tools capable of representing the 
event with great fidelity. However, when discussing results of such studies this 
conditioning needs to be clearly communicated as it strongly constrains the types of 
statements that can be made. In particular the change in probability of event occurrence 
(measured for example by FAR or RR) cannot be assessed by this method, and this could  

                                                      
18 See http://eucleia.eu/  
19 A coupled Earth System Model that was used by the Met Office Hadley Centre for the CMIP5 centennial 
simulations. 
20 See http://www.climatecentral.org/wwa 
21 See http://www.climatecentral.org/  



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

Chapter 3: Methods of Event Attribution  67 
 

PREPUBLICATION COPY 

conditioning of attribution statements on to that component of observed natural variability that is 
predictable on these timescales, since this is more consistent with the level of conditioning of 
these statements expected by stakeholders (see discussion of the role of conditioning in 
attribution statements). WWA is also coordinating with the international disaster response 
community through its partnership with the Red Cross/Red Crescent Climate Centre.22 
 
Weather@home23 

Weather@home is a project within climateprediction.net, a climate modelling project that 
uses the computing capacity available in desktop computers of volunteers in the general public. 
Climateprediction.net is based at the University of Oxford in the Environmental Change Institute 
and the Oxford e-Research Centre. Using the computing resources provided by volunteers 
through the climateprediction.net distributed computing network, weather@home runs very large 
ensembles of simulations with the UK Met Office’s HadAM3P global atmosphere-only model to 
investigate how the odds of extreme weather events change due to anthropogenic climate change, 
other external forcings and natural variability. Depending upon the problem that is being 
investigated, the system can also be configured to dynamically downscale the output from 
HadAM3P by nesting the HadRM3P24 regional model nested in the output from the global model. 

For example, to investigate the 2013 heat waves and drought in Australia and New 
Zealand, weather@home is using their distributed computing power to run two experiments: 
representing 2013 as observed using sea surface temperature (SST) observations from December 
2012 through November 2013 and present day atmospheric gas concentrations, and the 
counterfactual world of 2013 obtained by removing the modeled SST patterns of anthropogenic 
forcing from the observed 2012/2013 SSTs.25 

While weather@home is not aiming at doing its own rapid attribution system; they are a 
crucial partner in WWA and as such provide real-time attribution. 
 
Weather Risk Attribution Forecast26 

The Weather Risk Attribution Forecast (WRAF) is a collaboration of the University of 
Cape Town, the Lawrence Berkeley National Laboratory, and the University of Botswana, which 
provides the first real-time product to examine whether and how greenhouse gas emissions have 
contributed to our weather. The WRAF is a product, based on HadAM3-N4827 and HadAM3P- 
N9628 models, run in parallel with the seasonal forecast produced by the Climate Systems 
Analysis Group (CSAG) at the University of Cape Town. The attribution forecasts are issued 
monthly, and are available online: http://www.csag.uct.ac.za/~daithi/forecast/index.html for each 
month since January 2009. Preliminary forecasts are generated one month in advance; the final 
(hind-cast) version is issued 2-3 months later when observed SSTs become available and are 
integrated into the model simulations. 

 
 

  

                                                      
22 See http://www.ifrc.org/. 
23 See http://www.climateprediction.net/weatherathome/. 
24 A high-resolution, regional configuration of HadAM3 (atmosphere-only model) with improved physics.  
25 See http://www.climateprediction.net/weatherathome/australia-new-zealand-heat-waves/experiment-setup/.  
26 See http://www.csag.uct.ac.za/~daithi/forecast/. 
27 A dynamic model of the atmosphere produced by the U.K. Met Office Hadley Centre. It solves equations describing 
the evolution of the atmospheric state on a polar grid with a spatial resolution of 3.75 degrees in longitude and 2.5 
degrees latitude with 19 vertical levels. 
28 A dynamic model of the atmosphere produced by the U.K. Met Office Hadley Centre. It is a modified version of 
HadAM3 that runs at a higher spatial resolution (1.875x1.25 degrees) and uses different methods of estimating the 
effects of small-scale processes. 
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serve either to counteract or amplify the changes in event magnitude or other properties 
that are attributed. 

In almost all cases, event attribution questions relate to differences in the 
probability of a given event class or in the distribution of event magnitudes, and 
questions should be answered in the context of explanations about sources of uncertainty. 
Different approaches and levels of conditioning may help to control the sources of 
uncertainty, with greater amounts of conditioning being expected to improve signal-to-
noise ratios. Nevertheless, uncertainty can never be fully eliminated. Thus statistical 
methods are required in all cases, including those when the analysis is highly conditioned 
on specific features of the circumstances surrounding an event, to properly account for 
uncontrolled variability and uncertainty. Statistics plays a key role in framing, designing, 
and interpreting event attribution studies. 

Uncertainty in event attribution results needs to be estimated as much as possible 
and clearly communicated. Uncertainty emerges from a number of different sources. In 
the context of event attribution, the main source of sampling uncertainty is the chaotic 
unforced variability that is a pervasive feature of the climate system and that is simulated 
to various extents by climate models, even when run without any type of time-varying 
natural or anthropogenic external forcing. This can include substantial contributions from 
the low-frequency natural variability of the climate system, including the effects of long-
term oscillations that may confound the diagnosis of the effects of human-induced 
changes in analyses based on short observational records. There are well-established 
statistical procedures for accounting for sampling uncertainty induced by limited sample 
sizes in observations and in initial condition model ensembles. In contrast, quantifying 
uncertainty from using models to represent the climate system is difficult, and there are 
not well-established statistical procedures available for use in the event attribution 
context. In some cases, results from methods that are designed explicitly to account for 
sampling variability have been given a Bayesian interpretation without establishing the 
framework within which such an interpretation would have meaning. In contrast, 
standard frequentist analysis or explicit implementation of Bayesian methods stand on 
firm statistical footing. The statistical framework for the interpretation of analyses that 
sample from parameter, model, and initial/boundary condition distributions is not yet 
well defined and needs further development. While a full quantification of uncertainty is 
desirable, it may be difficult to quantify the effect of many sources of uncertainty in a 
falsifiable way, and thus sensitivity analyses may offer the best practical path forward.  

Event attribution results, particularly for local events, or such events that are 
strongly influenced by climate dynamics and its changes, are subject to substantial 
uncertainty and hinge on assumptions made when selecting a modeling setup and using 
statistical tools to quantify uncertainty. Given that these choices and the representation of 
uncertainties can be highly technical, communicating results of event attribution to the 
broader public in a way that does not overstate the result or fails to sufficiently highlight 
the assumptions involved in the analysis is difficult.  
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Chapter 4: Attribution of Individual Classes 
of Extreme Events  

 
The scientific issues and challenges associated with extreme event attribution vary 

greatly from one event type to another. This chapter considers event types one at a time, 
focusing first on issues associated with event definition. Such issues may be conceptual 
or associated with limitations of the available observations. As background to attribution 
studies of single events of each type, prior knowledge is also reviewed. This includes 
research on patterns or trends in historical observations, as well as projections of future 
change using climate models. Though not strictly attribution, this broader context is 
relevant to the statement of task in that any scientifically responsible attribution 
statements are informed, necessarily, not just by formal attribution studies, but by all 
aspects of existing scientific understanding of the relationship between the extreme event 
type in question and climate change. Existing attribution studies on single extreme events 
are also reviewed as part of this background. The number of studies varies widely; for 
some event types there are few or even no such studies. For each category, advances that 
might be possible in the near future are considered. 

The event types considered here do not represent all possible event types 
influenced by climate factors, and moreover, some examples are of events defined not 
solely by atmospheric or meteorological quantities like temperature. The section on 
extreme precipitation, a meteorological event, considers only precipitation itself, not 
flooding, as the defining characteristic. The section on drought focuses on meteorological 
drought (primarily precipitation deficit) and hydrological drought, which are 
consequences of atmospheric factors. Wildfires are not, strictly speaking, meteorological 
events at all, but are—like other extreme events discussed here—of great societal 
concern, and the likelihood and extent of wildfires can be influenced by climatic factors. 
These choices about how and whether to include non-meteorological factors in our 
assessment of attribution are subjective and reflect committee judgment, available 
literature, and expertise. The committee recognizes that there are many additional events 
and other natural hazards that may be impacted by climate change (e.g., sea level rise, 
landslides, coral bleaching, etc.) that could be discussed in the context of event 
attribution. 

 
 

EXTREME HEAT EVENTS 
 

Event Type Definition 
 

Heat events have been defined over a variety of timescales in the literature, from 
as little as a day to at least a year. This report distinguishes between temperature 
anomalies of short duration (days, heat events) and those of longer duration (weeks and 
longer, warm anomalies). Because temperature is a continuous variable, the spatial extent 
of a given heat event or warm anomaly is somewhat subjectively defined and can change 
through time as the event unfolds. Typically, a latitude-longitude box is used but 
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sometimes single stations (e.g., King et al., 2015) or political boundaries (e.g., Texas or 
Korea) are used. While a large majority of studies focus on heat events over land, some 
(e.g., Funk et al., 2013; Kam et al., 2015) have looked at warm SST anomalies over 
periods of seasons to years. 

The impacts of heat events and warm anomalies (e.g., on human health) can be 
exacerbated by high dewpoints, and also by high nighttime temperatures (which in turn 
are more likely if dewpoints are high; e.g., Gershunov and Guirguis, 2012). Conversely, 
the amplitudes of the warm anomalies themselves can be increased by land-atmosphere 
feedbacks if moisture is low—hence the connection between drought and warm 
anomalies, covered below in the section on drought. In addition to their direct impacts, 
warm anomalies over both land and ocean can contribute to other types of extreme events 
(e.g., droughts or wildfires). 

 
 

Prior Knowledge and Overview of Attribution Studies 
 

The IPCC Fifth Assessment Report (Hartmann et al., 2013) noted that “A large 
amount of evidence continues to support the conclusion that most global land areas 
analyzed have experienced significant warming of both maximum and minimum 
temperature extremes since about 1950...” and concludes that “It is ... very likely that 
human influence has contributed to observed global scale changes in the frequency and 
intensity of daily temperature extremes since the mid-20th century, and likely that human 
influence has more than doubled the probability of occurrence of heat waves in some 
locations” (Figure 4.1). They also note that minimum temperatures have increased more 
than maximum temperatures, and maps of changes show statistically significant increases 
in two indices of extreme temperatures in almost every land area since 1950: the 90th 
percentile of daily minimum temperatures, and the 90th percentile of daily maximum 
temperatures. For the region of North and Central America (lumped for purposes of 
simplicity in a table), they assess changes in heat waves and warm events as “Medium 
confidence: increases in more regions than decreases but 1930s dominates longer term 
trends in the USA.” The U.S. National Climate Assessment corroborates and provides 
additional detail: “Heat waves have generally become more frequent across the U.S. in 
recent decades, with western regions (including Alaska) setting records for numbers of 
these events in the 2000s.… Most other regions in the country had their highest number 
of short-duration heat waves in the 1930s” (Walsh et al., 2014). Regarding future 
projections, in the IPCC Fifth Assessment Report, Collins et al., 2013 stated that: “It is 
also very likely that heat waves, defined as spells of days with temperature above a 
threshold determined from historical climatology, will occur with a higher frequency and 
duration.”  

For northern hemisphere land areas, numerous studies have examined different 
aspects of trends in extreme temperatures. Horton et al. (2015), for example, relate trends 
in extreme temperatures to atmospheric circulation changes over the 1979-2013 period, 
and Abatzoglou and Redmond (2007) explain the asymmetry in seasonal warming (1958-
2006) between the eastern and western United States as a consequence of changes in  
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a curious fact that may be partly explained by the types of circulation changes noted by 
Horton et al. (2015) and Abatzoglou and Redmond (2007) for more recent periods. They 
note that even on these spatial scales, natural variability can dominate over anthropogenic 
warming to date.  

Heat events are arguably the extreme weather events for which attribution studies 
are most straightforward and have the longest history. Public and scientific interest in 
extreme event attribution increased rapidly after the 2003 European heat wave, which 
was associated with tens of thousands of excess deaths and prompted the seminal paper 
by Stott et al. (2004), whose methods form the groundwork for much subsequent work in 
this field (e.g., fraction of attributable risk). Of the events covered in the annual 
Explaining Extreme Events special issue of BAMS, the largest share (e.g., 8 out of 32 for 
2014) of events are heat events or warm anomalies. This may reflect the greater 
likelihood of successful attribution of heat waves, compared to other event types, and to 
human-induced climate change using existing models and data (see discussion of 
selection bias in Chapter 2).  

Most attribution studies of heat events and warm anomalies include an assessment 
of the trend in the temperature statistic used to define the event and an indication of how 
extreme the event was in the context of the observed record. Many studies also compare 
the magnitude with a distribution from long CMIP5 runs—in some cases, from long 
simulations with constant 19th century radiative forcing and in some cases from 
simulations using observed radiative forcing (i.e., CMIP5-ALL). For example, the 
European annual mean temperature in 2014 was shown to be far outside the distribution 
of CMIP5 20th century simulations even with observed forcing (Kam et al., 2015).  

Most recent studies calculate FAR, and some also estimate the uncertainty in 
FAR, for example by bootstrapping subsets from natural ensembles using 10 GCMs 
(King et al., 2015). Some studies also explore how the results depend on event definition: 
for example, Black et al. (2015) examine the January 2014 heat events in Adelaide and 
Melbourne, Australia, using definitions of heat wave with durations ranging from 1 to 5 
days. Some studies also compute return periods for different thresholds (e.g., Christidis et 
al., 2015) or the risk ratio (e.g., Hannart et al., 2015b).  

A number of studies used very large ensembles (i.e., bigger than available from 
CMIP5) from either a global (e.g., Rupp et al., 2012; Massey et al. 2014) or regional 
(Black et al., 2015; King et al., 2015; Figure 4.2) atmospheric model. In these studies, 
changes in FAR, risk ratio, and/or return period are calculated using an approach 
(Chapter 3) that estimates the anthropogenic contribution to modern SSTs and subtracts 
that from the observed SSTs, typically with SST patterns from at least a few global 
coupled climate models used to estimate the anthropogenic contribution. Other 
approaches to estimating the counterfactual include using early 20th century or pre-
industrial control (e.g., Black et al., 2015).  
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Prior Knowledge and Overview of Attribution Studies 
 

Extreme cold events are driven by a combination of thermodynamics (cold air 
mass formation) and dynamics (the large-scale circulation, advection). Horton et al. 
(2015) have used self-organizing maps derived from atmospheric reanalyses to show that 
both factors have played roles in recent changes in extreme cold events. In particular, 
increasing trends in northerly flow have led to an increasing trend in winter cold extremes 
over central Asia.  

