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STAT 155 is an entire course on Game Theory.

In this lecture we illustrate Game Theory by first focusing on one
particular game for which we can get data. The game is relevant to one
of the central ideas of game theory. Does the data – how people actually
play the game – correspond roughly to what theory says?

We will do some math calculations “because we can” – more details in
write-up. Continuing to analyze the data, or doing a simulation study of
more complex strategies, would be a nice course project. Also, finding
and studying some other observable online game-theoretic game would be
a good project.

There are many introductory textbooks and less technical accounts of
game theory – see write-up. Here is a 1-slide overview.



1 Setting: players each separately choose from a menu of actions, and
get a payoff depending (in a known way) on all players’ actions.

2 Rock-paper-scissors illustrates that one should use a randomized
strategy, and so we assume a player’s goal is to maximize their
expected payoff. There is a complete theory of such two-person
zero-sum games.

3 For other games, a fundamental concept is Nash equilibrium
strategy: one such that, if all other players play that strategy, then
you cannot do better by choosing some other strategy. This concept
is motivated by the idea that, if players adjust their strategies in a
selfish way, then strategies will typically converge to some Nash
equilibrium.

4 More advanced theory is often devoted to settings where Nash
equilibria are undesirable in some sense, as with Prisoners’ Dilemma,
and to understanding why human behavior is not always selfish.



A “survey’” project would be to look at the literature on game theory in
some specific application field.



A (slightly simplified) math description of the actual game we shall study.

There are 5 items of somewhat different known values, say
{8, 7, 6, 5, 4} dollars.

There are 10 players.

A player can make a sealed bid for (only) one item, during a window
of time.

During the time window, players see how many bids have already
been placed on each item, but do not see the bid amounts.

When time expires each item is awarded to the highest bidder on that
item. We assume players are seeking to maximize their expected gain.

So a player has to decide three things; when to bid, which item to bid on,
and how much to bid.



The game is called Dice City Roller on pogo.com.

[show DCR in progress]

We get data by screenshots at 14, 5 and 0 seconds before deadline, and
then after winning bids are shown.

Who are the actual players?



 Profile   Badges   Stats   Gifts  

bbain_ Add To FriendsSend Message

Age
74

Tokens:

 49,933,882
Member Since: Apr 03, 2000

Club Time Rewards Program :

Club Time Rewards Year 9

Gender
female

Location
al now/ moved from ca

Occupation
retired or just tired

Relationship Status
married

Bingo Luau Dice City
Roller

Sweet Tooth 2 Jungle Gin

  Favorite Games

About Me
married for 57 years to same man. 3 children, 11 grandkids, 7
greatgrand kids

Interests and Hobbies
going to lunch and hanging out with friends. going to church
and reading BIBLE.

bbain_'s Guestbook

View Mini Snapshots

Submit

  
View Full Guestbook

Write a comment...



 Profile   Badges   Stats   Gifts  

Julia4719 Add To FriendsSend Message

Age
65

Tokens:

 6,399,469
Member Since: May 28, 2012

Club Time Rewards Program :

Club Time Rewards Year 1

"Are we having fun yet?"

Gender
female

Location
TYLER,TX

Occupation
RETIRED

Relationship Status
married

Bejeweled
Twist

Bejeweled
Blitz: Rubies
and Riches

BOGGLE
Bash

Jigsaw
Treasure
Hunter

  Favorite Games

About Me
I HAVE A CAT NAMED KITTY.SHE IS OVER YEAR OLD. I
LIKE TO PLAY SCRABBLE, WHEEL OF FURTUNE AND
FAMILY FUED. I TOOK A TRIP TO LOUISIANA TODAY AND I
LOVE TRAVELING I WAS IN THE ARMY FOR 9 YEARS.
AFTERWAERDS I WORKED FOR FEDERAL CIVIL SERVICE

Julia4719's Guestbook

View Mini Snapshots

Submit

  
View Full Guestbook

Write a comment...

BABY IT'S COLD OUTSIDE



We study math for simplified version without the time window – each
player just places a sealed bid without knowledge of other players actions.

In this case we can calculate the Nash equilibrium strategy explicitly – for
any number of players, and any number and values of items.

Start with the simplest setting: 2 players, 2 items of values 1 and b,
where 0 < b ≤ 1.

We have a little data from playing this in Lecture 1.



[2014]
24/35 students bid on the $1,  11/35 bid on the 50c

bids on $1 bids on 50c

0 0 0
25 1
41 10
42 25
45 26
48 32
49 49 49 49 49 49 37
50 50 50 50 40
51 45
55 49
67
75 75 
80
81
100

Consider a person P who bid 49.
When we match with a random other person:

chance 12/34 P gains 0 (other person bid more on the $1)
chance 17/34 P gains 51 (= 100 - 49) (P won the bid)
chance 5/34 we do coin-toss to decide winner: P gains 51/2.

