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Probability models on horse-race outcomes

MUKHTAR M. ALI, Department of Economics, University of Kentucky, USA

SUMMARY A number of models have been examined for modelling probability based on

rankings. Most prominent among these are the gamma and normal probability models.

The accuracy of these models in predicting the outcomes of horse races is investigated in

this paper. The parameters of these models are estimated by the maximum likelihood

method, using the information on win pool fractions. These models are used to estimate

the probabilities that race entrants ® nish second or third in a race. These probabilities are

then compared with the corresponding objective probabilities estimated from actual race

outcomes. The data are obtained from over 15 000 races. it is found that all the models

tend to overestimate the probability of a horse ® nishing second or third when the horse has

a high probability of such a result, but underestimate the probability of a horse ® nishing

second or third when this probability is low.

1 Introduction

In many respects, the pari-mutuel horse-race wagering market is similar to the

stock market. In both markets, returns from investments are uncertain, there are

many participants and there is a variety of information concerning investments and

participants. This has generated considerable interest in studying the e� ciency of

the wagering market (see, for example, Dowie, 1987; Ali, 1979; Figlewski, 1979;

Hausch et al., 1981; Asch et al., 1982). The common method of attacking this

problem has been to devise a pro ® table betting strategy. If such a strategy exists,

then the market is ine� cient. A prerequisite for developing a pro® table betting

strategy is to have accurate prediction of the probability of the outcomes of a horse

race. Thus, probability models which assign accurately the probability of the

outcome of a horse race would be of utmost interest to academic researchers who

want to study the e� ciency of the wagering market.

Harville (1973) examines one such probability model. His analysis of 335
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thoroughbred races suggests that his model overestimates the probability of ® nishing

second or third for horses that have a high probability of such a result, and

underestimates the probability of ® nishing second or third for other horses. Stern

(1990) examines a class of models that includes Harville’ s model, and applies two

models from this class to analyze 47 races. Analysis seems to corroborate the

® ndings of Harville (1973). Unfortunately, both these studies are limited in scope,

in terms of the number of models and the number of races being analyzed. Henery

(1981) proposes an alternative model. Bacon-Shone et al. (1992) propose logistic

models based on probability obtained from Harville (1973), Henery (1981) and a

number of Stern (1990) models. They ® t these logistic models to data on races

held at racetracks in Hong Kong and Meadowlands, NJ. Using a likelihood

criterion, they found that logistic models based on probability obtained from the

Henery (1981) model ® t the data best. Their conclusion was further con® rmed by

Lo and Bacon-Shone (1994), who ® t logistic models based on probability obtained

from Henery (1981) and Harville (1973) probability models. These studies suggest

that the Henery (1981) model is likely to provide accurate estimates of the ranking

probability of horse-race outcomes.

Unfortunately, these studies did not examine the accuracy of such estimates. A

major purpose of this paper is to investigate the accuracy of a number of commonly

advocated probability models. The analysis will be based on more than 15 000

races. The models are described in Section 2. Also described in Section 2 is the

maximum likelihood estimate (MLE) of the model parameters. Details of the data

analysis and ® ndings are reported in Section 3. Some concluding remarks are given

in Section 4.

2 Probability models and their estimates

2.1 Probability models

Assigning the probability of the outcomes of horse-races in which k horses are

competing is the same as assigning the probability for the permutations of the ® rst

k integers. The k integers can be interpreted as ranks of k objects. A number of

probability models for such ranking (permutations) have been proposed in the

statistical and psychological literature (see Critchlow et al., 1991). Among these

models is a class of models which assign to each ranking the probability of the

corresponding ordering of independent, not necessarily identically distributed

random variables. More speci® cally, let X 1 , X 2 , . . . , X k be k independent random

variables with probability distribution functions F(x; a i )(i 5 1, 2, . . . , k), and let

p 5 ( p 1 , p 2, . . . , p k ) represent a permutation of k objects in which object p j has rank

j ( j 5 1, . . . , k). Then, these models assign the probability to the permutation p as

Pr( p ) 5 Pr(X p 1
< X p 2

< . . . < X p k
)

The models are known to be ranking models. Two well-studied cases of the ranking

models are the model of Thurstone (1927), Daniels (1950) and Mosteller (1951),

also known as the normal ranking model, where the random variables are normally

distributed with mean a i(i 5 1, 2, . . . , k) and variance 5 1; and the Luce (1959)

model, where the distribution of the random variables is Gumbel. The Luce model

is also the ® rst-order model in the Plackett (1975) system of logistic models.