The research to date indicates that extreme cold events are less frequent and 
severe than in previous decades, although interannual variability is still large enough to 
allow extreme cold events such as occurred in North America in 2014 and Europe in 
2012. Even over 60-year periods, trends in the coldest temperature of the year are not 
compellingly positive over Europe and the United States (van Oldenborgh et al., 2015, 
Fig. 4b). The increases in cold extreme daily minimum temperatures (i.e., warming) are 
generally greater than the increases in extreme daily maximum temperatures, and there is 
no indication of increased variability of daily or monthly winter temperatures over the 
United States (Kunkel et al., 2015; Screen et al., 2015b). A similar warming of the 
coldest temperatures over other land areas of the world emerged from Sillmann et al.’s 
(2013a; 2013b) analysis of the ETCCDI indices for 1948-2005 in four different 
atmospheric reanalyses and 31 CMIP5 models. The tendency for cold extremes to warm 
by more than hot extremes is also apparent in Collins et al.’s (2013) Figures 12.13 and 
12.14 as well as the U.S. National Climate Assessment’s Figure 2.20 (Melillo et al., 
2014).  

The general expectation is that cold events defined relative to fixed temperature 
thresholds should become less frequent and less severe as the climate warms on the 
global scale. However, it is possible for them to increase in frequency or intensity 
regionally for periods of time (e.g., due to increases in the intensity of cold air advection 
from polar to lower-latitude regions).  

Extreme cold events in eastern North America have characterized a few recent 
winters (2014, 2012), but such events are less frequent and their actual temperatures less 
extreme in the past few decades than in earlier decades of the 20th century (van 
Oldenborgh et al., 2015; Wolter et al., 2015). In an analysis of observational data, van 
Oldenborgh et al. (2015) find that the return times of the lowest minimum temperatures 
of 2014 in the Midwestern United States ranged from 6 to 44 years in the present climate, 
but only from 3 to 7 years in the climate of the 1950s; return times of the cold winter-
averaged temperatures were also greater in the present climate than in the 1950s. 
Decreases in cold wave events of four-day duration had the lowest frequency during the 
2001-2010 decade in all eight subregions of the United States examined by Peterson et al. 
(2013a), although the decade of the 1980s had the highest frequencies nationally. 
However, 20-year return values of the daily minimum temperatures warmed over the 
entire contiguous United States during the 1950-2007 period, by as much as 3° and 4ºC in 
much of the West (Peterson et al., 2013a).  

There is a notable absence of conditional attribution studies pertaining to extreme 
cold events. However, observational studies provide evidence of a general decrease in the 
frequency of occurrence of extreme cold temperatures over the past few decades in most 
land areas of the world (Hartmann et al., 2013; Kharin et al., 2013). Kharin et al. show 
that the trends of extreme cold ETCCDI indices are comparable in atmospheric 
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reanalyses and CMIP5 historical simulations in which external forcing was historical. In 
this respect, external forcing (including its anthropogenic component) is implicated in the 
decreasing frequency of observed cold extremes. The reduction of cold extremes has 
been detected and attributed in extreme seasonal and annual temperatures (Christidis et 
al., 2012; Stott et al., 2013) as well as in the ETCCDI metrics of cold daily extremes 
(Morak et al., 2013; Zwiers et al., 2011). Attribution studies by Kharin et al. (2013) and 
others have drawn upon comparisons of observational data with climate model 
simulations driven by natural and anthropogenic forcing.  

More recently, Wolter et al. (2015) also find decreasing frequencies of extreme 
cold events, in this case events affecting the Upper Midwest of the United States, in 
CMIP5 models and an ensemble of Community Earth System Model (CESM) 
simulations driven by historical forcing. The decreased frequency of cold extreme arises 
primarily from the underlying increase of the mean temperature, not from decreased 
variability (Screen et al., 2015b; Trenary et al., 2015; Wolter et al., 2015). Gao et al. 
(2015) show that decreases in temperature variance account for generally less than 20% 
of the projected 21st-century decreases in extreme cold temperatures over North 
America; the mean warming accounts for most of the remainder . The fact that 
underlying warming has moderated cold extremes has also been shown using daily 
circulation analogs for the European cold events of 2010 (Cattiaux et al., 2010). 

Several recent attribution studies have examined extreme cold events in the 
context of retreating Arctic sea ice. By prescribing reduced Arctic sea ice cover but 
historically observed ocean temperatures outside of the Arctic in two different global 
climate models, Screen et al. (2015b, 2015a) find that ice loss is associated with 
decreased likelihood of extreme cold events (as well as decreased variability of 
temperature) over nearly the entire Northern Hemisphere land areas. The exception is the 
central Asian region, where the probability of extreme cold events increases with ice loss, 
in agreement with earlier studies (Inoue et al., 2012; Kim et al., 2014; Mori et al., 2014). 
For the rest of the hemisphere, the underlying warming dominates the trend of extreme 
cold events, implying that thermodynamically-induced changes dominate dynamically-
induced variations, such as the jet stream. While some studies do point to influences of 
sea ice change on large-scale dynamics (Francis and Vavrus, 2015; Jaiser et al., 2013; 
Kim et al., 2014; Peings and Magnusdottir, 2014), the signals remain embedded in the 
noise of natural variability (Barnes et al., 2014) and, from the perspective of extreme cold 
events, are overwhelmed by the underlying warming. Additional attempts to link Arctic 
warming with an amplified jet stream and cold winters in middle latitudes have been 
made by Francis and Vavrus (2012, 2015). 

 
 

On the Horizon 
 

While the observational network is sufficiently dense to capture extreme cold 
events over most land areas (except possibly Antarctica), there have been few evaluations 
of the ability of models to simulate the frequency and intensity of these events. Sillmann 
et al. (2011) and Whan et al. (2016) show that some climate models are able to capture 
the linkage between atmospheric blocking and cold events over Europe and North 
America, respectively. However, more comprehensive assessments are needed of models’ 
ability to simulate cold temperatures for the right reasons. The lowest temperatures are 
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often reached under clear-sky calm conditions characterized by strong near-surface 
temperature inversions. Limited vertical resolution is likely to impact model simulation 
of temperatures in such situations. It is also apparent from the studies cited above that 
atmospheric blocking events must be well simulated if models are to simulate extreme 
cold events realistically. Finally, decadal and even longer trends in cold extremes can be 
impacted by multi-decadal variability in the climate system (e.g., the Atlantic 
Multidecadal Oscillation [AMO] and the Pacific Decadal Oscillation [PDO]), which 
models must simulate in order to capture the temporal spectrum of extreme cold events.  

With regard to a possible role of sea ice loss and Arctic amplification, mechanistic 
linkages are still an active area of research. Such linkages may contribute to cold events 
in some areas, particularly central Asia, but the dynamic mechanisms underlying such 
linkages need to be established. Hypothesis-driven model experiments are needed to 
identify any dynamic mechanisms linking Arctic changes with mid-latitude extreme 
events. 

Finally, impact-relevant metrics of extreme cold events need to be developed for 
use in attribution studies. In a climate with polar amplified warming, increased 
equatorward flow will likely be required if cold air advection is to cause any hypothetical 
increase of extreme cold events in middle latitudes. In such cases, the extreme cold 
temperatures will be associated with winds to a greater extent than in the past, which in 
turn will contribute to more extreme wind chill values. Metrics such as the wind chill 
index are just starting to be used in cold-event attribution studies (Gao et al., 2015). 

 
 

DROUGHTS 
 

Event Type Definition 
 

Droughts are complex phenomena involving various combinations of atmospheric 
inputs (chiefly precipitation, but also temperature), storage terms like soil moisture and 
snowpack, and responses of the human and natural system on a variety of timescales. In 
addition, there are several types of drought (Wilhite and Glantz, 1985), including 
meteorological drought (lower than expected precipitation over an extended period), 
hydrological drought (depletion of surface or subsurface water supply), agricultural 
drought (aspects of meteorological drought or hydrological drought that have impacts on 
agriculture, like reduced crop yield), and socioeconomic drought (effects on the supply of 
economic goods like hydroelectric power). In this report, we focus on meteorological 
drought and hydrologic drought. 

Droughts are driven by multiple factors including precipitation deficits, feedbacks 
associated with soil moisture and evapotranspiration, and large-scale dynamics associated 
with ocean, land, and air temperatures. Droughts can occur across broad regions up to 
continental scale, but can also have dramatically different implications for communities 
that are in close proximity to each other. The same drought can change in location and 
intensity from month to month in dramatic ways, as can be seen in the maps produced by 
the National Integrated Drought Information System (NIDIS) and the U.S. Drought 
Monitor. Further, anthropogenic climate change has been shown to affect drought 
differently in different seasons and in different regions, particularly in the varied ways 
that reduced snowpack affects surface flows.  
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As Redmond (2002) points out, drought may be better defined as “insufficient 
water to meet needs.” Thus, a holistic view of droughts encompasses both meteorological 
and hydrologic factors, on the “supply” side and terrestrial ecosystems, human 
consumption, and losses on the “demand” side, as well as infrastructure for water 
delivery, policies that affect water use, flexibility in addressing local shortfalls, etc. Since 
event selection for extreme event attribution is often driven by the magnitude of the 
impacts rather than the magnitude of the atmospheric driver, such considerations can be 
important in framing a drought attribution study. Similar holistic considerations apply to 
other extreme event types, to varying degrees.  

One reason that attributing both extreme flooding and extreme droughts to 
anthropogenic climate change is particularly difficult is that changes in the hydrologic 
cycle are both causes of the event (a climatic driver) and consequences of the event (with 
water supply availability and flooding being literally “downstream” from the changes in 
precipitation). Another is that land-use decisions and investments in water-related 
infrastructure for hydroelectric power generation, flood control, and water supply have 
dramatically changed the natural hydrology within watersheds and have usually 
decreased—but sometimes increased—the risks associated with extreme events. It is 
therefore often quite challenging to attribute the impacts of droughts and floods to 
extreme events in the same way that it is possible to attribute changes in the intensity of 
precipitation (which is “upstream” from the drought or flood). 

As an illustration of the complexity of defining and assessing drought, consider 
some of the hydrologic contributing factors to drought. Redmond (2002) refers to a 
“snow drought”—that is, for locations like much of the western United States that receive 
a majority of precipitation as snowfall and where summer precipitation is typically quite 
low, a deficit in winter snow can lead to summer drought. Bumbaco and Mote (2010) 
take the concept further, providing specific examples of when low winter precipitation or 
in some cases high winter or spring temperature ends up producing unusually low 
snowmelt for the dry summer period. Because there are so few observations, especially 
long records, of soil moisture, many studies use an index of drought computed from 
monthly observations of precipitation and/or temperature, like soil moisture computed in 
a hydrologic model, the Standardized Precipitation Index, or the Palmer Drought Severity 
Index (Funk et al., 2013). The simplicity of the latter makes it attractive to use in large-
scale drought assessments, but may also bias results—especially in the context of climate 
change. Thus, assessment of change in drought characteristics should consider including 
several indices, with specific consideration of their particular limitations (Seneviratne et 
al., 2012; Sheffield et al., 2012). 

 
 

Prior Knowledge and Overview of Attribution Studies 
 

The IPCC Special Report on Extremes (Seneviratne et al., 2012) noted that on a 
global scale, and owing in part to the variety of ways to define drought, there were not 
enough direct observations of drought-like conditions to conclude that there were robust 
global trends, but some regions of the world have experienced more intense and longer 
droughts. The IPCC Fifth Assessment Report (Hartmann et al., 2013) notes that some 
studies find an increase in the percentage of global land area in drought since 1950, but 
interannual and decadal-scale variability is high, and the results depend on datasets and 
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methods used. The attribution section assigns low confidence to attributing changes in 
drought over global land areas since the mid-20th century due to observational 
uncertainties and again high variability (Bindoff et al., 2013). Also, results differ 
depending on whether drought is defined as a rainfall deficit, or using hydrological 
variables like evaporation, many of which are affected by warming (see e.g., Seneviratne 
et al., 2010). However, some regional attribution studies are available. For example, 
Barnett et al. (2009) suggest that human influence has affected the hydrology of the 
western United States, considering snowpack and seasonal streamflow. Because 
temperature plays a role in determining evaporation, snowpack, soil moisture, and 
indirectly streamflow, attribution of hydrological drought may be more robust than 
strictly meteorological drought, which is more strongly influenced by precipitation. It 
may also be the case that attribution for some specific droughts may be more 
straightforward than reaching broad conclusions about the role of anthropogenic climate 
change in droughts globally because some of the specific regional factors that cause 
varying responses of drought to climate may be better understood in particular locations 
and times than others. 

Regarding projections of future drought over the 21st century due to human 
influence, the IPCC Special Report on Extremes expressed “medium confidence that 
droughts will intensify in the 21st century in some seasons and areas, due to reduced 
precipitation and/or increased evapotranspiration. This applies to regions including 
southern Europe and the Mediterranean region, central Europe, central North America, 
Central America and Mexico, northeast Brazil, and southern Africa” (Seneviratne et al., 
2012). Low confidence was expressed elsewhere due to disagreement between different 
projections, resulting both from different models and different indices of drought. 
Additional uncertainties result from soil moisture limitations on evapotranspiration, the 
impact of CO2 concentrations on plant transpiration, observational uncertainties relevant 
to interpretation of historical trends, and process representation in current land models 
(e.g., Greve et al., 2014; Sheffield et al., 2012; Trenberth et al., 2014). 

