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Abstract

Social dilemmas are situations in which collective interests are at odds with private interests: pollution, depletion of natural
resources, and intergroup conflicts, are at their core social dilemmas. Because of their multidisciplinarity and their
importance, social dilemmas have been studied by economists, biologists, psychologists, sociologists, and political
scientists. These studies typically explain tendency to cooperation by dividing people in proself and prosocial types, or
appealing to forms of external control or, in iterated social dilemmas, to long-term strategies. But recent experiments have
shown that cooperation is possible even in one-shot social dilemmas without forms of external control and the rate of
cooperation typically depends on the payoffs. This makes impossible a predictive division between proself and prosocial
people and proves that people have attitude to cooperation by nature. The key innovation of this article is in fact to
postulate that humans have attitude to cooperation by nature and consequently they do not act a priori as single agents, as
assumed by standard economic models, but they forecast how a social dilemma would evolve if they formed coalitions and
then they act according to their most optimistic forecast. Formalizing this idea we propose the first predictive model of
human cooperation able to organize a number of different experimental findings that are not explained by the standard
model. We show also that the model makes satisfactorily accurate quantitative predictions of population average behavior
in one-shot social dilemmas.
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Introduction

Social dilemmas are situations in which collective interests are at

odds with private interests [1]. In other words, they describe

situations in which the fully selfish and rational behavior leads to

an outcome smaller than the one the individuals would obtain if

they acted collectively. Social dilemmas create then a tension

between private interests and public interests, between selfishness

and cooperation. Classically, several different social dilemmas

have been distinguished, including the Prisoner’s dilemma,

Chicken, Assurance, Public Goods, the Tragedy of the Commons

[2], and, more recently, the Traveler’s dilemma [3], [4]. Each of

these games has been studied by researchers from different

disciplines, as economists, biologists, psychologists, sociologists,

and political scientists, because of the intrinsic philophical interest

in understanding human nature and since many concrete and

important situations, as pollution, depletion of natural resources,

and intergroup conflict, can be modelled as social dilemmas.

The classical approaches explain tendency to cooperation

dividing people in proself and prosocial types [5], [6], [7], [8],

[9], or appealing to forms of external control [10], [11], [12], or to

long-term strategies in iterated social dilemmas [13]. But, over the

years many experiments have been accumulated to show

cooperation even in one-shot social dilemmas without external

control [14], [15], [16], [17], [18], [19], [20]. These and other

earlier experiments [21], [22], [23], [24] have also shown that the

rate of cooperation in the same game depends on the particular

payoffs, suggesting that most likely humans are engaged in some

sort of indirect reciprocity [25], [26] and the same person may

behave more or less cooperatively depending on the payoffs.

Consequently, the problem of making a predictive division in

proself and prosocial types becomes extremely difficult, if not even

impossible.

From these experiments, we can argue two conclusions: first, the

observation of cooperation in one-shot social dilemmas without

external controls suggests that the origin of cooperation relies in

the human nature; second, the fact that the rate of cooperation

depends on the payoffs suggests that it could be computed, at least

approximatively, using only the payoffs. The word approximatively

stands for the fact that numerous experimental studies have shown

that cooperation is based on a number of factors, as family history,

age, culture, gender, even university course [27], religious beliefs

[19], and decision time [28]. Therefore, we cannot expect a theory

able to say, given only the payoffs, the individual-level rate of

cooperation in a social dilemma. We can expect instead a model

predicting quite accurately population average behaviour using

the mean value of parameters that could be theoretically updated

at an individual-level.

In this article we make the first step in this direction: (1) we

develop the first predictive model of cooperation; (2) we show that it

explains a number of puzzling experimental findings that are not

explained by the standard economic model, such as the fact that

the rate of cooperation in the Prisoner’s dilemma increases when

the cost-benefit ratio decreases, the rate of cooperation in the

Traveler’s dilemma increases when the bonus/penalty decreases,

the rate of cooperation in the Public Goods game increases when

the pro-capite marginal return increases, the rate of cooperation in

the Chicken game is larger than the rate of cooperation in the

Prisoner’s dilemma with similar payoffs; (3) we show that it makes
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satisfactorily accurate quantitative predictions of population

average behaviour in social dilemmas.