Henery (1981) proposes the normal ranking model for horse-race outcomes.

Henery (1983) and Stern (1990) investigate a ranking model known as the
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gamma ranking model, where the random variables X i (i 5 1, 2, . . . , k) have gamma

distributions with scale parameter a i and a common shape parameter r. The

probability density of X i is given by

f(x; a i , r) 5 [ a
r
i

C (r)]x
r 2 1 exp ( 2 a ix), x > 0

With shape parameter r 5 1, the random variables have exponential distributions

and the model becomes the Luce model. Harville (1973) applies the Luce model

and Stern (1990) applies the gamma ranking models with shape parameter r 5 1, 2

to horse racing. Bacon-Shone et al. (1992) and Lo and Bacon-Shone (1994) ® t

logistic models based on the probability obtained from both normal and gamma

ranking models. In this paper, we examine the normal ranking model of Thurstone

(1927), Daniels (1950) and Mosteller (1951), and the gamma ranking model of

Henery (1983) and Stern (1990). The gamma ranking model is a class of models

where a variety of models are obtained by considering diŒerent values of the shape

parameter r. A number of these models will be examined in this paper.

2.2 Parameter estimates

It is a simple matter to obtain MLEs of the parameters if we have the complete set

of data. This is because, in the complete data set, a random sample of permutations

is observed and the empirical distribution pn( p ) of permutation p is known.

Consequently, the log likelihood of the ranking model can be obtained as

ln [L( pn ( p ), a )] 5 R p npn ( p ) ln [ p( p )]+ C

where a 5 ( a 1 , a 2 , . . . , a k ) are the parameters npn( p ) is the number of times that the

permutation p is observed, and p( p ) is the probability of the permutation p under

the model (expressed as a function of the unknown parameters a ). The likelihood

estimate of a maximizes the term ln L. Unfortunately, we do not have a complete

data set. In fact, we observe only one outcome from a race and the data from

diŒerent races cannot be combined, because each race is diŒerent, in the sense

that the model parameters will vary from race to race.

Fortunately, however, not only is the outcome of a race observed but the

empirical probability pn(i ) that horse i wins can also be accurately estimated from

the published win odds O i . The win odds are determined by the amount of money

bet on each horse1 to win2 the race, the track take and breakage3 . If W i is the

amount bet on horse i to win and b is the take-out rate and breakage, then the

total win pool is W 5 R W i and the odds O i are given by

1 + O i 5 (1 2 b )W /W i (1)

It has been observed in several studies (see, for example, Fabricand, 1965;

Weitzman, 1965; Ali, 1977; Snyder, 1978) that the empirical probability that horse

i wins can be accurately estimated by taking it to be proportional to (W i /W ) d , for

some parameter d . From equation (1), the win pool fraction W i /W is given by

W i /W 5 [1 /(1+ O i)] / R [1 /(1+ O i)] (2)

so that it can be obtained from the published win odds O i . Knowing the empirical
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probability pn(i ), it is easy to write the likelihood function and, as shown by Stern

(1990), the MLEs satisfy the system of equations

p(i ) 5 pn(i ) (3)

where p(i ) is the model-based probability that horse i wins the race:

p(i ) 5 ò f (x; a i) P
k

j ¹ i 5 1

[1 2 F(x; a j)] dx (4)

p(i ) is a function of the parameters a .

It may be noted that p(i ) is unchanged if a constant is added to each a i term in

the case of the normal ranking model, and if each a i term is multiplied by a positive

constant in the case of the gamma ranking model. Therefore, without loss of

generality, we have chosen a i so that R a i 5 0 for the normal ranking model and

R a i 5 1 for the gamma ranking model. Hence, MLEs of a i are obtained by solving

equation (3) subject to the condition that R a i 5 0 for the normal ranking model and

R a i 5 1 for the gamma ranking model. The solutions are obtained by minimizing

S 5 R [p(i ) 2 pn (i )]2 (5)

p(i ), as de® ned in equation (4), is obtained by numerical integration. The Gauss±

Newton method as modi® ed by Marquardt (1963) is used to minimize the function

S numerically. To start oŒ the iterative solution procedure, initial estimates of a i

are required. These are obtained as follows.