Many drought-related attribution studies (e.g., Funk et al., 2015; Hoerling et al., 
2013; Wilcox et al., 2015) use a similar approach to those for heat: comparing CMIP5 
runs from the preindustrial control, natural-only 20th century, and anthropogenic 
forcings. Some (e.g., Barlow and Hoell, 2015; Hoerling et al., 2013) use SST-conditioned 
runs, that is, atmosphere-only model simulations using observed SSTs, often compared 
with a counterfactual to compute FAR. A few also use an approach closer to seasonal 
forecasting, which somewhat resembles a highly-conditioned approach: Hoerling et al. 
(2013) use an 80-member ensemble with the operational GFS model for Oct 2009-
September 2011 to study the Texas drought of 2011, and Funk et al. (2015) also use GFS 
to study the east African drought of 2012. 

With both global and regional models, numerous papers have used very large 
ensembles of simulations generated on the climateprediction.net platform. For example, 
Bergaoui et al. (2015) looked at drought in the Southern Levant (approximately Israel) 
using the Hadley HADAM3P global model and counterfactual SSTs generated from 11 
GCMs; Marthews et al. (2015) use the regional model HadRM3P to study drought in east 
Africa; Rupp et al. (2012) use the HADAM3P global model to study heat and drought 
over Texas. 
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There are other studies using large ensembles that do not use 
climateprediction.net. Seager et al. (2015) draw on simulations with observed SSTs to 
April 2014 made by 7 research groups, with a total of 150 GCM simulations. Their focus 
is more on diagnosing teleconnections to specific SST anomalies, however, than on 
attribution to human-induced climate change. Shiogama et al. (2013b) use a 100-member 
ensemble of MIROC5 to study drought in the south Amazon region.  

As might be expected given the ambiguity of results concerning the trends in 
fraction of global area affected by drought (Hartmann et al., 2013), attribution studies do 
not always find strong influence of anthropogenic climate change. Some recent studies of 
the Colorado River anticipate dramatic impacts on river flows associated with changes in 
temperature (Vano et al., 2012, 2014). Meanwhile, no anthropogenic contribution was 
specifically identified in a recent study of Eastern Brazil’s recent drought; rather, it was 
linked to a natural but unusual excursion of the South Atlantic Convergence Zone (Otto 
et al., 2015b). Several other studies (viz., Barlow and Hoell, 2015; McBride et al., 2015; 
Wilcox et al., 2015) found uncertain changes in likelihood and strength (see also Herring 
et al., 2015a, for summary tables). Shiogama et al. (2013a) note that their results were 
sensitive to bias correction.  

While most attribution studies of drought focus on precipitation deficits, others 
have taken a more expansive approach. Funk et al. (2015) run a hydrologic model over 
eastern Africa and discuss changes in soil moisture and evapotranspiration, though they 
do not conduct attribution on those variables. Marthews et al. (2015), also studying east 
African drought, compute return periods for precipitation, specific humidity, and both 
shortwave and longwave radiative fluxes.  

While drought is acknowledged to be a complex phenomenon due to the many 
physical processes involved and the broad range of societal factors that influence its 
occurrence and intensity, some aspects of drought are influenced by temperature in ways 
that are better understood, and thus more amenable to attribution than others. In 
particular, temperature exacerbates hydrological drought in some regions by increasing 
surface evaporation, so that increasing temperature causes an increasing risk of 
hydrological drought even if precipitation does not change (e.g., Diffenbaugh et al., 2015; 
Williams et al., 2015). 

 
 

On the Horizon 
 

Because drought is caused by multiple factors at different scales and contexts, an 
area that needs further work is understanding the dominant factors that have historically 
been causes of drought in specific regions and watersheds. For example, for much of the 
United States, the drought of record is still the 1930s Dust Bowl era, which in turn might 
have been exceeded by droughts early in the last millennium (e.g., Herweijer et al., 
2007). Though there are anthropogenic links to changes in atmospheric circulation 
patterns (and associated anomalies in precipitation and temperature) in different seasons 
of the year and in different regions of the globe, the multiple interacting causes of 
individual droughts are not well understood. It may be possible to disentangle some of 
these components of drought and perform attribution studies in this context. Other 
possible future efforts that remain largely unexplored include using a combination of 
large ensemble and full hydrologic model simulations for attribution, decomposing 
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droughts into circulation components and thermodynamic components (as suggested by 
Trenberth et al., 2015). Another challenge in the attribution of drought relates to its 
linkage to climate variability (e.g., SST anomalies in different basins) on seasonal-to-
decadal time scales. Given that understanding is lacking on how different climate modes 
change as a result of anthropogenic climate change, our ability to understand drought 
response related to changes in climate variability is limited. Because droughts (like many 
other extremes) can lead to shifts in water management and policy, water managers and 
policymakers alike often ask the attribution question, alongside more immediate 
questions like predicting the end of a current drought; and these demands are likely to 
continue.  

The ongoing California drought has been the subject of a large and rapidly 
growing number of studies, often reaching apparently contradictory conclusions. For 
example, Cheng et al. (2016) distinguish between the response of shallow (<10cm) and 
deep (>1m) soil moisture and estimate little effect of anthropogenic warming on drought 
risk because of competing influences of rising precipitation and rising temperature. By 
contrast, Diffenbaugh et al. (2015) find that warming alone increases drought risk in 
California, using a modified drought severity index. It will be an important challenge for 
future workers to develop a systematic approach to synthesizing all these different 
studies. 

 
  

WILDFIRES 
 

Event Type Definition 
 

Although wildfires are not meteorological events, their likelihood and extent can 
be influenced by climatic factors. Wildfires are often large and rapidly spreading fires 
affecting forests, shrub areas and/or grasslands. Wildfires occur in many areas of the 
world, especially those with extensive forests and grasslands (Romero-Lankao et al., 
2014). While most wildfires are started by lightning, a substantial number are started by 
humans, especially near populated areas. The most common metric of wildfires is the 
area burned, either by a single wildfire or by all wildfires during a fire season in a 
particular region.  

Attribution of wildfire trends and extreme events is complicated by (1) the role of 
humans in ignitions, fire suppression, and management of forests and other biomes 
(Gauthier et al., 2015; Lin et al., 2014); (2) the importance of lightning, hence small-scale 
thunderstorms, in igniting large fire outbreaks; (3) the importance of larger-scale weather 
in the wildfire spread and growth into major events (specifically, winds and humidity for 
fire spread, and rain for extinguishing a fire outbreak; Abatzoglou and Kolden, 2011); 
and (4) the health of the forest (e.g., a white pine bark beetle infestation). Thus, 
attribution studies need to consider three time/space scales: (1) individual large fires, 
which are controlled primarily by short-term weather patterns; (2) regional-scale within-
season extreme fire periods, which are driven by seasonal weather patterns; and (3) large 
fire seasons, which are regional-scale events resulting from climate teleconnections 
associated with persistent blocking ridges that cause extended fire seasons (with delayed 
season-ending rains). Pre-season preconditioning of soils and vegetation can play a role 
on all three timescales. 
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Prior Knowledge and Overview of Attribution Studies 
 

Analysis of wildfire trends and extremes is limited by the availability of 
consistent data records. For example, fire surveillance methods have improved in recent 
decades; the area actually burned by a fire can be less than the area within the fire 
perimeter; and some metrics of fire activity include only large fires. There has been an 
overall increase in the area burned in the United States over the past several decades 
(Figure 4.4). The increase is especially apparent in the West. Trends are less apparent in 
Canada, where the area burned by large fires increased from the 1960s to the 1980s and 
1990s, after which there has not been an increase (Krezek-Hanes et al., 2011). Globally, 
however, fire weather season lengths showed significant increases during 1979-2013 
across more than 25% of the Earth’s vegetated surface, resulting in a 19% increase in the 
global mean fire weather season length (Jolly et al., 2015).  

Periods of unstable atmospheric conditions result in high winds, rapid fire growth, 
extreme fire behavior, and convective storms that provide lightning for ignitions. Because 
climate models do not explicitly include lightning (or explicit formulations of convective 
storms), atmospheric stability and rain rate have been used to construct indices of 
lightning activity derived from model output. In an application of this approach to the 
output of a set of global climate models, Romps et al. (2014) project an increase in 
lightning strikes over the contiguous United States by 12% (+/-5%) per °C of global 
warming, or about 50% over this century.  

Wildfires are closely associated with heat and drought, so some of the attribution 
issues pertaining to extreme wildfires and their likelihoods are covered in the preceding 
subsections on heat and drought. One of the earliest attribution studies showed that the 
increase of wildfire burn areas in Canada during 1959-1999 was consistent with 
anthropogenic summer warming (Gillett et al., 2004). 

In addition to the controls by climate and weather (highlighted above), the 
availability of fuels and hence the state of the vegetation affects individual fires, as well 
as overall fire season severity. Attribution studies have generally used climate model 
output in conjunction with vegetation models or with metrics of fire risk derived from 
model-simulated precipitation and temperature. An example of the latter is recent study 
by Yoon et al. (2015), who use ensembles of historical and future (RCP 8.5) simulations 
by the CESM model to show that an increase in fire risk in California is attributable to 
climate change. Beginning in the 1990s, the later part of the historical simulation, a clear 
separation emerges between fire risks driven by only natural variability (the 
counterfactual climate, a long pre-industrial simulation) and by anthropogenic climate 
forcing (Yoon et al., 2015, Fig. 2.2). These results indicate that an increase in fire risk in  

California is attributable to climate change, consistent with the occurrence since 
2010 of several of the most severe fire years on record in California since 2010.  

Similar model-derived results have been obtained for the broader western United 
States (Luo et al., 2013; Yue et al., 2013), Alaska (Mann et al., 2012) and for Canada 
(Flannigan et al., 2015). In the latter study, each degree of warming was found to require 
a precipitation increase of 15% to offset the temperature-driven decrease of the moisture 
content of fine surface fuels.  
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surface modules that are either run offline or coupled to coarser-resolution atmospheric 
models.  

 
  

EXTREME RAINFALL 
 

Event Type Definition 
 

An extreme rainfall event is defined as one in which precipitation over some 
specified time period exceeds some threshold, either at a point (i.e., as measured by a 
single rain gauge), or in an average over some spatial region.  

In practice, the definition of an extreme rainfall event varies widely. Time periods 
of interest can vary from hourly to monthly. The choice of threshold is also quite 
variable. Some studies use fixed absolute thresholds (e.g., 25.4 mm or 1 inch/day), while 
others use a fixed percentile based on the distribution at a given location, in order to 
capture variations in what “extreme” means in practice in different regions. Some studies 
do not use thresholds at all. For example, some studies use annual or seasonal maxima 
(e.g., 24-hour precipitation accumulation). This is also the approach that is used to 
develop the intensity duration frequency (IDF) curves for extreme precipitation that are 
used in engineering practice. 

Extreme precipitation can typically be traced to forcing associated with strong 
vertical motion and significant water vapor (Westra et al., 2014). Extreme precipitation is 
associated with an array of meteorological processes including tropical cyclones, 
extratropical cyclones, monsoons, atmospheric rivers, and localized convection (Kunkel 
et al., 2013).  

Changes in extreme rainfall can be quantified using empirically defined metrics 
such as trends in the frequency with which some specified threshold is exceeded. 
Alternatively, statistical methods rooted in extreme value theory (Coles, 2001) can be 
used, allowing return levels for the most extreme events to be quantified (Kunkel et al., 
2013). 

Attribution of regional precipitation extremes is more challenging than that of 
temperature extremes (Bhend and Whetton, 2013; van Oldenborgh et al., 2013). 
Numerical models, as a rule, do not simulate precipitation as well as they do temperature, 
because of the smaller space and time scales of the precipitation field and the strong 
reliance on parameterizations of convection and other physical processes in all but the 
highest-resolution models. Kendon et al. (2014) argue that convection permitting models 
on the order of 1.5 km horizontal resolution are necessary to resolve convective processes 
associated with certain types of events. The salient lesson is caution is required with 
extreme rainfall analysis of lower resolution models. 

 
 

Prior Knowledge and Overview of Attribution Studies 
 

More intense and more frequent extreme precipitation events have long been 
projected in a warming climate (Hartmann et al., 2013; Hirsch and Archfield, 2015). An 
array of studies continues to provide strong support for upward trends in the intensity and 
frequency of extreme precipitation events (Seneviratne et al., 2012; Kunkel et al., 2013). 



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

Chapter 4: Attribution of Individual Classes of Extreme Events 85 
   

PREPUBLICATION COPY 

Wuebbles et al. (2014) project that such trends will continue and that heavy precipitation 
in simulations in CMIP5 may be underestimates relative to observed trends. Regarding 
the recent historical record, Hartmann et al. (2013) state: “It is likely that since about 
1950 the number of heavy precipitation events over land has increased in more regions 
than it has decreased. Confidence is highest for North America and Europe where there 
have been likely increases in either the frequency or intensity of heavy precipitation with 
some seasonal and/or regional variation. It is very likely that there have been trends 
towards heavier precipitation events in central North America. With respect to future 
projections, Kirtman et al. (2013) state: “The frequency and intensity of heavy 
precipitation events over land will likely increase on average in the near term. However, 
this trend will not be apparent in all regions because of natural variability and possible 
influences of anthropogenic aerosols.” 

Global atmospheric water vapor concentrations are robustly expected to increase 
with temperature at a rate of around 6-7% per degree Celsius, approximately consistent 
with the saturation value as determined by the Clausius-Clapeyron relation, because 
observed and projected changes in relative humidity are small (e.g., Held and Soden, 
2006; Wright et al., 2010). Global mean rainfall values cannot increase at this rate 
because of global energy budget constraints (e.g., Held and Soden 2006). Extreme 
rainfall events are not subject to these constraints, and a simple hypothesis is that the 
intensity of such events should increase at the rate that water vapor does (Allen and 
Ingram, 2002). This would be the case if the atmospheric circulation (including the 
strength of convective updrafts) were to remain constant in amplitude and structure. Dean 
et al. (2013) conclude that moisture availability was 1% to 5% higher for an extreme 
precipitation event in New Zealand because of anthropogenic greenhouse gases. They 
also conclude that the number of synoptic events with ample moisture for extreme rain 
events increased. Integrated Water Vapor Transport (IWVT) associated with 
Atmospheric Rivers (ARs) has also been shown to increase using CMIP-5 models under 
RCP8.5 (Warner et al., 2015). This led to increased mean and extreme winter 
precipitation along the west coast of the United States. 