We mention that there are many other models that can be

applied to explain deviation towards cooperation in social

dilemmas, including the cognitive hierarchy model [29], the

quantal level-k theory [30], the level k-theory [31], the quantal

response equilibrium [32], the inequity aversion models [33], [34]

and the noisy introspection model [35]. Nevertheless, all these

models use free parameters and so they are not predictive, but

descriptive.

The key idea behind the model is very simple: since experi-

mental data suggest that humans have attitude to cooperation by

nature, we formalize the intuition that people do not act a priori as

single agents, but they forecast how the game would be played if

they formed coalitions and then they act according to their most

optimistic forecast.

We anticipate that forecasts will be defined by making a

comparison between incentive and risk for an agent i to deviate

from the collective interest. This comparison leads to associate a

probability to the event ‘‘agent i defects’’. As mentioned, we will

show that this procedure works satisfactorily well in the prediction

of population average behavior. The problem in passing to

individual-level predictions is that the event ‘‘player i defects’’, given

only the payoffs, is not measurable at an individual-level in any

universal and objective sense and the dream is to use the factors

mentioned above (family history, age, culture, incentives, itera-

tions, etc.) to define parameters to update the measure of the event

‘‘playeri defects’’ at an individual-level. In fact, an attempt to extend

the present model to iterated social dilemmas has been done in

[36], leading to promising results: predictions tend to get close to

experimental data as the number of iterations increases.

Even though our model is very general and can be applied to

every symmetric game, we treat explicitly only four but very

relevant and widely studied social dilemmas: the Prisoner’s

dilemma, the Traveler’s dilemma, the Public Goods, and the

Tragedy of the Commons. We begin with a short review of these

games.

Prisoner’s Dilemma
Two players can choose to either ‘‘Cooperate’’ or ‘‘Defect’’. If

both players cooperate, they both receive the monetary reward, R,

for cooperating. If one player defects and the other cooperates,

then the defector receives the temptation payoff, T , while the

other receives the sucker payoff, S. If both players defect, they

both receive the punishment payoff, P. Payoffs are subject to the

condition TwRwPwS.

Traveler’s Dilemma
Fix a bonus/penalty b§2. Two travelers have to claim for a

reimbursement between 180 and 300 monetary units for their

(identical) luggage that has been lost by the same air company.

The air company wants to avoid that the travelers ask for

unreasonably high reimbursements and so it decides to adopt the

following rule: the traveler who claims the lowest, say m, gets a

reimbursement of mzb monetary units, and the other one gets a

reimbursement of only m{b monetary units. If both players claim

the same, m, then they both get reimbursed of m monetary units.

Public Goods Game
N agents receive an initial endowment of yw0 monetary units

and simultaneously choose an amount 0ƒxiƒy to contribute to

a public pool. The total amount in the pot is multiplied by a0

and then divided equally by all group members. So agent i
receives a payoff of ui(x1, . . . ,xN )~y{xiza(x1z . . . zxN ),

where a~a0=N. The number a is assumed to belong to the

interval (1=N,1) and it is called constant marginal return.

Tragedy of the Commons
Consider a village with N farmers, that has limited grassland.

Each of the N farmers has the option to keep a sheep or not. Let

the monetary utility of milk and wool from the sheep be hw0. Let

the monetary damage to the environment from one sheep grazing

over the grassland be denoted by k0w0. Assume hvk0vhN and

let k~k0=N. Let xi be a variable that takes values 0 or 1 and

denotes whether the farmer i keeps the sheep or not. The payoff of

farmer i is ui(x1, . . . ,xN )~hxi{k(x1z . . . zxN ).
All these games share the same feature: selfish and rational

behavior leads to suboptimal outcomes. In the Prisoner’s dilemma,

the unique Nash equilibrium is to defect, while both players would

be better off if they both cooperate; in the Traveler’s dilemma, the

unique Nash equilibrium is to claim for the lowest possible

amount, producing an outcome smaller than the one they would

obtain if they both claim for the largest possible amount; in the

Public Goods game, the unique Nash equilibrium is not to

contribute anything, while all players would be better off if they all

contribute everything; in the Tragedy of the Commons, the

unique Nash equilibrium is to keep the sheep, while all farmers

would be better off if they all agree not to keep the sheep.