For the normal ranking model, following Henery (1981), we have

a i 5
(k 2 1) u (z0 )(z i 2 z0)

U
2 1[(i 2 3 /8) /(k + 3 /4)]

(6)

where z i 5 U
2 1[pn(i )], z0 5 U

2 1(1 /k), pn(i ) is the empirical win probability, and

U (.) and u (.) are, respectively, the distribution and density functions of the

standard normal variable. The initial estimates of a i are deviations, a i 2 R a i /k,

where the a i terms are given in equation (6).

For the gamma ranking model, the probability p(i ) depends on the shape

parameter r. To make this dependency explicit, let us write p(i, r) for p(i ). Some

elementary computations suggest that p(i, r) is approximately proportional to

p(i, r 5 1) 2 g(r), where g(r) is a positive and monotonically decreasing function of r.

Moreover, it can be shown that p(i, r 5 1) 5 a i . Therefore, from the likelihood

equation (3), a i
2 g(r) is approximately proportional to pn(i ) and estimates of a i can

be taken to be proportional to pn(i )g(r). Thus, some preliminary estimates of a i can

be obtained once the function g(r) is known.

To determine g(r), we note that, besides being positive and decreasing in r, it

must be equal to 1 when r 5 1. That g(r 5 1) 5 1 follows from the fact that, when

r 5 1, because p(i, r 5 1) 5 a i , the MLEs estimate of a i , which solve equation (3),

are pn(i ). With some trial and error, we found that reasonable estimates of a i can

be obtained by setting g(r) to 2 /(1+ r). This is what is used in our subsequent

analysis.

3 Data analysis

To check the accuracy of the normal and gamma ranking models in assigning the

probability of horse-race outcomes, data on 20 247 harness horse races were
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TABLE 1. Data description

Average bet Average bet per

Racetrack No. of racing Average daily per race person in a race

and year dates No. races attendance (US$)a (US$)

Saratoga

1970 193 1 909 3 784 23 701 6.26

1971 182 1 779 3 873 25 500 6.58

1972 187 1829 3 393 23 706 6.98

1973 189 1 834 3 486 25 350 7.27

1974 172 1 721 3 541 25 694 7.26

Roosevelt

1970 ± 71b 192 1 698 20 426 228 884 11.21

1972 154 1 355 17 014 213 082 12.52

1973 153 1 347 17 148 214 110 12.49

1974 159 1 406 15 789 216 435 13.71

Yonkers

1971 155 1 381 18 025 224 289 12.44

1972 145 1 268 17 258 234 837 13.61

1973 160 1 407 15 871 225 639 14.22

1974 148 1 313 15 988 227 853 14.25

Note: All tracks are in the state of New York.
a Includes all possible betting opportunities.
b October± December 1970 and March± October 1971. In the analysis, the time period is treated as the

year 1971.

collected. The data are described in Table 1. Previously, these data have been

reported and analyzed by Ali (1977). Data from races that involve a `dead heat’ at

any ® nishing position are not considered. For the sake of comparability, only races

with the same number of betting interest are analyzed. Speci® cally, our analysis is

limited to races with eight entrants. In our data, eight entrants competed in 15 402

out of the 20 247 races.

Besides the `win’ bet, there are at least two regular betting opportunities in a

race, known as `place’ and `show’ bets. Betting on a horse to place is successful if

the horse ® nishes ® rst or second, and betting on a horse to show is successful if

the horse ® nishes ® rst, second or third. The probabilities that horse i ® nishes

second or third are of direct interest to those making the place and show bets. To

check the model accuracy, the model-based probability of a horse ® nishing second

(or third) is compared with its corresponding objective probability. The objective

probability of a horse ® nishing second (third) is de® ned to be the proportion of

times that the horse ® nishes second (third) when the race is repeated an in® nitely

large number of times.