Analysis of trends in extremes thus sometimes focuses on whether trends in either 
models or observations are less than, equal to, or greater than that expected from 
Clausius-Clapeyron (e.g., Lenderink and Van Meijgaard, 2008; O'Gorman and Schneider, 
2009; Singleton and Toumi, 2013). This is useful in that it separates the relatively well-
understood role of increasing specific humidity from the much less well-understood role 
of changes in updraft strength or vertical structure, focusing attention on possible physics 
behind the latter to the extent it is found to be important.  

Consistent with this expectation, Kunkel et al. (2013) note that trends in the mean 
are less than those in the extreme values. Wuebbles et al. (2014) summarize key findings 
using the extreme precipitation index (EPI) and note an upward trend in the both intensity 
and frequency of extreme precipitation events in United States. A number of other studies 
have noted statistically significant increases in the frequency of occurrence or intensity of 
extreme precipitation events with durations ranging from hours to several days in various 
parts of the world (Donat et al., 2013; Krishnamurthy et al., 2009; Mann and Emanuel, 
2006; Westra et al., 2013) 

Westra et al. (2013), using land-based data, find that annual maxima of one-day 
precipitation have increased significantly, with a central estimate of roughly 7% per 1-
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degree C temperature rise. Herring et al. (2014) cite a number closer to 5.3% per 1-degree 
C temperature rise, though within the uncertainty range of Westra et al. (2013). Janssen et 
al. (2014) update previous EPI-based studies and evaluated climate model simulations 
using Representative Concentration Pathways. Their results find increasing trends in 
extreme precipitation over the continental United States. Zhang et al. (2013) conclude 
that increases in Northern Hemisphere precipitation extremes since 1951 can be partially 
attributed to human influence on the climate (Zhang et al., 2013), estimating a sensitivity 
of 5% per degree C in intensity. Their findings suggest that 1-in-20 year events in the 
1950s are trending towards becoming 1-in-15 year events, which translates to a FAR of 
25% and a RR of 1.33. 

Most approaches to attribution of regional precipitation extremes have utilized 
ensembles of global models, a specific model in conjunction with a long historical record, 
or non-parametric statistical analyses of observational climate datasets.  

Hoerling et al. (2014), using NASA Goddard Earth Observing System Model, 
Version 5 (GEOS-5) simulations, conclude that the extreme 5-day rainfall in northeast 
Colorado (2013) could not be conclusively linked to anthropogenic climate change. In 
fact, they argue that such events may have become less frequent in that region. By 
contrast, they did note that Sillman et al. (2013a; 2013b) show increases in 5-day rainfall 
intensities for the globe and in the overall averages by the end of the 21st century. The 
strength of Hoerling et al.’s simulations lies in the 1-degree model simulations available 
over a significant period of the record (1871-2013), which allow for robust statistical 
analysis and characterization of the tails of the distribution. However, model uncertainty 
itself is not addressed, nor is the dynamic mechanism for the simulated weakening of 
precipitation extremes in northeast Colorado identified or its robustness assessed. 

Knutson et al. (2014) analyze seasonal precipitation extremes in the regions of the 
United States in 2013, using Global Historical Climate Network data in combination with 
CMIP5 output to perform attribution to external forcing (natural and anthropogenic 
combined). They find a role for external forcing in some of the observed extremes, and 
“some suggestion of increased risk attributable to anthropogenic forcing,” but are not 
able to clearly distinguish anthropogenic from natural forcing as their study design did 
not separate these. Otto et al. (2015c) use very large ensemble or regional-scale models in 
a probabilistic event attribution study in the United Kingdom. Their results are somewhat 
conflicting in terms of whether anthropogenic forcing contributed to extreme summer 
precipitation events. They find that the risk of an extreme rainfall event doubled in July 
because of anthropogenic forcing but not in the other summer months. The authors 
suggest that the Clausius-Clapeyron relationship governs the July results but that 
unresolved dynamic processes are likely playing some role as well. 

 
 

On the Horizon 
 

Most of the attribution studies related to precipitation extremes have been 
conducted with a limited number of models or limited simulation samples. Larger multi-
model ensembles would increase confidence. Heterogeneity issues in surface 
observations needs to continue to be addressed also. Though convective parameterization 
continues to be a challenge of modeling studies addressing precipitation, increasing 
computer power and model spatial resolution should mitigate this limitation. 



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

Chapter 4: Attribution of Individual Classes of Extreme Events 87 
   

PREPUBLICATION COPY 

As the data record of satellite-based precipitation estimates lengthens, they may 
become viable for trend detection and attribution studies for extreme precipitation. 
Satellite-based studies are emerging as particularly useful for assessing regional and 
global extremes, particularly over the oceans and poorly instrumented regions (Lockhoff 
et al., 2014, Pombo et al., 2015). The Global Precipitation Measurement (GPM) mission 
and other capabilities will be beneficial in the coming years to decades (Hou et al., 2014). 

As stated by Otto et al. (2015c), it will be critical that future studies better 
understand and resolve the multiple meteorological causes of heavy precipitation in order 
to better grasp causality and attribution. This statement will be relevant to any future 
attribution studies on extreme rainfall events.  

 
 

EXTRATROPICAL CYCLONES 
 

Event Type Definition 
 

The term “extratropical cyclone” refers to the migratory frontal cyclones of 
middle and high latitudes, which are embedded within the large-scale westerly flow and 
thus move from west to east. There is not a unique operational definition, though a 
number of features are commonly agreed to be important. Extratropical cyclones derive 
their energy from the horizontal temperature contrasts in the extratropical atmosphere, 
through the process of baroclinic instability, and often contain fronts, though they may 
also be strengthened by latent heat release. Extratropical cyclones can also arise as 
tropical cyclones lose their axisymmetry and other tropical features in the process of 
extratropical transition. Studies generally define extratropical cyclone intensities either by 
minimum surface pressure (converted to sea level) or by maximum lower-tropospheric 
vorticity.  

The impacts of extratropical cyclones are generally felt through frontal 
precipitation, storm surges, or windstorms; the latter are often concentrated in so-called 
”sting jets” embedded within the synoptic system. Storm surges warrant special treatment 
because they also depend on tidal variations and on sea-level rise, not just on the storm 
itself. 
 
 

Prior Knowledge and Overview of Attribution Studies 
 

Statistics of observed events exhibit pronounced multi-decadal variability, often 
linked with large-scale circulation patterns such as the NAO (North Atlantic Oscillation). 
Although trends are sometimes reported in the literature, they are highly sensitive to the 
period chosen and to how the storms are defined. Assessments of historical centennial 
timescale changes have to be based largely on reanalyses, which may contain long term 
heterogeneities (Krueger et al., 2013). As a result there is no consensus on attributed 
trends in observations, at least in the northern hemisphere. A recent comprehensive 
review for the North Atlantic and northwest Europe is provided by Feser et al. (2015b), 
and for the U.S. East Coast by Colle et al. (2015). 

The expected effect of human-induced climate change on extratropical cyclones is 
unclear because there are competing factors: The reduction in pole-to-equator 
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temperature gradient expected from polar amplification would tend to weaken cyclones, 
but the increase in moisture would tend to strengthen them, as would the increase in 
upper tropospheric temperature gradient (O'Gorman, 2010). Although the IPCC AR4 
concluded that cyclones would be expected to strengthen, this was based on a study 
(Lambert and Fyfe, 2006) that used minimum surface pressure as the index; the overall 
expected decrease in surface pressure at higher latitudes thus induced a trend which was 
not actually related to cyclone intensity. In the AR5 future projections of extratropical 
cyclones were found to be uncertain (Christensen et al., 2013).  

Moreover the storm-track positions could change location in the future. Zappa et 
al. (2013b) find an overall intensification of the wintertime storm track over northern 
Europe in the CMIP5 models and a weakening of the Mediterranean storm track, but the 
confidence in this projection remains uncertain as the relevant physical processes are not 
yet understood. Seiler and Zwiers (2015b, a) find that explosive cyclones, “rapidly 
intensifying low pressure systems with severe wind speeds and heavy precipitation,” tend 
to shift poleward in the northern hemisphere, decrease in frequency due to weakening 
baroclinicity, and increase slightly in intensity. Hoskins and Woollings (2015) discuss the 
various physical mechanisms that have been proposed for driving anthropogenic 
circulation changes at midlatitudes and their link to weather extremes and conclude that 
there is substantial uncertainty concerning what can be expected in the future. 

Human influence appears to be stronger in the southern hemisphere, where it has 
been exerted through stratospheric ozone depletion. Model-based attribution studies have 
found an ozone depletion influence on southern hemispheric extratropical cyclones and 
associated extreme precipitation, evident most clearly in a poleward shift in the storm 
track (Grise et al., 2014; Kang et al., 2013). 

Yang et al. (2015) use a seasonal prediction system to assess the drivers of the 
extreme storminess over central United States and Canada in winter 2013/2014; they 
found no evidence of a human influence, but a FAR in the range 33-75% due to the 
multiyear anomalous tropical Pacific winds.  

Marciano et al. (2015) run a weather model to simulate observed individual 
wintertime extratropical cyclone events along the U.S. East Coast in present-day and 
project future thermodynamic environments, and find increases in precipitation, cyclone 
intensity, and low-level jet strength resulting from the increased latent heat heating. 
However this was for the future; there was no assessment of the human influence so far. 
For storm surges, the contribution from sea level rise has been estimated under the highly 
conditioned assumption of no change in storminess; Lopeman et al. (2015) perform such 
a study for Hurricane Sandy (2012; technically an extratropical cyclone at landfall), while 
Colle et al. (2015) discuss longer-term changes in New York City. In both cases, the 
anthropogenic contribution to past storm surges was estimated to be small, but predicted 
to become a substantial factor (in terms of decreases in return periods) over the course of 
this century.  

Since extratropical cyclones are defined as discrete events rather than extreme 
values of continuous time series, observation-based methods for attribution using extreme 
value theory may not apply as straightforwardly to extratropical cyclones as to some 
other event types. However, both van Oldenborgh et al. (2015) and Wild et al. (2015) use 
observational analysis to challenge the suggestion (e.g., Huntingford et al., 2014) that the 
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intense storminess over the UK in winter 2013/2014 was driven by anomalously warm 
Pacific SSTs, which might have an anthropogenic component. 

 
 

On the Horizon 
 

Trzeciak et al. (2014) suggest that although current global climate models 
generally under-represent the intensity of extratropical cyclones due to insufficient latent 
heat release, once the horizontal resolution is finer than about 100 km they should be 
adequate, and that the systematic biases will then mainly involve storm track location. 
Seiler and Zwiers (2015b) found that resolution is not correlated with explosive storm 
intensity across the CMIP5 ensemble, but note that competing effects of vertical 
resolution and model physics inhibit strong interpretation of that result. Horizontal 
resolution has been found to be important in sensitivity studies with single models (e.g., 
Jung et al., 2006) and idealized simulations of extratropical cyclones have been shown to 
be limited by resolution and dissipation at typical climate model resolutions (Polvani et 
al., 2004). Thus it may still be the case that resolution is a factor limiting analyses of 
storm intensity, and that improvements in resolution will be beneficial to future 
attribution studies. Zappa et al. (2013a) showed that the location biases (features 
simulated with some fidelity but occurring in the wrong location) in CMIP5 models are 
generally very severe in the North Atlantic. As a result, typically the model biases in 
storm count at specific locations are several times larger than the change expected under 
RCP8.5 at the end of the century. Experience with medium-range and seasonal prediction 
systems have shown that these biases tend to be alleviated with higher spatial resolution, 
however. Thus it is currently feasible to run global models with a reasonable 
representation of extratropical cyclones. The main issue for event attribution is then to 
assess whether simulated anthropogenic changes in the large-scale circulation that affect 
the storm tracks are credible. Without a robust physical understanding of the processes 
controlling such changes, or a clear signature in observations, this will be a challenge 
(Hoskins and Woollings, 2015).  

Any attribution of the impacts of extratropical cyclones—frontal precipitation, 
storm surges, or windstorms—would likely have to downscale the synoptic situation in 
some credible manner, which for the foreseeable future will require a highly conditioned 
framework. 

 
 

EXTREME SNOW AND ICE STORMS 
 

Event Type Definition 
 

Severe winter weather includes snow and ice (freezing rain) storms, often 
accompanied by wind. While there are no universal criteria for defining extreme snow or 
ice storms, the National Weather Service typically issues heavy snow warnings for 
expected accumulations of 6 inches in 12 hours (or 8 inches in 24 hours) and ice storm 
warnings for expected ice accumulations of ¼ inch or more. Impacts of a snow or ice 
storm are compounded by wind as well as by the population of the area impacted by the 
storm. Region-specific impact indices have been developed, for example, the Northeast 
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(U.S.) Snowfall Impact Scale (NESIS), which combines snowfall amounts and the 
number of people residing in the affected area. The absence of universal metrics for 
assessing heavy snow and ice events complicates the analysis of trends and attribution 
studies. In addition, snowfall measurements are known to suffer from heterogeneities 
such as gauge undercatch, and data on snow depth are of limited value for determining 
the snowfall from a single storm, as compaction and drifting are common with winter 
snow events. Lack of in situ measurements hinders the analysis of extreme snow and ice 
events in sparsely populated areas. 

 
 

Prior Knowledge and Overview of Attribution Studies 
 

Overall snow cover has decreased in the Northern Hemisphere, due in part to 
higher temperatures that shorten the time snow is on the ground (Derksen and Brown, 
2012). However, few studies have addressed trends in heavy snow and ice events, 
especially over regional and larger spatial scales. For the entire Northern Hemisphere, the 
summary in the preceding section (Extratropical cyclones) showed that there is mixed 
evidence for trends in the frequency and intensity of cold-season storms, regardless of 
whether they produce snow and/or freezing rain. Several studies of overall storm 
frequencies also indicate a northward shift in the primary tracks during winter (Seiler and 
Zwiers, 2015b, a; Wang et al., 2013). Theory suggests that for the coldest climates, the 
occurrence of extreme snowfalls should increase with warming due to increasing 
atmospheric water vapor, while for warmer climates it should decrease due to decreased 
frequency of sub-freezing temperatures, though by less than mean snowfall decreases 
(O'Gorman, 2014). 