An Informal Description of the Model

Before introducing the model in general, we describe it

informally in a particular case. Consider the Prisoner’s dilemma

(recently experimented using MTurk in [20]) with monetary

outcomes (expressed in dollars) T~0:20,R~0:15,P~0:05,S~0.

The idea is that players forecast how the game would be played if

they formed coalitions. In a two-player game there are only two

possible coalition structures: in the selfish coalition structure ps

players are supposed to follow their private interests and in the

cooperative coalition structure pc they are supposed to follow the

collective interest. The analysis of these two coalition structures

proceed as follows:

N In ps players follow their private interest and therefore, by

definition, they play the Nash equilibrium (D,D). Since there is

no incentive to deviate from a Nash equilibrium, each player

gets 0.05 for sure and we say that the value of ps is 0.05 and

write v(ps)~0:05.

N To define the value of pc we argue as follows. If the players

follow the collective interest, their largest possible payoff is 0.15

in correspondence to the profile of strategies (C,C). Since this

profile of strategies is not stable (i.e., each player has a non-

zero incentive to deviate from it), we introduce a probability to

measure how likely such deviations are. To define this

probability, we observe that:

N the incentive to deviate from the collective interest is

D(pc) : ~0:05, since each player can get 0.20 - instead of

0.15, if she defects and the other cooperate;

N the risk to deviate from the collective interest is

R(pc) : ~0:10, since each player can get only 0.05 instead

of 0.15 if she follows her private interest but also the other

one does the same.

We define the prior probability that a player abandons the

coalition structure pc by making a sort of proportion between

incentive and risk. Specifically, we define the probability that a

player abandons pc to be D(pc)½D(pc)zR(pc)�{1
. Now, note that

A Model of Human Cooperation in Social Dilemmas
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the smallest payoff achievable by a player when she follows pc but

the other player does not is the sucker payoff S~0. Therefore, we

define

v(pc)~0:15: 1{
D(pc)

D(pc)zR(pc)

� �
z0:

D(pc)

D(pc)zR(pc)
~0:10:

The numbers v(ps) and v(pc) are interpreted as forecasts of the

expected payoff for an agent playing according to ps and pc,

respectively. Since v(ps)~0:05 and v(pc)~0:10, the most optimistic

forecast is in correspondence of the cooperative coalition structure

pc. We use this best forecast to generate common beliefs or, in

other words, to make a tacit binding between the players: to play

only strategies which give a payoff of at least 0.10 to both players.

More formally, we restrict the set of profiles of strategies and we

allow only profiles s~(s1,s2), such that ui(s)§0:10, for all i. We

define the cooperative equilibrium to be the unique Nash

equilibrium of this restricted game.

From Fig. 1, it is clear that the cooperative equilibrium is in

correspondence of the point in the red set that is closest to (D,D).
This point can be computed directly by finding the smallest l such

that

0:15l2z0:2l(1{l)z0:05(1{l)2
§0:1,

that is l~
1

2
. Consequently, the cooperative equilibrium of this

variant of the Prisoner’s dilemma is
1

2
Cz

1

2
D for both players.

Notice that in [20] it has been reported that players cooperated

with probability 58 per cent in one treatment and 65 per cent in

another treatment and the over-cooperation in the second

experiment was explained in terms of framing effect due to the

different ways in which the same game was presented.