Both model-based and objective probabilities are diŒerent for horses in a race,

and they also diŒer in diŒerent races. The model-based probabilities can be

obtained from the estimated model but, because we have only one observation, a

reliable estimate of the objective probabilities cannot be obtained. In our study,

the horses are grouped and their average model-based probability is compared with

an unbiased estimate of the corresponding average objective probability. The

average objective probability is estimated by the relative frequency of the horses in

a group ® nishing in a speci® ed position (second or third). If the estimate is u , then

its standard error is estimated as the square root of u (1 2 u ) /n, where n is the

number of races from which the estimate is obtained.
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Following Ali (1977), horses are grouped by `favorites’ . The horse with the

lowest odds O i to win a race is known as the ® rst favorite; the horse with the

second lowest odds O i to win the race is known as the second favorite, and so on.

On the basis of information of win odds on the horses in a race, the likelihood

estimates of the parameters a i of each model are obtained. Following the analysis

of this data by Ali (1977) and Lo (1992), the parameter d is set to 1.16 for the

races at Saratoga, and to 1.13 for the races at both Roosevelt and Yonkers. We

then use the estimated model to estimate the probability that favorite i ® nishes

second (p(i, 2)) or third ( p(i, 3)). These are model-based probabilities. These

probabilities are obtained by numerical integration, utilizing the following formulae:

p(i, 2) 5 ò f (x; a i) R
k

j ¹ i

F(x; a j) P
k

l ¹ i, j

[1 2 F(x; a l)] dx (7)

p(i, 3) 5 ò f (x; a i) R
k

j1 j2 ¹ i

j1< j2

F(x; a j1 ) F(x; a j2 ) P
k

l ¹ i, j1, j2

[1 2 F(x; a 1 )] dx (8)

where f (x; .) and F(x; .) are, respectively, the appropriate density and distribution

functions. Average model-based probabilities are simple averages of p(i, 2) and

p(i, 3) over the number of races being analyzed.

The results from comparisons of the probabilities of ® nishing second and

® nishing third are given in Tables 2 and 3 respectively. For each model, the results

are reported in three rows. The probabilities estimated from the model are reported

in the ® rst row, while the observed relative frequencies (objective probabilities) are

in the second row. The deviations of the model-based probabilities from the

corresponding relative frequencies are expressed as ratios to the respective standard

errors and are reported in the third row. In general, irrespective of the ranking

model, the probabilities of ® nishing second and third are overestimated for those

horses which have high probabilities of ® nishing second or third (or of winning the

race), and are underestimated for those horses which have low probabilities of

® nishing second or third (or of winning the race).

This agrees with the ® ndings of Harville (1973), who examined the gamma

ranking model with shape parameter 1; it also agrees with the ® ndings of Stern

(1990), who analyzed 47 races based on the gamma ranking model with shape

parameter r 5 1 and 2. However, the standardized deviations of the model-based

probabilities from the corresponding average relative frequencies (deviations

divided by their standard errors) are almost always smaller when the probabilities

are estimated from the normal ranking model than when the probabilities are

estimated from any of the gamma ranking models. For example, for favorite 1, in

estimating the probability of ® nishing second, the standardized deviation is 5.737

for the normal ranking model, which is the smallest standardized deviation among

all the models. The next smallest deviation resulted for the gamma model with the

shape parameter r 5 20. This is expected, because the gamma model with shape

parameter r 5 20 is closer to the normal model than is a gamma model with shape

parameter less than 20. Thus, it seems that the normal ranking model best ® ts the

data. This is consistent with the ® ndings of Bacon-Shone et al. (1992) and with

those of Lo and Bacon-Shone (1994). However, contrary to the conclusions drawn

by Bacon-Shone et al. (1992) and Lo and Bacon-Shone (1994), this best-® tting

model signi® cantly overestimates the probability of ® nishing second or third for