So P's expected gain = 29.25 

______________________________________________________________________
 [2016]
18/35  students bid on the $1,  17/35 bid on the 50c

bids on $1 bids on 50c

20          1 1
50 50 50 50 50 2
62 5
65 10
70 70 70 30 30
74 38
75 75 40 40
76 45 45
83 48 48 48
95 50 50
99
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For the in-class game, the winner was the student who bid 51c for the $1
item.

I will develop some math theory, first in this “two players, two items”
setting. My point is to show that it’s not terribly complicated. See
write-up for more theory.



A player’s strategy is a pair of functions (F1,Fb):

F1(x) = P( bid an amount ≤ x on the first item), 0 ≤ x ≤ 1 (1)

Fb(y) = P( bid an amount ≤ y on the second item), 0 ≤ y ≤ b (2)

where
F1(1) + Fb(b) = 1. (3)

We can equivalently work with the associated densities

f1(x) = F ′1(x), fb(y) = F ′b(y).

Suppose your opponent’s strategy is some function (f1, fb) and your
strategy is some function (g1, gb).

What is the formula for your expected gain?
[do on board]



opponent’s strategy is (f1, fb), your strategy is (g1, gb).

Your expected gain is∫ 1

0

(1−x)g1(x)[F1(x)+Fb(b)] dx+

∫ b

0

(b−y)gb(y)[Fb(y)+F1(1)] dy . (4)

We need an obvious fact [picture on board].
Given a payoff function h(x) ≥ 0 with h∗ = maxx h(x), consider the
expected payoff

∫
h(x)g(x)dx when we choose x according to a

probability density g . Then we get the maximum expected payoff if and
only if

h(x) = c for all x ∈ support(g)

h(x) ≤ c for all x 6∈ support(g)

for some c (which is in fact h∗).

Now our expected gain (4) is of this form, thinking of (g1, gb) as a single
probability density function. Apply the “obvious fact”:



So given your opponent’s strategy (f1, fb), your expected gain is
maximized by choosing a strategy (g1, gb) satisfying, for some constant c

(1− x)[F1(x) + Fb(b)] = c on support(g1)

≤ c off support(g1)

(b − y)[Fb(y) + F1(1)] = c on support(gb)

≤ c off support(gb)

Now the definition of (f1, fb) being a Nash equilibrium strategy is
precisely the assertion that the (in)equalities above hold for
(g1, gb) = (f1, fb).

So now we have a set of equations for the NE strategy.



(1− x)[F1(x) + Fb(b)] = c on support(f1) (5)

≤ c off support(f1) (6)

(b − y)[Fb(y) + F1(1)] = c on support(fb) (7)

≤ c off support(fb) (8)

with “boundary conditions”

F1(0) = Fb(0) = 0; F1(1) + Fb(b) = 1.

Note that in any game we can do some similar argument to get equations
that a NE must satisfy. STAT 155, like most game theory, focusses on a
discrete menu of actions – our example is continuous.

Theory talks about existence and uniqueness of solutions, for general
games. We can just go ahead and solve these particular equations. The
write-up shows how to solve “as math” without thinking about the game
interpretation. The answer appears as



F1(x) = b
1+b ( 1

1−x − 1) on 0 ≤ x ≤ 1
1+b (9)

Fb(y) = 1
1+b ( b

b−y − 1) on 0 ≤ y ≤ b2

1+b . (10)

The corresponding densities are

f1(x) = b
1+b (1− x)−2 on 0 ≤ x ≤ 1

1+b (11)

fb(y) = b
1+b (b − y)−2 on 0 ≤ y ≤ b2

1+b . (12)

The expected gain for each player works out as

E[gain] =
b

1 + b
.

[show figures again – how close is data to theory?]



An important general principle

If opponents play the NE strategy then any non-random choice
of action you make in the support of the NE strategy will give
you the same expected gain (which equals the expected gain if
you play the random NE strategy), and any other choice will
give you smaller expected gain.

This “constant expected gain” principle is true because the NE
expected gain is an average gain over the different choices in its support;
if these gains were not constant then one would be larger than the NE
gain, contradicting the definition of NE.

In our game, if you bid x on item 1, where x is in the support
0 ≤ x ≤ 1

1+b , then your chance of winning is (by calculation)
b

1+b (1− x)−1, so your expected gain is (1− x)× b
1+b (1− x)−1 = b

1+b as
the general principle says.

Later we will use the general principle to calculate the NE for arbitrary
numbers of players and prizes.



Note that the gap between your maximum bid and the item’s value is the
same for both items;

1− 1/(1 + b) = b − b2/(1 + b) = b/(1 + b).

This follows from the “constant expected gain” principle above; if you
bid the maximum value in the support the you are certain to win the
item, so your gain must be the same for both items.

The same “equal gap principle” works by the same argument for general
numbers of players and items (but is special to our particular game).



Consider the general case of N ≥ 2 players and M ≥ 2 items of values
b1 ≥ b2 ≥ . . . ≥ bM > 0. The bottom line (with a side condition – see
write-up) is the formula

E ( gain to a player at NE) = c =

(
M − 1∑

i b
−1/(N−1)
i

)N−1

(13)

and the NE strategy is defined by the density functions

fi (x) =
M − 1

N − 1

1∑
j b
−1/(N−1)
j

(bi − x)−N/(N−1), 0 ≤ x ≤ bi − c

for bids on prize i .