The Model

We now describe the general model. We recall that, motivated

by the observation that attitude to cooperation seems to be

intrinsic in the human nature, our main idea is to assume that

players do not act a priori as single agents, but they forecast how

the game would be played if they formed coalitions and then they

play according to their most optimistic forecast. The only technical

difficulty to formalize this idea is to define the forecasts. Following

the example described in the previous section, they will be defined

by assigning to each player i and to each partition p of the player

set P, interpreted as a possible coalition structure, a number vi(p)

which represents the expected payoff of player i when she plays

according to the coalition structure p. This value will be indeed

defined as an average

vi(p)~
X

J(P\fig
ei,J (p)ti,J (p),

where ti,J (p) represents the prior probability that players i assigns to

the event ‘‘players in J abandon the coalition structure p’’ and ei,J (p) is

the infimum of payoffs of player i when she plays according to the

coalition structure p and players in J abandon the coalition.

This idea is very general and indeed, in a long-term working

paper, we are developping the theory for every normal form game

[37]. In case of the classical social dilemmas in consideration the

theory is much easier, because of their symmetry.

N Symmetry. All players have the same set of strategies S and

for each player i, for each permutation p of the set of players

and for each (s1, . . . ,sN )[SN one has

ui(s1, . . . ,sN )~up(i)(sp(1), . . . ,sp(N)): ð1Þ

Coming to the description of the model, let G be a symmetric game

and denote P the set of players, each of which has pure strategy set

Si, mixed strategies P(Si) and payoff function ui. We start by

assuming, for simplicity, that P~f1,2g and we will explain, at the

end of this section, how the model generalizes to N-player games.

A coalition structure is a partition p of the set of players, that is a

collection of pairwise disjoint subsets of P whose union covers P.

Every set in the partition is called coalition. Given a coalition

structure p, we denote by Gp the game associated to p, whose

players in the same coalition play as a single player whose payoff is

the sum of the payoffs of the players belonging to that coalition.

Call Nash(Gp) the set of Nash equilibria of the game Gp. Now fix

i [ P and let {i denote the other player. We denote by D{i(p)
the maximal payoff that player {i can obtain leaving the coalition

structure p. Formally,

D{i(p) : ~ supfu{i(s
p
i ,s{i){u{i(s

p
i ,sp

{i) :

s{i[P(S{i),s
p[Nash(Gp)g:

ð2Þ

D{i(p) will be called incentive of player {i to abandon the

coalition structure p.

Given a profile of strategies (s1,s2), a strategy s’
i[P(Si) is called

i-deviation from (s1,s2) if ui(s
0
i,s{i)§ui(s1,s2).

We denote by R{i(p) the maximal loss that players {i can

incur if she decides to leave the coalition structure p to try to

achieve her maximal possible gain, but also player i deviates from

the coalition structure p either to follow her selfish interests or to

anticipate player {i’s deviation. Formally,

R{i(p) : ~ supfu{i(s
p
i ,s

p
{i){u{i(si,s{i)g, ð3Þ

where sp runs over the set of Nash equilibria of Gp and, for each

such sp, s{i runs over the set of strategies such that u{i(s
p
i ,s{i) is

maximized and si runs over the strategies that are i-deviations

from either (s
p
i ,s

p
{i) or (s

p
i ,s{i). R{i(p) is called risk for player {i

in abandoning the coalition structure p.

Figure 1. The unit square represents the initial set of available
profiles of strategies: player 1 can use all strategies
lCz(1{l)D, for all l[½0,1�; player 2 can use all strategies
mCz(1{m)D, for all m[½0,1�. The red set represents the set of allowed
profiles of strategies in the restricted game.
doi:10.1371/journal.pone.0072427.g001
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We define the probability of deviating from the coalition

structure p by making a comparison between incentive and risk.

There are certainly many ways to do such comparison. In this

paper we use a quite intuitive and seemingly natural way to make

it and, in future research, it would be important to investigate

some others. Specifically, we define

ti,{i(p) : ~
D{i(p)

D{i(p)zR{i(p)
ð4Þ

and we interpret this number as prior probability that player i
assigns to the event ‘‘player {i abandons the coalition structure p’’.