Over the century timescale, data from 1900 to the early 2000s show no significant 
trend in the percentage of the United States experiencing seasonal snowfall totals in the 
upper (or lower) 10 percentiles defined from the record as a whole (Kunkel et al., 2009). 
However, when the top 100 snowstorms (defined on the basis of snowfall amount and 
areal coverage) are evaluated for various regions of the United States, there are 
substantial increases in the frequencies of occurrence from 1901-1960 to 1961-2013 in 
the northern regions (Northern Plains, Upper Midwest, Ohio Valley and Northeast) but 
not in the southern regions of the United States (Figure 4.5).  

To the committee’s knowledge, recent analyses of the frequencies of ice storms in 
the United States are lacking. Earlier studies of the number of freezing rain days 
(regardless of amount or intensity) showed no evidence of systematic trends in freezing 
rain occurrences over the United States during the latter half of the 20th century 
(Changnon and Karl, 2003; Houston and Changnon, 2006). However, there are 
indications of increases in ice storms in the North Atlantic subarctic (Hansen et al., 
2014a). 

In view of the data limitations and the ambiguities in event definition, it is not 
surprising that there have been few attribution studies of global or regional trends in 
observations of extreme snow and ice events. However, there have been several 
attribution studies of particular events, conditioned on initial conditions in the 
atmosphere. Edwards et al. (2014) simulate the western South Dakota blizzard of October 
2013, finding no difference in accumulated snowfall (snow water equivalent) between 
pre-industrial counterfactual runs and modern-day simulations. Anel at al. (2014) use an  
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ensemble of model simulations of recent winters to conclude that heavier-than-normal 
snowfall seasons in the Spanish Pyrenees are not directly attributable to anthropogenic 
forcing. Wang et al. (2015b) show that Himalayan blizzards such as the October 
2014event have an increased likelihood of occurrence when tropical cyclones from the 
Bay of Bengal interact with stronger extra-tropical systems, and inferred an “increased 
possibility” of such circumstances in future. In an earlier study conditioned on sea surface 
temperatures, Barsugli et al. (1999) find that the major ice storm of 1998 in the 
northeastern United States and eastern Canada was simulated more accurately when 
observed El Niño ocean temperature anomalies in the tropical Pacific were prescribed. 
With the possible exception of tropical cyclone connection in the study by Wang et al. 
(2015b), none of the event attribution studies point to anthropogenic climate change as a 
major factor in the heavy snow events. However, the sample of case studies of extreme 
snow events examined to date is too small to rule out possible anthropogenic warming 
effects . While trends in freezing rain events in the northern middle latitudes are prime 
candidates for effects of anthropogenic warming (Cheng et al., 2011; Klima and Morgan, 
2015), systematic analyses of observed trends in freezing rain events have yet to be 
performed. 
 
 

On the Horizon 
 

Attribution of extreme snow and ice events suffers from a similar challenge as 
some other extreme event types in that the events are strongly governed by the 
atmospheric circulation, for which externally forced changes are uncertain. For this 
reason, attribution of extreme snow and ice storm events may benefit from an emphasis 
on the thermodynamic state during particular events, as argued by Trenberth et al. (2015). 
Conditional attribution studies of snow and ice storms have lagged behind similar studies 
for other event types. 

The databases underlying assessments of heavy snow and icing events have major 
deficiencies that hinder trend detection as well as attribution studies. It is likely that 
events are missed and/or their severity underestimated. The construction of databases 
suitable for attribution studies merits consideration and action in the observing 
community. 

Finally, recent cold winters and heavy snow events in the northern United States 
have raised public awareness of this type of event. The number of high-impact events in 
the northeastern United States, as measured by the population-weighted NESIS index, 
increased abruptly in the 2006-2015 period. This apparent abrupt increase, as well as the 
need to distinguish changes in drivers from changes in impacts, makes clarification of the 
role of anthropogenic climate change in snowstorms affecting the northern United States 
a high priority. 
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TROPICAL CYCLONES 
 

Event Type Definition 
 

NOAA defines a tropical cyclone as “A warm-core non-frontal synoptic-scale 
cyclone, originating over tropical or subtropical waters, with organized deep convection 
and a closed surface wind circulation about a well-defined center.” In each region of the 
globe which is prone to tropical cyclones, a Regional Specialized Meteorological Center, 
under the World Meteorological Organization (WMO), determines when a given system 
is a tropical cyclone and determines its intensity from available observations.  

The intensity of a tropical cyclone is conventionally understood to indicate its 
maximum sustained wind speed. This is only a loose guide to the potential severity of a 
given storm’s impacts, however, as hazards associated with cyclones include both coastal 
and freshwater flooding as well as winds. A specific tropical cyclone event might also be 
defined for attribution purposes by storm surge, precipitation, storm size, economic 
damage, or other variables. For some of these quantities, observations are inadequate.  

Maximum sustained wind speed itself is determined largely from satellite images, 
with in situ observations used where available. Uncertainties are significant (e.g., Knaff 
et al., 2010; Landsea and Franklin, 2013; Velden et al., 2006; Figure 4.6) and may be 
greater for other variables, such as storm surge in regions where automated tide gauges 
are not available.  

Even with good observations, the severity of an event may be very different in 
different variables. A storm may have weak winds, for example, but still cause a major 
disaster due to precipitation, storm surge, or high vulnerability. Attribution studies, 
similarly, may reach different conclusions depending on which variable is considered, 
without necessarily implying any contradiction. 

To the committee’s knowledge, purely observation-based methods have not been 
used to perform event attribution studies on tropical cyclones. Methods that rely on 
extreme value theory (e.g., van Oldenborgh et al., 2015) are not practical for tropical 
cyclones. These methods rely on the existence of a continuous time series for the variable 
of interest, while tropical cyclones are rare events that do not provide such time series. 
Many studies (as discussed below) look for trends in tropical cyclone statistics, but these 
have for the most part been inconclusive even on regional or global scales. 

 
 

Prior Knowledge and Overview of Attribution Studies 
 

Many studies have examined whether long-term trends exist in tropical cyclone 
statistics. Assessment of these trends is difficult due to the shortness of observational 
records in many basins; large natural variability, including at low frequencies, which may 
obscure any longer-term trends; and changes in observing systems and practices over 
time, which introduce heterogeneities into the observations even in those basins which do 
have relatively long-term records. Synthesis studies typically find that long-term trends 
cannot be clearly detected in tropical cyclone numbers, intensities, or integrated measures 
of activity, using specified thresholds of statistical significance against a null hypothesis 
of zero trend (e.g., IPCC, 2014; Knutson et al., 2010; Walsh et al., 2015). An exception 
may be the frequency of the most intense storms.  
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resolutions are too low to produce good simulations of tropical cyclones. The field has 
advanced greatly in recent years due to the existence of higher-resolution global 
atmospheric models (e.g., Yoshimura and Sugi, 2005; Zhao et al., 2009), as well as 
innovative downscaling techniques which combine higher-resolution regional or 
idealized models of tropical cyclones with global models of climate change (Emanuel, 
2006), or statistical refinement techniques to address the limitations on cyclone intensity 
posed by limited resolution (Zhao and Held, 2010). 

Based in large part on these new models, broad consensus has emerged as to the 
expected future trends and their levels of certainty (e.g., IPCC, 2013; Knutson et al., 
2010; Walsh et al., 2015). Tropical cyclones are projected to become more intense as the 
climate warms. There is considerable confidence in this conclusion, as it is found in a 
wide range of numerical models and also justified by theoretical understanding, 
particularly because there is a well-established body of theory for the maximum potential 
intensity of tropical cyclones (e.g., Bryan and Rotunno, 2009; Emanuel, 1986, 1988; 
Holland, 1997). The rate of intensification per degree of global mean surface warming 
remains quantitatively uncertain. However, because maximum potential intensities are 
projected to rise (e.g., Camargo, 2013), future observations of tropical cyclones with 
intensities significantly higher than those observed in the past would be consistent with 
expectations in a warming climate and attribution studies for such storms would have a 
firm basis in physical understanding. 

The global frequency of tropical cyclone formation is projected to decrease 
(Camargo et al., 2014; Knutson et al., 2008, 2010; Seneviratne et al., 2012; Walsh et al., 
2015), but there is less confidence in this conclusion than in the increase in intensity; 
some credible models produce increases in frequency (Emanuel, 2013). The uncertainty 
is still greater in projections of tropical cyclone frequency in individual basins. Changes 
in the frequency of the most intense storms are related to changes in both the frequency 
of all storms and the average storm intensity, and thus are less certain than the intensity 
changes alone since reduced frequency and increased intensity have opposing effects ; 
Christensen et al. (2013) state that the frequency of the most intense storms “will more 
likely than not increase substantially in some basins under projected 21st century 
warming.” Precipitation in tropical cyclones is expected to increase, because of the 
increased water vapor content of the atmosphere, similarly to other extreme precipitation 
events; Christensen et al. (2013) express “medium confidence” in this projection. While 
there are only a few projections of changes in storm surge itself, total coastal flood 
depths, relative to fixed elevations, are confidently projected to increase as a consequence 
of sea level rise (e.g., Hoffman et al., 2010; Woodruff et al., 2013). Coastal flood risk due 
to storm surge is projected to increase due to both sea level rise and tropical cyclone 
intensity change, though the influence of the latter is more model-dependent (e.g., 
Emanuel, 2008; Lin et al., 2012). 

To the committee’s knowledge, attribution studies of single tropical cyclones 
using large ensemble simulations (without conditioning on event occurrence), for 
example, as needed to calculate a FAR, have not been performed. Murakami et al. 
(2015), however, executed a study of this kind with a global high-resolution model to 
perform attribution on a single tropical cyclone season as a whole.  

The highly-conditioned method has been used in a few recent studies of 
individual tropical cyclones. Trenberth and Fasullo (2007) and Wang et al. (2015a) 



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

96 Attribution of Extreme Weather Events in the Context of Climate Change 
 

PREPUBLICATION COPY 

estimate the role of climate change in the rainfall produced by pairs of individual storms 
in the United States and Taiwan. Lackmann (2015) simulate Hurricane Sandy (2012) in a 
high-resolution regional model nested into large-scale climate fields obtained from 
coupled simulations representing conditions in 1900, 2012, and 2100. Irish et al. (2014) 
consider the influence of anthropogenic climate change on the flooding due to Hurricane 
Katrina (2005), including an estimate of the potential anthropogenic influence on the 
hurricane’s intensity as well as the role of sea level rise in increasing the total water depth 
relative to a fixed benchmark. All these studies find modest increases in their respective 
measures of event intensity due to warming. The highly-conditioned approach may be 
particularly attractive for tropical cyclone studies because large-ensemble approaches 
have not yet been practical, while a range of tools exists for modeling individual storms 
and their impacts. 

 
 

On the Horizon 
 

Though not practical in the past, large-ensemble attribution studies of individual 
tropical cyclones are becoming technically possible. High-resolution global models now 
exist which simulate tropical cyclones reasonably well (e.g., Shaevitz et al., 2014) and 
could be used for this purpose; the challenge is the high computational cost per 
simulation year as well as the large number of years required for statistical significance. 
Downscaling methods, whether statistical, dynamic, or hybrid (e.g., Emanuel, 2006) can 
be much less computationally expensive and could be used today for such studies (e.g., 
Takayabu et al., 2015). These methods typically require specified SST and so would be 
conditional on a given SST scenario as well as greenhouse gas increases. In addition to 
this, model quality requirements, and other issues typical of other extreme events, the 
lack of consensus on the significance of observed trends in TC statistics would pose an 
additional challenge to the interpretation of such studies for tropical cyclones. As one of 
the difficulties in trend detection studies is the sample size in the presence of large low-
frequency natural variability, however, model-based attribution studies would have an 
advantage to the extent that they could generate larger sample sizes than those available 
from observations. 
 
 

SEVERE CONVECTIVE STORMS 
 

Event Type Definition 
 

Severe convective storms are those that produce strong winds, hail, tornadoes, 
extensive lightning, or heavy precipitation. Usually these storms occur over land. The 
term “convection” in meteorology refers to strong vertical motion—updrafts and 
downdrafts—driven by buoyancy in the atmosphere. In practice, the term “severe” is 
typically applied when some variables exceed specified thresholds, e.g., wind speeds 
greater than 25 m/s or hailstones larger than 2 cm (Doswell III, 2001). The term 
“hazardous convective weather” has also been used (e.g., Tippett et al., 2015). 

Severe convective storms are small in both spatial extent and temporal duration 
compared to many other extreme weather events. The most extreme hazards, such as 
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tornadoes and large hail, are particularly localized and not well resolved by conventional 
meteorological observations. As a consequence, reports by amateur observers on the 
ground form the longest and most direct observational data sets, at least in the United 
States. In much of the world, good long-term report data do not exist, and where they do 
their formats are generally not uniform from country to country. Even within the United 
States, there are considerable heterogeneities in space and time. The intensities of 
tornadoes are generally assessed not by direct observation but by surveys of damage on 
the ground after the fact. This also requires human judgment, introducing additional 
inhomogeneity. It is possible to assess some aspects of severe convective storm weather 
from radar and other remote sensing observations, and new data sets are being developed 
which may allow these observations to be used for climate purposes, but these do not yet 
have records comparable in length to observer reports. 

Based on both physical understanding and empiricism, there is some knowledge 
of what large-scale environmental conditions are favorable to the formation of severe 
convective storms. Vertical instability to buoyant ascent—associated with unusually 
warm humid near-surface air and cool air aloft (e.g., as measured by convective available 
potential energy [CAPE])—is required to form strong updrafts and downdrafts, while 
vertical wind shear enables those to organize into the larger convective storms that 
generate hail, tornadoes and other hazards (e.g., Brooks, 2013; Brooks et al., 2003). 
CAPE, shear, and other relevant environmental variables are better observed and have 
more homogeneous long-term records (both in direct observations and in observation-
based assimilation data sets such as reanalysis) than do severe convective storms 
themselves, so many climate studies focus on these large-scale variables. One limitation 
of this approach is that the associations between these variables and the storms are partly 
empirical and thus might change as climate does. Also, the occurrence of severe weather 
is by no means guaranteed by a favorable large-scale environment but requires initiation 
by a pre-existing disturbance of some kind, a process which appears less predictable and 
whose dependence on climate is not well understood. 