Modelling horse-race outcomes 227

TABLE 2. Probability of ® nishing second: model-based vs objective probability

Favorite horse

Model [n]a Probability 1 2 3 4 5 6 7 8

N(0, 1)b
M

c 0.210 0.197 0.165 0.134 0.107 0.083 0.061 0.042

[15402] O
d 0.192 0.193 0.168 0.139 0.111 0.089 0.068 0.042

(M ± O) /SEe 5.737 1.409 2 0.880 2 1.490 2 1.558 2 2.522 2 3.135 2 0.162

G(0.5) M 0.269 0.224 0.166 0.121 0.088 0.063 0.043 0.026

[14059] O 0.193 0.189 0.164 0.137 0.112 0.091 0.070 0.044

(M ± O) /SE 23.018 10.484 0.569 2 5.333 2 0.156 2 11.503 2 12.670 2 10.187

G(0.75) M 0.263 0.223 0.167 0.123 0.090 0.064 0.043 0.027

[15400] O 0.192 0.193 0.168 0.139 0.111 0.089 0.068 0.042

(M ± O) /SE 22.231 9.457 2 0.251 2 5.448 2 8.283 2 10.669 2 11.957 2 9.391

G(1.0) M 0.256 0.219 0.167 0.125 0.092 0.066 0.045 0.028

[15402] O 0.192 0.193 0.168 0.139 0.111 0.089 0.068 0.042

(M ± O) /SE 20.204 8.385 2 0.163 2 4.781 2 7.338 2 9.759 2 11.114 2 8.577

G(2.0) M 0.242 0.212 0.167 0.128 0.097 0.971 0.050 0.032

[15400] O 0.192 0.193 0.168 0.139 0.111 0.089 0.068 0.042

(M ± O) /SE 15.833 6.173 2 0.237 2 3.642 2 5.478 2 7.616 2 8.975 2 6.287

G(5.0) M 0.230 0.206 0.166 0.131 0.101 0.076 0.054 0.035

[15402] O 0.192 0.193 0.168 0.139 0.111 0.089 0.068 0.042

(M ± O) /SE 11.906 4.277 2 0.399 2 2.781 2 3.920 2 5.628 2 6.704 2 4.058

G(10.0) M 0.224 0.204 0.166 0.132 0.103 0.078 0.056 0.037

[15402] O 0.192 0.193 0.168 0.139 0.111 0.089 0.068 0.042

(M ± O) /SE 10.037 3.406 2 0.543 2 2.361 2 3.224 2 4.692 2 5.606 2 2.935

G(20.0) M 0.220 0.202 0.166 0.133 0.104 0.080 0.058 0.039

[15402] O 0.192 0.193 0.168 0.139 0.111 0.089 0.068 0.042

(M ± O) /SE 8.750 2.777 2 0.599 2 2.110 2 2.701 2 4.012 2 4.955 2 2.080

a
n is number of races in the sample.

b
N(0, 1) is the normal ranking model and G(r) is the gamma ranking model with shape parameter r.

c
M is the average model-based probability.

d
O is the average objective probability.

e SE 5 [O(1 2 O) /n]1 /2 is the standard error of O, where n is the number of races in the sample.

horses which have a high probability of winning, and overestimates the probability

of ® nishing second or third for horses that have a low probability of winning.

4 Concluding remarks

We have examined the normal ranking model and a number of gamma ranking

models for their accuracy in estimating ranking probabilities in horse races. The

analysis is based on over 15 000 races. It is found that the normal ranking model

best ® ts the data, but all models suŒer from favorite ± longshot bias, i.e. the

probability of ® nishing second or third is overestimated for horses which have a

high probability of winning and is underestimated for horses which have a low

probability of winning. The data were further subdivided by year and racetrack

and an analysis of these data led to the same conclusion about favorite ± longshot

bias. This shows that none of the ranking models may be used to construct

pro ® table betting strategy.