Therefore ti,1(p) : ~1{ti,{i(p) is interpreted as prior probability

that nobody abandons the coalition structure p. Now, let ei,1(p)

be the infimum of payoffs for player i if nobody abandons the

coalition structure p, that is the infimum of payoffs for player i
when each player plays according to a Nash equilibrium of Gp, and

let ei,{i(p) be the infimum of payoffs of player i when she plays

according to a Nash equilibrium of Gp and {i plays a ({i)-

deviation from a Nash equilibrium of Gp. The value for player i of

the coalition structure p is by definition

vi(p) : ~ei,1(p)ti,1(p)zei,{i(p)ti,{i(p): ð5Þ

Symmetry implies that vi(p)~vj(p)~ : v(p), for all i,j [ P.

Consequently, there is a coalition structure �pp (independent of i)
which maximizes v(p). We use the number v(�pp) to define common

beliefs or, in other words, to make a tacit binding among the

players.

Definition 0.1
The induced game Ind(G,�pp) is the same game as G except for

the set of allowed profiles of strategies: in the induced game only

profiles of strategies s~(s1,s2) such that ui(s)§v(�pp), for all i, are

allowed.

Observe that the induced game does not depend on the

maximizing coalition structure, that is, in case of multiple coalition

structures maximizing the value, one can choose one of them

casually to define the induced game and this game does not

depend on such choice.

Since the set of allowed strategies in the induced game is convex

and compact (and non-empty) one can compute Nash equilibria of

the induced game.

Definition 0.2
A cooperative equilibrium for G is a Nash equilibrium of the

game Ind(G,�pp).

Observe that this model implicitly assumes that it is common

knowledge that both players apply the same method of reasoning,

that is, each player knows that the other player thinks about

coalitions when making her decision. As we elaborate in Section,

we believe that this assumption is not unreasonable and may

provide a realistic picture of the mental processes that real subjects

perform during the game.

In case of N-player games the idea is to define ti,j(p) for every

single player j=i and then use the law of total probabilities to

extend this measure to a probability measure on the set P\fig. To

use the law of total probabilities we need to know the probabilities

that two or more given players deviate from p. This is easy in

situations of perfect anonimity: one can just assume that the events

‘‘player j deviates’’ and ‘‘player k deviates’’ are independent and

then multiply the respective probabilities. The situation where a

player may influence the choice of another player is much more

interesting and worthy of being explored.

Finally, we observe that the N-person classical social dilemmas

in consideration are computationally very simple, since it is

enough to study only the fully selfish coalition structure ps (in

which all players play according to a Nash equilibrium of the

original game) and the fully cooperative coalition structure pc (in

which all players play collectively). More formally, given a

coalition structure p=ps,pc, one has v(p)ƒv(pc). Therefore, in

order to find a coalition structure that maximizes the value, it is

enough to know the values v(ps) and v(pc).

Predictions of the Model

Prisoner’s Dilemma
We compute the cooperative equilibrium of the Prisoner’s

dilemma in two variants, starting from the one already discussed

in Section with monetary outcomes (expressed in dollars)

T~0:20,R~0:15,P~0:05,S~0. In this case, the reader can

easily check, following the computation sketched in Section, that

the cooperative equilibrium is 1
2

Cz 1
2

D for both players. Notice

that in [20] it has been reported that players cooperated with

probability 58 per cent in one treatment and 65 per cent in

another treatment and the over-cooperation in the second

experiment was explained in terms of framing effect due to the

different ways in which the same game were presented.

Similar results can be obtained making a comparison between

the experimental data reported in [19] on the one-shot prisoner’s

dilemma with T~10,R~7,P~3,S~0 and its cooperative

equilibrium: 37 per cent of subjects cooperated in the laboratory,

while the cooperative equilibrium is 1
4

Cz 3
4

D. We mention that

the same experiment was repeated using MTurk and ten times

smaller outcomes, giving a slightly larger percentage of cooper-

ation (47 per cent). Nevertheless, it was shown in [19] that this

difference was not statistically significant.