The next slide shows the main steps in the calculation.



Writing out the expression for the expected gain when you bid xi on the
i ’th item, the “constant expected gain” property says

(bi − x) (1− (Fi (x
∗
i )− Fi (x)))N−1 = c , 0 ≤ x ≤ x∗i := bi − c (14)

where c = expected gain to a player at NE. Because a strategy is a
probability distribution we have

∑
i Fi (x

∗
i ) = 1 and so∑

i

(1− Fi (x
∗
i )) = M − 1.

Now using (14) with x = 0 we have

1− Fi (x
∗
i ) = (c/bi )

1/(N−1) (15)

and so ∑
i

(c/bi )
1/(N−1) = M − 1

identifying c .



The data from playing the game once in class doesn’t fit the NE theory
very well, but there’s no reason it should fit. Recall our comment

For other games, a fundamental concept is Nash equilibrium
strategy: one such that, if all other players play that strategy, then
you cannot do better by choosing some other strategy. This concept
is motivated by the idea that, if players adjust their strategies in a
selfish way, then strategies will typically converge to some Nash
equilibrium.

The idea is that people “learn” after playing many times. In principle one
could learn by recording your action and other players’ actions in past
games, and then use whatever strategy (probability distribution over
actions) would have worked best (for you) in the past. Eventually you will
reach an “equilibrium” in the sense of not changing strategy any longer.



In the actual Dice City Roller game people do play many times. How well
does their actual play approximate the NE? This is the anchor data for
this lecture.

There are two complications. The win amounts are actually random.
Theory says only EVs should matter, and one expects players would
“learn by experience” the EVs. In fact one can calculate them – thanks
YuFan Hu.

Also the game imposes minimum bids. But the math analysis can be
modified to handle this.



not very close to what NE theory would predict. One could imagine many
reasons for this discrepancy. A typical player self-description is “age 63,
retired nurse: interests church, crafts, grandkids”; on this basis we suppose
the typical player is not a student of game theory, so might not consider the
idea of conscious randomization. The fact that the winning bid is, in roughly
a third of these cases, the minimum allowed bid is clearly a consequence of
time-window strategy (making a last-second bid on an item no-one else has
bid on) not taken into account in our theory, so the data might be closer to
the true NE than to our approximate NE. A third possibility is described in
section 6.1.

Figure 3. Comparison of winning bid distribution from data and from
NE theory.
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I don’t want to spend all this lecture on the specifics of this game, but
the “time window” aspect makes it more complicated and more
(mathematically) challenging.

[say in words]

project: can you find another “observable” online game with a clear
“game theory” component?



Conceptual digression. Prisoner’s Dilemma reminds us that a NE is
usually not a social optimum strategy. Here’s another reminder, from
Scott Aaronson’s blog.

Why are even some affluent parts of the world running out of fresh
water? Because if they weren’t, they’d keep watering their lawns
until they were.

Why does it cost so much to buy something to wear to a wedding?
Because if it didn’t, the fashion industry would invent more
extravagant “requirements” until it reached the limit of what people
could afford.

Again and again, I’ve undergone the humbling experience of first
lamenting how badly something sucks, then only much later having the
crucial insight that its not sucking wouldn’t have been a Nash equilibrium.



Our other example is the Least Unique Positive Integer game. Each of
N players chooses a number from 1, 2, 3, . . .. The winner is the person
who chooses the smallest number that no-one else chooses.

Quick to play with 5 - 40 people – need only pen and paper –
organizer calls out to find winner.

There might be no winner, but unlikely for large N.

Consider random strategy p = (p1, p2, . . .). This is another game where
we expect a unique NE and we could study data to see if real-world
players adopt roughly the NE.

[show data from Lecture 1]

I outline [next slide] an easy approximate analysis of the NE, for
reasonably large N. We expect the support of the NE to be 1 ≤ i ≤ K
for some K depending on N.



If other players use p then

Xi = number others choosing i ≈ Poisson(λi = (N − 1)pi )

The “constant expected gain” principle says that, whatever your choice
of i in the support [1,K ], your chance of winning is c ≈ N−1. Choosing
i , you win if no-one else chooses i and there is no unique chooser of any
j < i , giving approximate equations

P(Xi = 0,Xj 6= 1 ∀j < i) = 1/N, 1 ≤ i ≤ K .

For the left side there is a (complicated) formula in terms of p. Can solve
numerically. In particular, for i = 1 we see

exp(−(N − 1)p1) ≈ 1/N

and so
p1 ≈ logN

N−1 .

Then pi decreases, slowly at first.



This game was played on a large scale, for large prizes, in Sweden, 7
times in 2007. Around 50,000 players. Analysis in paper Testing game
theory in the field: Swedish LUPI lottery games.

[show ostling-figure, next slide]

Stopped after 7 weeks because it’s possible to “cheat” with a coalition of
players.

[explain how]
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