Hausch et al. (1981) reported positive pro® ts, by applying a betting strategy in
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TABLE 3. Probability of ® nishing third: model-based vs objective probability

Favorite horse

Model [n]a Probability 1 2 3 4 5 6 7 8

N(0, 1)b
M

c 0.147 0.165 0.161 0.146 0.127 0.106 0.085 0.063

[15402] O
d 0.129 0.153 0.152 0.146 0.136 0.118 0.095 0.071

(M ± O) /SE e 6.793 3.858 2.942 0.153 2 3.077 2 4.599 2 4.288 2 3.779

G(0.5) M 0.191 0.210 0.188 0.144 0.106 0.076 0.052 0.032

[14059] O 0.131 0.151 0.152 0.143 0.135 -.118 0.097 0.073

(M ± O) /SE 21.061 19.730 11.852 0.454 2 9.939 2 15.411 2 18.098 2 18.680

G(0.75) M 0.182 0.205 0.186 0.147 0.111 0.080 0.055 0.034

[15400] O 0.129 0.153 0.152 0.146 0.136 0.119 0.095 0.071

(M ± O) /SE 19.600 17.637 11.764 0.462 2 9.122 2 14.744 2 17.039 2 17.684

G(1.0) M 0.178 0.199 0.183 0.148 0.113 0.084 0.059 0.037

[15402] O 0.129 0.153 0.152 0.146 0.136 0.118 0.095 0.071

(M ± O) /SE 18.089 15.718 10.586 0.655 2 8.060 2 13.177 2 15.388 2 16.328

G(2.0) M 0.169 0.188 0.176 0.148 0.119 0.091 0.066 0.044

[15400] O 0.129 0.153 0.152 0.146 0.136 0.118 0.095 0.071

(M ± O) /SE 14.692 11.825 8.064 0.791 2 6.224 2 10.428 2 12.125 2 12.977

G(5.0) M 0.160 0.178 0.169 0.148 0.122 0.098 0.074 0.051

[15402] O 0.129 0.153 0.152 0.146 0.136 0.118 0.095 0.071

(M ± O) /SE 11.658 8.575 5.917 0.648 2 4.848 2 8.012 2 9.007 2 9.559

G(10.0) M 0.156 0.174 0.166 0.147 0.124 0.100 0.077 0.054

[15402] O 0.129 0.153 0.152 0.146 0.136 0.118 0.095 0.071

(M ± O) /SE 10.149 7.079 4.933 0.439 2 4.288 2 6.887 2 7.628 2 7.841

G(20.0) M 0.153 0.171 0.165 0.147 0.125 0.102 0.080 0.057

[15402] O 0.129 0.153 0.152 0.146 0.136 0.119 0.095 0.071

(M ± O) /SE 9.026 6.070 4.334 0.383 2 3.919 2 6.298 2 6.642 2 6.564

a
n is the number of races in the sample.

b
N(0, 1) is the normal ranking model and G(r) is the gamma ranking model with shape parameter r.

c
M is the average model-based probability.

d
O is the average objective probability.

e SE 5 [O(1 2 O) /n]1 /2 is the standard error of O, where n is the number of races.

which the probabilities were estimated by the gamma ranking model with shape

parameter r 5 1 to 627 races held during the 1973 ± 74 winter season at Santa Anita

Racetrack in Arcadia, CA and to 1065 races held during the 1978 summer season

at Exhibition Park, Vancouver, BC. The achievement of such positive pro® ts may

have been as a result of the peculiarity of the samples of races that were analyzed.

Lo et al. (1994) applied the betting system of Hausch et al. (1981) and its variants

to 705 races held during 1984 at Meadowlands, NJ, as well as applying it to 905

races held during 1981 ± 82 in Hong Kong and to 983 races held during 1990 ± 91

in Japan. In each case, the system of Hausch et al. produced negative pro® ts.

Notes

1. In some cases, several horses are groupedÐ known as an `entry’ or `® eld’ Ð for a single betting

interest, and the group is assigned a single number. A bet on this number is successful if one of the

horses in the group is successful. Thus, if it is a `win’ bet, then the bet is successful if one of the

horses in the group ® nishes ® rst. Without loss of generality, this group is taken as a single horse.

2. Races with a `dead heat’ at any ® nishing position are not considered.
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3. A ® xed proportion of the amount bet in a race is taken out by the track before it distributes the rest

to the successful betters. This proportion is known as the `take-out rate’ . The breakage arises because

of the following two restrictions: (a) odds cannot be below a certain minimum; (b) odds have to be

rounded downward, except when restriction (a) is in eŒect, in which case, it is rounded upward. For

the races that are analyzed, all the odds are rounded to 10 cents and the minimum odds are also

10 cents.
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