Now we consider a parametric Prisoner’s dilemma. Fix kw0
and consider the following monetary outcomes: T~kz2,
R~kz1,P~1,S~0. The intuition suggests that people should

be perfectly selfish for k~0, they should get more cooperative as k

increases and they should tend to be perfectly cooperative as k

approaches infinity. This qualitative behavior was indeed observed

in iterated treatments in [18].

We show that this is in fact the behavior of the cooperative

equilibrium. Indeed, one obtains that the cooperative equilibrium

coincides with Nash equilibrium for kƒ1, while, for kw1, it is

k{1

k
Cz

1

k
D,

which moves continuously and monotonically from defection to

cooperation as k increases and tends to cooperation as k tends to

infinity. Note that the fact that the cooperative equilibrium

coincides with Nash equilibrium for kƒ1 shows also that Nash

equilibrium and cooperative equilibrium are not disjoint solution

concepts. Colloquially speaking, players get selfish when they

understand that cooperating is not fruitful.

Traveler’s Dilemma
One has v(ps)~180, since (180,180) is the unique Nash

equilibrium of the Traveler’s dilemma, and

v(pc)~300:
bz2

2bz1
z(300{2b):

b{1

2bz1
:

A Model of Human Cooperation in Social Dilemmas
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since the unique Nash equilibrium of Gpc is (300,300), D2(pc)~

b{1, in correspondence of (300,299), R2(pc)~bz2 in corre-

spondence of (298,299), e1,2(pc)~300{2b in correspondence of

(300,300{b), and clearly e1,1(pc)~300 in correspondence of

(300,300).

Consequently the cooperative equilibrium strongly depends

on b: the predicted claims get smaller as b get larger. In other

words, cooperation is more difficult as the bonus/penalty

increases. This behaviour has been indeed qualitatively observed

both in one-shot and iterated games [38], [16], [17], and [39].

We are aware of only two experimental studies devoted to one-

shot Traveler’s dilemmas. For these experiments, the prediction

of the the cooperative equilibrium are even quantitatively close.

Indeed, (1) for b~5 one finds that the unique cooperative

equilibrium is a suitable convex combinations of the strategies

296 and 297. This meets the experimental data reported in

[16], where they observed that about 80 per cent of the subjects

played a strategy between 290 and 300 with an average of 295;

(2) For b~180, one has v(pc)vv(ps), and then the cooperative

equilibrium coincides with the Nash equilibrium. This matches

the experimental data reported in [16], where they observed

that about 80 per cent of the players played the Nash

equilibrium; (3) For b~2 and strategy sets f2,3, . . . ,100g, in

[17] it has been reported that 38 out of 45 game theorists chose

a strategy between 90 and 100 and 28 of them chose a strategy

between 97 and 100. In this case v(pc)~99:2 and therefore the

cooperative equilibrium is close to the pure strategy 99.

Public Good Game
The unique Nash equilibrium is xi~0, for all i, in correspon-

dence of which each player gets y. Consequently v(ps)~y. On the

other hand, one has

v(pc)~2ay:
2a{1

a
zay:

1{a

a
~(3a{1)y:

Therefore, v(pc)ƒv(ps) if and only if aƒ

2

3
. In other words,

when a is small - recall that a is assumed to belong to the interval

(
1

2
,1) - the cooperative equilibrium reduces to Nash equilibrium

and the larger is a the larger is the rate of cooperation predicted by

the cooperative equilibrium. The fact that human behavior

depends on a in this way has been indeed observed several times

(see, e.g., [14], [40]). As a quantitative comparison, we consider

the experimental data reported in [41], with a~0:8. We

normalize y to be equal to 1 (in the experiment y~0:04 dollars).

In this case the cooperative equilibrium is supported between 0.66 and

0.67. In [41] it has been reported that the average of contributions

was 0.50, but the mode was 0.60 (6 out of 32 times) followed by

0.80 (5 out of 32 times).