 
 

Prior Knowledge and Overview of Attribution Studies 
 

Detection of trends is difficult due to data heterogeneities. In the United States, 
observations of both tornadoes and hail show significant increases over the latter half of 
the 20th century, but these are widely understood to be artifacts of increased frequency of 
reporting rather than actual meteorological trends (e.g., Brooks and Dotzek, 2007). 
Environmental variables predictive of tornado formation, for example, do not show the 
trends that tornadoes themselves do (Tippett et al., 2015). Studies of trends in the United 
States find different results depending on the time period and spatial region chosen, but 
there is no broad agreement on the detection of long-term trends in overall severe 
convective storm activity such as might be related to anthropogenic climate change. 
There are some consistent indications in the literature of increased year-to-year 
variability, as well as concentration of activity in fewer outbreaks of larger magnitude 
(Sander et al., 2013; Tippett, 2014), but no clear connection between this and climate 
change. 

Several studies have used climate model projections to estimate the effect of 
greenhouse gas increases on future severe convective storm (SCS) activity in the United 
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States. Due to the impossibility of adequately simulating severe convection in low-
resolution climate models, these studies all focus on changes in large-scale environmental 
variables associated with SCS activity (e.g., CAPE and vertical wind shear) rather than in 
the storms themselves, a form of statistical downscaling.  

These studies show that the climate models project conflicting signals for the two 
primary predictors of SCS activity over the U.S. plains, where storm activity is greatest in 
the current climate (e.g., Trapp et al., 2007). Convective instability increases in a 
warming climate, but wind shear decreases. Changes in storms will depend on which of 
these dominates the other. Studies to date suggest that instability wins, such that SCS 
activity will increase (Diffenbaugh et al., 2013; Trapp et al., 2009). This conclusion could 
be sensitive to the details of the environmental index chosen, given that the two effects 
are competing. The limited number of such studies is presumably the reason why recent 
reports do not include detailed assessments of future projections of SCS activity. The 
IPCC Special Report on Extremes (Seneviratne et al., 2012) did consider hail distinctly 
from other precipitation extremes, finding that “Confidence is still low for hail 
projections particularly due to a lack of hail-specific modelling studies, and a lack of 
agreement among the few available studies.” 

Highly conditioned approaches are feasible for SCS today, using either 
environmental indices or small-domain, high-resolution models forced by environmental 
conditions derived from larger-scale ones, as has been done earlier for tropical cyclones 
(Knutson and Tuleya, 2004; a small number of studies have already been done using this 
methodology for future scenarios (Gensini and Mote, 2015; Trapp and Hoogewind, 
2016). 

The committee is not aware of any attribution studies of any kind for individual 
SCS events, whether single storms or outbreaks consisting of multiple storms.  

 
 

On the Horizon 
 

Attribution studies of SCS events are technically feasible, but require steps 
beyond those necessary for some other types of events due to their fine spatial and time 
scales. A large ensemble approach to attribution can probably only be done for 
environmental indices predictive of SCS activity, rather than the SCS activity itself. This 
additional statistical downscaling step would add another layer of uncertainty to the 
interpretation. As computing power increases, convection-permitting models can be used, 
allowing some degree of direct representation of SCS activity. For the most severe 
manifestations, such as tornadoes, explicit simulation in global or regional model 
attribution studies is probably not feasible in the near future.  

 
 

CHALLENGES AND OPPORTUNITIES FOR ATTRIBUTION OF INDIVIDUAL 
CLASSES OF EXTREME EVENTS 

 
Attribution is much more feasible for some events than others. The existing 

literature largely reflects this variability, with the most straightforwardly attributable 
event types having significant numbers of studies and the least having few or none. The 
difficulty of performing attribution on a given event type is a function of the space and 
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time scales of the event type; the adequacy of observations to resolve the event (and the 
availability of those observations over a long-term historical record); the ability of 
climate models to simulate the event; and the simplicity of that event type’s physical 
relationship to anthropogenic climate change. 

Extreme heat and cold events are the simplest events on which to perform 
attribution, and the ones for which the most mature literature exists. They are well-
resolved by available observations, relatively well-simulated in models; and their 
relationship to global warming—though not without its complexities—is straightforward 
compared to that of some other event types. Tornadoes (and more broadly, severe 
convective storms) are arguably the most difficult events to attribute, and accordingly no 
studies have been performed. These events are poorly observed, cannot be simulated in 
climate models at present, and have a complex and subtle relation to climate change, with 
competing factors tending to drive the response in opposite directions. The other event 
types lie in between. Droughts are more complex than heat and cold events, and thus 
more challenging targets for attribution. As large-scale events, however, droughts are still 
more straightforward in their meteorological aspects (i.e., leaving aside non-
meteorological components of drought including land use, water management decisions 
etc.) than some other event types. While the non-meteorological aspects of droughts can 
render them complex, the role of increasing temperature in exacerbating hydrological 
drought through increased evaporation is more straightforward, and increases confidence 
in attribution results that hinge on that mechanism. Tropical cyclones are among the more 
challenging event types, though somewhat more tractable than tornadoes due to their 
larger scales and better observations. Extratropical cyclones, extreme precipitation 
events, and snow and ice storms are in between these extremes. Wildfires present unique 
challenges due to the fact that they are not fundamentally meteorological events, and are 
difficult to classify on this spectrum. The committee assessed their confidence in event 
attribution capabilities for different classes of extremes, as illustrated in Figure 4.7 and 
Table 4.1. Figure 4.7 schematically depicts the committee’s assessment of the state of 
attribution science for specific event types along two axes. 
 

In all cases of event attribution, observations are critical, and at the same time 
improvement depends to some extent on improvement in numerical models. This need is 
most acute for those with the smallest space and time scales. To some extent increasing 
computer power, allowing higher resolution, will facilitate progress.  



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

100 
 

FIGURE
for differe
level of un
right-mos
of scientif
climate ch
recommen
below the
capability
additional
is not pos
understan
overcomin
further de

 4.7 Schemat
ent event type
nderstanding 
t column of T
fic confidence
hange for that
ndations in th
e 1:1 line indic
y through tech
l historical da
sible because

nding. In all ca
ng remaining

etails and cave

Attribution

P

tic depiction o
es. The horizo
of the effect 

Table 4.1. The
e in current ca
t event type (a
his report), an
cates an asses

hnical progres
ata), which wo
e this would in
ases, there is 

g challenges th
eats about thi

n of Extreme W

PREPUBLICA

of this report’
ontal position
of climate ch
e vertical pos
apabilities for
assuming the 
d draws upon
ssment that th
ss alone (such
ould move the
ndicate confid
potential to in
hat limit the c
s figure.

Weather Even

CATION COP

s assessment 
 of each even

hange on the e
ition of each 
r attribution o
attribution is

n all three colu
here is potenti
h as improved
e symbol upw
dent attributio
ncrease event
current level o

nts in the Con

Y 

of the state o
nt type reflect
event type, an
event type in

of specific eve
s carried out f
umns of Tabl
ial for improv

d modeling, o
ward. A positi
on in the abse
t attribution c
of understand

ntext of Clima

of attribution 
ts an assessme
nd correspond
ndicates an ass
ents to anthro
following the 
le S.1. A posi
vement in attr
r the recovery
ion above the
ence of adequ
confidence by
ding. See Box

 

ate Change 

 
science 
ent of the 
ds to the 
sessment 
opogenic 

ition 
ribution 
y of 
e 1:1 line 
uate 
y 
x 4.1 for 



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

Chapter 4: Attribution of Individual Classes of Extreme Events 101 
   

PREPUBLICATION COPY 

TABLE 4.1 This table, along with Figure 4.7, provides an overall assessment of the state of event 
attribution science for different event types. In each category of extreme event, the committee has 
provided an estimate of confidence (high, medium, and low) in the capabilities of climate models 
to simulate an event class, the quality and length of the observational record from a climate 
perspective, and understanding of the physical mechanisms that lead to changes in extremes as a 
result of climate change. The entries in the table, which are presented in approximate order of 
overall confidence as displayed in Figure 4.7, are based on the available literature and are the 
product of committee deliberation and judgement. Additional supporting information for each 
category can be found in the text of Chapter 4. The assessments of climate model capabilities 
apply to models with spatial resolutions (100km or coarser) that are representative of the large 
majority of models participating in CMIP5. Individual global and regional models operating at 
higher resolutions may have better capabilities for some event types, but in these cases, 
confidence may still be limited due to an inability to assess model-related uncertainty. The 
assessments of the observational record apply only to those parts of the world for which data are 
available and are freely exchanged for research. Most long records rely on in-situ observations, 
and these are not globally complete for any of the event types listed in this table, although 
coverage is generally reasonable for the more densely populated parts of North America and its 
adjacent ocean regions.  

z = high 
} = medium 
{ = low 

Capabilities of 
Climate Models to 

simulate event class  

Quality/Length of the 
observational record  

Understanding of 
physical mechanisms 
that lead to changes in 
extremes as a result of 

climate change 

Extreme cold events z z z 

Extreme heat events  z z z 

Droughts } } } 

Extreme rainfall } } } 

Extreme snow and ice 
storms } { } 

Tropical cyclones { { } 

Extratropical cyclones } { { 

Wildfires { } { 

Severe convective 
storms { { { 
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BOX 4.1 
Additional Detail for Figure 4.7 and Table 4.1 

 
Figure 4.7 and Table 4.1 should be interpreted qualitatively rather than quantitatively. 

The position of each event type in this space is the result of committee judgment, and is therefore 
subjective. The relative positions of event types that are close to each other, in particular, can all 
be debated. Below is a brief justification for each event type’s position. 

Extreme cold events: These are broadly similar to heat events with some differences. 
There is perhaps even greater confidence in the attribution of long-term change in cold extremes 
to human influence than for hot extremes. Land surface feedbacks may be less important, and 
observed trends in minimum temperatures are stronger than those in maxima, and there are 
theoretical reasons for expecting a decrease in variance as the pole-to-equator temperature 
gradient weakens. The impact of selection bias is particularly important here as warming reduces 
the number of events likely to be targeted for attribution. 

Extreme heat events: Climate models represent heat events well compared to many other 
event types, and observations characterize events and trends similarly well. Long term change in 
hot extremes has been attributed to human influence on the climate system. Some challenges 
remain due to land surface feedbacks and understanding of low-frequency variability. 

Droughts: Observations and global models capture precipitation deficits better than some 
other extreme event types. Difficulties stem from land-surface feedbacks, lack of soil moisture 
observations, the role of low-frequency variability, the complexity of defining drought for the 
purpose of attribution, and the role of non-meteorological factors in causing drought. The 
relatively high placement of drought along both axes in the figure reflects the well-understood 
role of warming in hydrological drought via increased surface evaporation, reduced snow 
accumulation, and increased snowmelt. 

Extreme rainfall: Climate models have some capability, though model physics and 
resolution are limiting. There is a strong physical basis for expecting a climate change influence, 
and observed trends are broadly consistent with that expectation. Because extreme rainfall events 
are small-scale and occur on weather timescales, the overall climate change signal includes many 
such events, increasing the robustness of the signal. 

Extreme snow and ice storms: Few attribution studies have been performed. Physical 
bases of climate change influences are well understood individually but event attribution is made 
difficult due to the complexity of influences in combination (increasing water vapor increases 
potential snow and freezing rain amounts, but increasing temperature decreases likelihood of 
freezing). Observations are also inadequate for extreme snow and ice storms.  

Tropical cyclones: Most climate models have inadequate resolution for attribution 
studies, though specialized higher-resolution models are better and improving quickly. Few 
attribution studies of individual storms have yet been performed. There is considerable physical 
understanding of some aspects; tropical cyclone intensity and precipitation are confidently 
expected to increase with warming. Detection of trends in observations is challenging due to low-
frequency variability as well as inhomogeneity and shortness of records.  

Extratropical cyclones: Climate models can simulate the events to some extent, though 
resolution and physics may still be limiting in many models, particularly in their ability to resolve 
the most extreme local manifestations of the storms such as strong winds and heavy precipitation. 
Detection of trends in observations, robustness of projections, and physical understanding of 
climate change influences are all weak. Few attribution studies have been performed. 

Wildfires: Few attribution studies have been performed. Observations are problematic, 
and typical climate models do not include all the physical processes, especially variations in fuel 
properties. Wildfire process understanding also remains limited, particularly on the macro scale 
that is relevant to assessing the influence of climate on fire. While it is very likely that warming 
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increases the risk of fire, the important role of non-meteorological factors and limitations of both 
observations and models nonetheless pose challenges for attribution. 

Severe Convective Storms (SCS): The committee is not aware of any attribution studies. 
Observations of both individual events and trends are problematic. Climate models do not resolve 
the events, and some phenomena (e.g., tornadoes) are not resolved even by the highest-resolution 
models in use for operational weather forecasting. Physical understanding of the events’ relation 
to climate change is limited. Statistical or dynamic downscaling offer promise of improvement. 
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Chapter 5: Conclusions 
 

In the past decade, the field of extreme event attribution has made great strides in 
understanding and explaining extreme events in the context of climate change. However, 
this is still an emerging science and thus continued research is required to increase the 
reliability of event attribution results, particularly for event types that are presently poorly 
understood. The need for improved understanding is coming at a time when there is 
increasing inquiry by the public, policymakers, and practitioners about the relations 
between specific weather events and climate change (e.g., the question “Is it caused or 
affected by climate change”). Advances in the field will depend not only on addressing 
scientific problems specific to attribution, but also on advances in the basic underlying 
science, including observations, weather and climate modeling, statistical methodology, 
and theoretical understanding of extreme events and their relation to climate.  

This chapter builds on the information presented in the preceding chapters to 
provide guidance for framing questions about event attribution and approaches to 
ensuring robustness and reliability of event attribution studies and information. The 
committee also recommends future research that would improve extreme event 
attribution capabilities and discusses the future of event attribution in an operational 
context. 

 
ASSESSMENT OF CURRENT CAPABILITIES 

Event attribution is more reliable when based on sound physical principles, 
consistent evidence from observations, and numerical models that can replicate the 
event. The ability to attribute the causes of some extreme event types has advanced 
rapidly since the emergence of event attribution science a little over a decade ago, while 
attribution of other event types remains challenging. In general, confidence in attribution 
results is strongest for extreme event types that: 

 
x have a long-term historical record of observations to place the event in an 

appropriate historical context; 
x are simulated adequately in climate models; and 
x are either purely meteorological in nature (i.e., the nature of the event is not 

strongly influenced by the built infrastructure, resource management actions, etc.) 
or occur in circumstances where these confounding factors can be carefully and 
reliably considered.  
 
Non-meteorological factors confound observational records and can limit the 

accuracy of model simulations of extreme events. Drought and wildfire are examples of 
events for which non-meteorological factors can be especially challenging in attribution 
studies. 

Furthermore, confidence in attribution results that indicate an influence from 
anthropogenic climate change is strongest when: 
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x there is an understood and robustly simulated physical mechanism that relates a 
given class of extreme events to long-term anthropogenic climate changes such as 
global-scale temperature increase or increases in water content of a warmer 
atmosphere.  
 
Confidence in attribution findings of anthropogenic influence is greatest for 

those extreme events that are related to an aspect of temperature, such as the 
observed long-term warming of the regional or global climate, where there is little 
doubt that human activities have caused an observed change. For example, a warmer 
atmosphere is associated with higher evapotranspiration rates and heavier precipitation 
events through changes in the air’s capacity to absorb moisture. However, atmospheric 
circulation and dynamics play some role, which is different for different event types. 
Changes in atmospheric circulation and dynamics are generally less directly controlled by 
temperature, less robustly simulated by climate models, and less well understood. Event 
attribution can be further complicated by the existence of other factors that contribute to 
the severity of impacts. 

Confidence in attribution analyses of specific extreme events is highest for 
extreme heat and cold events, followed by hydrological drought and heavy 
precipitation. There is little or no confidence in the attribution of severe convective 
storms and extratropical cyclones. Confidence in the attribution of specific events 
generally increases with our understanding of the effect of climate change in the event 
type. However, the gap between this understanding and confidence in attribution of 
specific events varies among event types. 

Attribution of events to anthropogenic climate change may be complicated 
by low frequency natural variability, which influences the frequencies of extreme 
events on decadal to multidecadal timescales. The Pacific Decadal Oscillation and 
Atlantic Multidecadal Oscillation are examples of such variability. Characterization of 
these influences is uncertain, because the observed record is too short to do so reliably, 
and also too short to assess if climate models simulate these modes of variability 
correctly.  

 
 

PRESENTING AND INTERPRETING EXTREME EVENT ATTRIBUTION 
STUDIES 

 
There is no single best method or set of assumptions for event attribution, as these 

depend heavily on the framing of the question and the amount of time available to answer 
it. Time constraints may themselves affect framing and methodological choices by 
limiting analyses to approaches that can be undertaken quickly.  

A definitive answer to the commonly asked question of whether climate 
change “caused” a particular event to occur cannot usually be provided in a 
deterministic sense, because natural variability almost always plays a role. Many 
conditions must align to set up a particular event. Extreme events are generally 
influenced by a specific weather situation, and all events occur in a climate system that 
has been changed by human influences. Event attribution studies generally estimate how 
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the intensity or frequency of an event or class of events has been altered by climate 
change (or by another factor, such as low-frequency natural variability).  

Statements about attribution are sensitive to the way the questions are posed 
and the context within which they are posed. For example, when defining an event, 
choices must be made about defining the duration of the event (when did it begin and 
when did it end) and the geographic area it impacted, but this may not be straightforward 
for some events (e.g., heat waves). Furthermore, different physical variables may be 
studied (e.g., drought might be characterized by a period with insufficient precipitation, 
excessively dry soil, or reduced stream flow) and different metrics can be used to 
determine how extreme an event was (e.g., frequency, magnitude). Whether an 
observation- or model-based approach is used, and the sorts of observations and/or 
models available for studying the event, will also constrain the sorts of questions that can 
be posed.  

Attribution studies of individual events should not be used to draw general 
conclusions about the impact of climate change on extreme events as a whole. Events 
that have been selected for attribution studies to date are not a representative sample (e.g., 
events affecting areas with high population and extensive infrastructure will attract the 
greatest demand for information from stakeholders). Also, events that are becoming less 
likely because of climate change (e.g., cold extremes) will be studied less often because 
they occur less often than events whose frequency is increasing because of climate 
change. Furthermore, attribution of individual events is generally more difficult than 
characterizing the statistical distribution of events of a given type and its dependence on 
climate. For all of these reasons, counts of available attribution studies with either 
positive, negative, or neutral results are not expected to give a reliable indication of the 
overall importance of human influence on extreme events. 

Unambiguous interpretation of an event attribution study is possible only 
when the assumptions and choices that were made in conducting the study are 
clearly stated, and uncertainties are carefully estimated. The framing of event 
attribution questions, which may depend strongly on the intended application of the study 
results, determine how the event will be studied and can lead to large differences in the 
interpretation of the results. Event attribution studies presented in the following manner 
are less likely to be misinterpreted: 

 
x Assumptions about the state of one or more aspects of the climate system at the 

time of the event (e.g., SST anomalies, atmospheric circulation regimes, specific 
synoptic situations) are clearly communicated 

x Estimates of changes in both magnitude and frequency are provided, with 
accompanying estimates of uncertainty, so users can understand the estimated 
degree of change from the different perspectives. 

x Estimates of changes in frequency are presented as a risk ratio, that is, in terms of 
the ratio of the probability of the event in a world with human-caused climate 
change to its probability in a world without human-caused climate change. 
Equivalently, one can compare the return periods of the event (i.e., how rarely an 
event occurs) in the world without climate change to that in the world with 
climate change 
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x The impact of assumptions (e.g., of how estimates of changes in magnitude and 
frequency depend on sea surface temperature anomalies or atmospheric 
circulation regimes) is discussed. 

x Statements of confidence accompany results so users understand the strength of 
the evidence. 
Bringing multiple scientifically appropriate approaches together, including 

multiple models and multiple studies, helps distinguish results that are robust from 
those that are much more sensitive to how the question is posed and the approach 
taken. Utilizing multiple methods to estimate human influences on a given event also 
partially addresses the challenge of characterizing the many sources of uncertainty in 
event attribution. 

Examples of multiple components that can lead to more robust conclusions 
include: 

x Estimates of event probabilities or effect magnitudes based on an appropriate 
modeling tool that has been shown to reasonably reproduce the event and its 
circumstances, such as the dynamic situation leading to the event. 

x Reliable observations against which the model has been evaluated and that give 
an indication of whether the event in question has changed over time in a manner 
that is consistent with the model-based attribution. 

x Assessment of the extent to which the result is consistent with the physical 
understanding of climate change’s influence on the class of events in question. 

x Clear communication of remaining uncertainties and assumptions made or 
conditions imposed on the analysis. 
 

 
THE PATH FORWARD 

 
Improving Extreme Event Attribution Capabilities 

 
A focused effort to improve understanding of specific aspects of weather and 

climate extremes could improve the ability to perform extreme event attribution. 
The World Climate Research Programme (WCRP) has identified climate extremes as one 
of its grand challenges, suggesting major areas of scientific research, modeling, analysis 
and observations for WCRP in the next decade. Because extreme event attribution relies 
on all aspects of the understanding of extremes and their challenges, the committee 
endorses the recommendations from the white paper: “WCRP Grand Challenge: 
Understanding and Predicting Weather and Climate Extremes” (Zhang et al., 2014) as 
necessary to make advances in event attribution. Advances made in understanding the 
physical mechanisms and in improving the realism of extreme events in weather and 
climate models will benefit event attribution studies. 

The committee recommends that research that specifically aims to improve event 
attribution capabilities include increasing the understanding of: 

 
x the role of dynamics and thermodynamics in the development of extreme events; 
x the model characteristics that are required to reliably reproduce extreme events of 

different types and scales; 
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BOX 5.1  
Key Recommendations from the White Paper: “WCRP Grand Challenge: 

Understanding and Predicting Weather and Climate Extremes” 
 

x substantial advances in modelling (including but not limited to model resolution)  
x advances in the understanding of the physical mechanisms leading to extremes 
x increased effort to extend the historical observational record, including planned 

climate quality reanalyses over longer historical periods 
x improvements in remote sensing products that extend long enough to document 

trends and sample extremes 
 

x changes in natural variability, including the interplay between a changing climate 
and natural variability, and improved characterization of the skill of models to 
represent low frequency natural variability in regional climate phenomena and 
circulation;  

x the various sources of uncertainty that arise from the use of models in event 
attribution;  

x how different levels of conditioning (i.e., the process of limiting an attribution 
analysis to particular types of weather or climate situations) lead to apparently 
different results when studying the same event;  

x the statistical methods used for event attribution, objective criteria for event 
selection, and development of event attribution evaluation methods; 

x the effects of non-climate causes—such as changes in the built environment (e.g., 
increasing area of urban impervious surfaces and heat island effects), land cover 
changes, natural resource management practices (e.g., fire suppression), coastal 
and river management (e.g., dredging, seawalls), agricultural practices (e.g., tile 
drainage), and other human activities—in determining the impacts of an extreme 
event;  

x expected trends in future extreme events to help inform adaptation or mitigation 
strategies (e.g., calculating changes in return periods to show how the risk from 
extreme events may change in the future); and  

x the representation of a counterfactual world that reliably characterizes the 
probability, magnitude, and circumstances of events in the absence of human 
influence on climate.  
 
Research that is targeted specifically at extreme events, including event 

attribution could rapidly improve capabilities and lead to more reliable results. In 
particular, there are opportunities to better coordinate existing research efforts to further 
accelerate the development of the science and improve and quantify event attribution 
reliability. Examples of event attribution research coordination include EUropean 
CLimate and weather Events: Interpretation and Attribution (EUCLEIA), 
Weather@home, World Weather Attribution (see Box 3.4 for additional information on 
these), and the International Detection and Attribution Group (IDAG), all of which also 
coordinate with one another. Furthermore, given that event attribution spans climate and 
weather, the field would benefit from interdisciplinary research at the interface between 
the climate, weather and statistical sciences to improve analysis methods. Event 
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attribution capabilities would be improved with better observational records, both near-
real time and for historical context. Long homogeneous observed records are essential for 
placing events into a historical context, and evaluating to what extent climate models 
reliably simulate the effect of decadal climate variability on extremes. 

Event attribution could be improved by the development of transparent, 
community standards for attributing classes of extreme events. Such standards could 
include an assessment of model quality in relation to the event/event class. Community 
agreement is needed on when a model represents a given event type well enough for 
attribution studies to be possible. At present, such standards do not clearly exist, and 
some model-based attribution studies do not even attempt to assess model adequacy. 
Such standards are critical for enhancing confidence in event attribution studies. Other 
examples of necessary community standards include use of multiple lines of evidence, 
developing a transparent link to a detected change that influences events in question, and 
clear communication of sensitivities of the result to framing of the event attribution 
question.  

Systematic criteria for selecting events to be analyzed would minimize 
selection bias and permit systematic evaluation of event attribution performance, 
which is important for enhancing confidence in attribution results. Studies of a 
representative sample of extreme events would allow stakeholders to use such studies as 
a tool for understanding how individual events fit into the broader picture of climate 
change. Irrespective of the method or related choices, it would be useful to develop a set 
of objective criteria to guide event selection. A simple example of an objective approach 
might be to select events based on their rarity in the historical record using a fixed 
threshold, such as 24-hour precipitation events throughout a given domain that exceed the 
local 99th percentile of historical precipitation events. It should be noted, however, that 
even in this case, there are subtleties associated with historical quantile definition that 
would need to be considered. The development of objective criteria for event selection 
would both help to reduce selection bias and lead to methodological improvements. A 
path forward to avoiding selection bias is to perform event attribution on a predefined set 
of events of several different types that could reasonably be expected to occur in the 
current climate. This could involve systematic definition of events or consideration of 
events based on the full historical record and not just current events. One example of such 
an approach is described in Christidis et al. (2014) who describe a method for pre-
computing estimates of how human influence has changed the odds of extremely warm 
regional seasonal mean temperatures based on a formal detection and attribution 
methodology (Chapter 3). Another example is the approach of trying to identify “gray 
swan tropical cyclones” (events not seen before, but theoretically possible) before they 
occur (Lin and Emanuel, 2015). 

Event selection criteria is also a prerequisite for the development of a formalized 
approach to evaluating event attribution results and uncertainty estimates. Such 
evaluation is important for establishing confidence in event attribution statements. 
Development of such an approach could be modeled after existing approaches used to 
evaluate weather forecasts. One possible approach to evaluation would be to use a large 
sample of objectively selected events on a global scale to evaluate if, on average, model 
predictions or simulations of extreme events are on target. This could involve seasonal 
and decadal predictions of the number of events of a certain type based on simulations 
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with external drivers only. Events that become more frequent with global warming, as 
well as events that become less frequent, such as cold spells, would be included in such 
an approach.  

 
Event Attribution in an Operational Context 

As more researchers begin to attempt event attribution, their efforts can benefit 
from coordination to improve analysis methods and work toward exploring uncertainties 
across methods and framing. Event attribution can benefit from links to operational 
numerical weather prediction where available. As discussed in Chapter 3 (also see Box 
3.4), some groups are moving toward the development of operational extreme event 
attribution systems to systematically evaluate the causes of extreme events based on 
predefined and tested methods. Objective approaches to compare and contrast the 
analyses among multiple different research groups based on agreed event selection 
criteria are yet to be developed.  

In the committee’s view, a successful operational event attribution system would 
have several key characteristics. First is the development and use of objective event 
selection criteria to reduce selection bias so stakeholders understand how individual 
events fit into the broader picture of climate change. Second is the provision of 
stakeholder information about causal factors within days of an event, followed by updates 
as more data and analysis results become available. This is analogous to other fields, such 
as public health and economics, where it is acceptable to revise initial forecasts and 
analyses as more data becomes available (e.g., Gross Domestic Product estimates, 
recession start and stop dates, etc.). A third characteristic of a successful event attribution 
system is clear communication of key messages to stakeholders about the methods and 
framing choices as well as the associated uncertainties and probabilities. Finally, reliable 
assessments of performance of the event attribution system are needed. Such assessments 
could be developed through processes utilizing regular forecasts of event probability and 
intensity, observations, and skill scores similar to those used routinely in weather 
forecasting for evaluation. Rigorous approaches to managing and implementing system 
improvements is also a critical element of these assessments. 