Tragedy of the Commons
One easily sees that the Tragedy of the Commons and the

Public Goods game represent the same strategic situation, just by

setting a : ~
k

h
, that can be interpreted as the effective cost of

having a sheep. In particular, one finds that v(pc)wv(ps) if and

only if aw

2

3
.

Comparison between the Prisoner’s Dilemma and
Chicken

We recall that the Chicken game is basically the same as the

Prisoner’s dilemma except for the fact that payoffs are subject to

the condition TwRwSwP. The Chicken game has two pure

Nash equilibria, (C,D) and (D,C), and a symmetric evolutionarily

stable mixed Nash equilibrium depending on the payoffs. Observe

that ei,1(ps)~P, since it is the infimum of payoffs of player i when

each player plays in according to a Nash equilibrium. Such

infimum is attained in correspondence to the profile of strategies

(D,D).
It has been observed in [42] that the rate of cooperation in the

iterated Prisoner’s dilemma is significantly less than the rate of

cooperation in the iterated Chicken game with similar payoffs, that

is, with payoffs such that the average payoffs across outcomes is the

same in both games.

We now show that this behavior is predicted by the cooperative

equilibrium in one-shot games, giving a qualitative explanation of why

we observe more cooperation in the iterated Chicken game than in

the iterated Prisoner’s dilemma. The expression qualitative explana-

tion stands for the fact that, of course, a direct comparison between

iterated and one-shot games cannot be done, since the former

have a much richer set of strategies. Nevertheless, we find quite

remarkable the fact that this difference in behavior observed in

iterated treatments is predicted for one-shot treatments: we believe

that this connection is not casual and deserves to be investigate

better.

The payoffs used in [42] are T~400,R~300,D~0,S~{100
for the Prisoner’s dilemma and T~300,R~200,S~100,D~0 for

the Chicken game. One finds that the cooperative equilibrium of

this variant of the Prisoner’s dilemma is 2
3

Cz 1
3

D and the

cooperative equilibrium of this variant of the Chicken game

coincides with the evolutionarily stable strategy 6
7

Cz 1
7

D. So the

rate of cooperation predicted by the cooperative equilibrium is

significantly higher in the Chicken game.

Conclusions

Many experiments over the years have shown that humans may

act cooperatively even in one-shot social dilemmas without forms

of external controls and the rate of cooperation depends on the

payoffs. This suggests that humans have attitude to cooperation by

nature and therefore they do not act a priori as single players, as

typically assumed in economics, but they forecast how the game

would be played if they formed coalitions and then they play

according to their most optimistic forecast.

We have formalized this idea assuming that each player makes

an evaluation of the probability that another player abandons the

collective interest to follow her private interest. This probability is

defined by making a comparison between incentive and risk to

deviate from the collective interest and gives rise to common

beliefs that, mathematically, correspond to define a suitable

restriction of the original game. On the one hand, this procedure

seems qualitatively reasonable and we believe it provides a realistic

picture of the mental processes that real subjects perform during

the game. On the other hand, the formalization of this process,

that is, the definitions of the risk, incentive, probabilities, and the

induced game, is mathematically simple and seemingly natural but

certainly deserves to be investigated better and possibly improved

in future research.

However, the actual model makes us optimistic about this

direction of research, being the first predictive model able to: (1)

make satisfactorily accurate predictions of population average

behavior in social dilemmas; (2) explain a number of experimental
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findings, such as the fact that the rate of cooperation in the

Prisoner’s dilemma increases when the cost-benefit ratio decreases,

the rate of cooperation in the Traveler’s dilemma increases when

the bonus/penalty decreases, the rate of cooperation in the Public

Goods game increases when the pro-capite marginal return

increases, the rate of cooperation in the Chicken game is larger

than the rate of cooperation in the Prisoner’s dilemma with similar

payoffs.

The dream is to incorporate other components (as family

history, age, culture, incentives, iterations, etc.) into the model in

order to make individual-level predictions.
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