Some future event attribution activities could benefit from being linked to an 
integrated weather-to-climate forecasting effort on a range of timescales. The 
development of such an activity could be modeled from concepts and practices within the 
Numerical Weather Prediction (NWP) and seasonal forecasting community. NWP, which 
dates back to the 1950s, is focused on taking current observations of weather and 
processing these data with computer models to forecast the future state of weather. A 
project linking attribution and weather-to-climate forecasting could also build on recent 
efforts to increase national and international capacity to forecast the likelihood of extreme 
events at subseasonal-to-seasonal timescales29 (WMO, 2013).  

Ultimately the goal would be to provide predictive (probabilistic) forecasts of 
future extreme events at lead times of days to seasons, or longer, accounting for natural 
variability and anthropogenic influences. These forecasts would be verified and evaluated 
utilizing observations, and their routine production would enable the development and 

                                                      
29 Another National Academies of Sciences, Engineering, and Medicine Committee is studying this topic and will 
produce a report in the spring of 2016: http://dels.nas.edu/Study-In-Progress/Developing-Research-Agenda/DELS-
BASCPR-13-05  
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application of appropriate skill scores (using appropriate metrics to define and track the 
skill). The activity would involve rigorous approaches to managing and implementing 
system enhancements to continually improve models, physical understanding, and 
observations focused on extreme events.  

Correctly done, attribution of extreme weather events can provide an additional 
line of evidence that demonstrates the changing climate, and its impacts and 
consequences. An accurate scientific understanding of extreme weather event attribution 
can be an additional piece of evidence needed to inform decisions on climate change-
related actions. 

The committee also encourages continued research in event attribution also 
outside of an operational context to ensure further innovation in the field. This would 
facilitate better understanding of a breadth of approaches, framings, modelling systems, 
and the performance of event attribution methods across past events, including in the 
longer historical context.  
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Appendix A: Statement of Task 
 

An ad hoc NRC committee will examine the science of attribution of specific 
extreme weather events to human-caused climate change and natural variability. 
Specifically, the committee will: 

 
x Provide an assessment of current scientific understanding and capabilities for 

attribution of specific extreme weather events to climate change. 
x Provide guidance about the robustness of extreme event attribution science. The 

guidance should discriminate among different attribution approaches and different 
classes of extreme events, and should consider various characteristics of the 
analysis (e.g., data coverage and quality, model performance, etc.). 

x Identify research priorities for further development of the approaches. 
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Appendix B: Workshop Agenda 
 

Extreme Weather Events and Climate Change Attribution 
Workshop Agenda 

October 21-22, 2015 
Keck Center 

500 Fifth Street, NW, Washington, DC 
 

Workshop Goals 
Inform the committee as they write their report on the science of attribution of specific 
extreme weather events to human-caused climate change and natural variability.  
Specifically, the committee will:  

x Provide an assessment of current scientific understanding and capabilities for 
attribution of specific extreme weather events to climate change.  

x Provide guidance about the robustness of extreme event attribution science. The 
guidance should discriminate among different attribution approaches and different 
classes of extreme events, and it should consider various characteristics of the 
analysis (e.g., data coverage and quality, model performance, etc.).  

x Identify research priorities for further development of the approaches. 
x  

Wednesday, October 21, 2015 
OPEN SESSION - Keck 103 
  
12:00 P.M. Lunch available to all participants 
OPEN SESSION - Keck 100 
1:00 P.M. Welcoming remarks and introduction 
   David Titley, Pennsylvania State University  
1:30 P.M. Framing of event attribution questions and risk-based  
 perspective for decision-making  
  Alexis Hannart, CNRS 
    
2:00 P.M. Background and overview on climate attribution 
 of extreme events  
  Friederike Otto, University of Oxford   
2:30 P.M.  Break 
3:00 P.M. Panel on Methods and Uncertainties  
   Moderated by: Ted Shepherd, University of Reading  

Panelists will have 5 min for a brief presentation; remaining time to be 
used for discussion.  
 

o Observed climate change, Geert Jan van Oldenborgh, KNMI (WebEx) 
o Coupled ocean/atmosphere climate models, David Karoly, University of 

Melbourne (WebEx)  
o Large ensembles, Myles Allen, University of Oxford 
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o SSTs and sea ice, Judith Perlwitz, NOAA ESRL  
o Circulation analogs, Pascal Yiou, CEA  
o Building confidence, Leonard Smith, University of Oxford 

 
5:00 P.M. General Discussion 
 (includes questions/comments from Webinar participants)  
   Moderated by: John Walsh, University of Alaska, Fairbanks 
5:45 P.M. Adjourn 
6:15 P.M. Reception [Keck Atrium] 
 

Thursday, October 22, 2015 
OPEN SESSION – Keck 100 
9:30 A.M Panel on Attribution of Specific Weather Phenomena  
 Moderated by: Phil Mote, Oregon State University  

Panelists will have 5 min for a brief presentation; remaining time to be 
used for discussion.  

o Extreme heat and cold events, Ken Kunkel, NOAA NCEI/North Carolina 
State University 

o Drought events, Marty Hoerling, NOAA ESRL  
o Wildfires, Eric Kasischke, NASA/University of Maryland 
o Extreme rain events/flooding, Michael Wehner, LBL 
o Extreme snow/freezing rain events, Jay Lawrimore, NOAA NCEI  
o Hurricanes, Tom Knutson, NOAA GFDL 
o Tornadoes, Jeff Trapp, University of Illinois 
o Extreme sea level rise events, William Sweet, NOAA NOS 

  
10:45 A.M. Break 
11:15 A.M. Panel discussion continues 
12:15 P.M. Working lunch 
1:15 P.M.  Break out group session to identify opportunities and challenges on the 

following topics: 
1. Uncertainty quantification:  

a) assessing model quality 
b) uncertainty quantification given a reasonable model 
c) how can event attribution be evaluate 

2. Framing of event attribution questions (are we asking the right 
questions?) and how to describe and quantify a potential 
anthropogenic component to the meteorological causes of an 
extreme event, given that natural variability is generally playing 
a dominant role. 

3. Timescale/operational event attribution (e.g., How does the 
timescales of an event impact our ability to attribute the event? 
On what timelines can event attribution studies be conducted? 
How does the timescale of an event affect the timeline on which 
attribution studies can be conducted?). 
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3:15 P.M Break (Time for Rapporteurs to collect their thoughts) 
3:45 P.M. Rapporteurs report back in plenary 
4:15 P.M. Invited responses to the workshop discussions 
    Kathy Jacobs, University of Arizona 
5:00 P.M Wrap up  
   David Titley, PSU 
5:30 P.M. Adjourn 
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Appendix C: Committee Mini Biographies 
 
Dr. David Titley (Chair) is a Professor of Practice in Meteorology and the Founding 
Director of the Center for Solutions to Weather and Climate Risk at Pennsylvania State 
University and a Senior Adjunct Fellow at the Center for New American Security. Dr. 
Titley’s 32-year Naval career included duties as Oceanographer and Navigator of the 
Navy and Assistant Deputy Chief of Naval Operations for Information Dominance. Dr. 
Titley initiated and led the U.S. Navy’s Task Force on Climate Change, and also served 
on the staff of the U.S. Commission on Ocean Policy. After retiring from the Navy with 
the rank of Rear Admiral, Dr. Titley served as the Deputy Undersecretary of Commerce 
for Operations, the Chief Operating Officer position at the National Oceanic and 
Atmospheric Administration. He has spoken on various domestic and international 
stages, including Congressional Hearings, the International Panel on Climate Change, 
and a TEDx talk, amongst others. Dr. Titley serves on the CNA Military Advisory Board, 
and has served on National Academies Committees as a member and co-chair. He is a 
fellow of the American Meteorological Society. He earned a Ph.D. in Meteorology from 
the Naval Postgraduate School. 
 
Dr. Gabriele Hegerl is Professor of Climate System Science at the University of 
Edinburgh. Her interests are in determining the causes of observed climate changes, 
focusing on mean and extreme temperature and precipitation. She works on the interface 
between climate modelling and climate observations, with a focus on uncertainty, 
variability and change in climatic extremes, and on the use of palaeo-proxy data to study 
climate variability and change during the last millennium. Gabriele is a fellow of the 
Royal Society of Edinburgh and has a Wolfson fellowship by the Royal Society. She is 
one of the co-leads of the World CLimate Research Program’s Grand Challenge on 
climate extremes. Gabriele has been a lead author and coordinating lead author on the 
Intergovernmental Panel on Climate Change (IPCC). 
 
Ms. Katharine L. Jacobs is the director of the Center for Climate Adaptation Science 
and Solutions (CCASS) and a professor in the department of soil, water and 
environmental science at the University of Arizona. From 2010 to 2013, Jacobs served as 
an assistant director in the U.S. Office of Science and Technology Policy (OSTP) in the 
Executive Office of the President. Jacobs was the director of the National Climate 
Assessment, leading a team of 300 authors and more than 1,000 contributors who wrote 
the Third NCA report. The report was published in May of 2014. Jacobs also was the lead 
advisor on water science and policy and climate adaptation within OSTP. Prior to her 
work in the White House, Jacobs was the executive director of the Arizona Water 
Institute from 2006-2009, leading a consortium of the three state universities focused on 
water-related research, education and technology transfer in support of water supply 
sustainability. She has more than 20 years of experience as a water manager for the 
Arizona’s Department of Water Resources, including 14 years as director of the Tucson 
Active Management Area. Her research interests include water policy, connecting science 
and decision making, stakeholder engagement, use of climate information for water 
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management applications, climate change adaptation, and drought planning. Jacobs 
earned her M.L.A. in environmental planning from the University of California, 
Berkeley. She has served on eight National Research Council panels and was chair of the 
NRC panel on Adapting to the Impacts of Climate Change and a member of the panel on 
America’s Climate Choices. 
 
Dr. Philip W. Mote is a professor in the College of Earth, Oceanic, and Atmospheric 
Sciences at Oregon State University; director of the Oregon Climate Change Research 
Institute (OCCRI) for the Oregon University System; and director of Oregon Climate 
Services, the official state climate office for Oregon. Dr. Mote’s current research interests 
include scenario development, regional climate change, regional climate modeling with a 
super-ensemble generated by volunteers’ personal computers, and adaptation to climate 
change. He is the coleader of the NOAA-funded Climate Impacts Research Consortium 
for the Northwest, and also of the Northwest Climate Science Center for the U.S. 
Department of the Interior. Since 2005 he has been involved in the Intergovernmental 
Panel on Climate Change, which shared the 2007 Nobel Peace Prize. He is also a 
coordinating lead author and advisory council member for the U.S. National Climate 
Assessment, and has served on numerous committees for the National Research Council. 
He earned a B.A. in physics from Harvard University and a Ph.D. in atmospheric 
sciences from the University of Washington, and arrived at OSU to establish OCCRI in 
2009. 
 
Dr. Christopher J. Paciorek is an associate research statistician, as well as a lecturer 
and the statistical computing consultant, in the Department of Statistics at Berkeley. His 
statistical expertise is in the areas of Bayesian statistics and spatial statistics with primary 
application to environmental and public health research. Dr. Paciorek’s work in recent 
years has focused on methodology and applied work in a variety of areas, in particular: 
quantifying trends in extreme weather, quantifying millennial-scale changes in vegetation 
using paleoecological data, and developing computational software for hierarchical 
modeling (the NIMBLE project). He has also worked on measurement error issues in air 
pollution epidemiology, Bayesian methods for global health monitoring with a focus on 
combining disparate sources of information, and spatio-temporal modeling of air 
pollution. Before coming to Berkeley, he was an assistant professor in the Biostatistics 
Department at Harvard School of Public Health. He finished his Ph.D. in Statistics at 
Carnegie Mellon University in 2003 and also has an M.S. in ecology from Duke 
University and a B.A. in biology from Carleton College. 
 
Dr. J. Marshall Shepherd, a leading international expert in weather and climate, was the 
2013 President of American Meteorological Society (AMS) and is Director of the 
University of Georgia’s (UGA) Atmospheric Sciences Program. Dr. Shepherd is the 
Georgia Athletic Association Distinguished Professor of Geography and Atmospheric 
Sciences and hosts The Weather Channel’s Sunday talk show Weather Geeks, In 2014, 
the Captain Planet Foundation honored Dr. Shepherd with its Protector of the Earth 
Award. Recent recipients include Erin Brockovich and former EPA Administrator Lisa 
Jackson. He is also the 2015 Recipient of the Association of American Geographers 
(AAG) Media Achievement award and the 2015 UGA Franklin College of Arts and 
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Sciences Sandy Beaver Award for Excellence in Teaching. Prior to UGA, Dr. Shepherd 
spent 12 years as a Research Meteorologist at NASA-Goddard Space Flight Center and 
was Deputy Project Scientist for the Global Precipitation Measurement (GPM) mission. 
In 2004, he was honored at the White House with a prestigious PECASE award. Dr. 
Shepherd is a Fellow of the American Meteorological Society and recipient of its Charles 
Anderson Award. Two national magazines, the AMS, and Florida State University have 
also recognized Dr. Shepherd for his significant contributions. Dr. Shepherd is frequently 
sought as an expert on weather and climate by major media outlets like CBS Face The 
Nation, USA Today, Time, CNN, NOVA, and The Today Show. His TEDx Atlanta Talk 
on “Slaying Climate Zombies” is highly regarded and cited. Dr. Shepherd is also 
frequently asked to advise key leaders at NASA, NSF, NOAA, the White House, 
Congress, and various agencies. He is on the board for Mothers and Others For Clean 
Air, a partnership with the American Lung Association. He has over 75 peer-reviewed 
scholarly publications and numerous editorials. Dr. Shepherd received his B.S., M.S. and 
PhD in physical meteorology from Florida State University. He co-authored a children’s 
book on weather called Dr. Fred’s Weather Watch.  
 
Dr. Theodore G. Shepherd obtained a B.Sc. in Mathematics & Physics from the 
University of Toronto in 1979, and a Ph.D. in Meteorology from MIT in 1984. After a 
postdoctoral fellowship at DAMTP, University of Cambridge, he took up a faculty 
position in the Department of Physics at the University of Toronto in 1988. In 2012 he 
moved to the Department of Meteorology at the University of Reading to become the 
inaugural Grantham Professor of Climate Science. His research interests range from 
theoretical geophysical fluid dynamics to climate modelling and data analysis, with a 
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