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Miscellaneous topics, loosely related to previous topics – a partial
reminder of what we’ve seen in the course.

The “picture becomes clearer” metaphor for updating probabilities is
wrong.

Even if you’re sure it’s a bubble . . .

Play boldly when you’re behind.

Philosophy: distinguishing aleatoric and epistemic uncertainty.

What about Bayes?



1. The ”picture becomes clearer” metaphor for updating
probabilities is wrong.
This is a less widely appreciated counter-intuitive insight from
mathematical probability. Consider some future event which may or may
not happen; for simplicity suppose we assess the probability (as of now)
as 0.5, and that we will find out for certain before a known later date. As
time passes we acquire relevant information – as a metaphor, ”the
picture becomes clearer” – until we are certain. One could make this
story literal by starting with an out-of-focus photograph of a person of
unclear gender, and then slowly bringing it into focus until we can see
clearly whether it’s a man or a woman.

In such contexts one’s intuition is that, as information slowly becomes
available, the probability of a given outcome will slowly change in the
correct direction. That is, in a given context we envisage that the curves
showing how the probability will change with time under different
plausible scenarios will be like the curves in the first figure.

But this is just wrong. There is no setting in which it is mathematically
possible that the representative realizations of how the probability
changes with time can mostly look like the curves in the first figure.



What can 6 typical realizations of probability over time look like? The center

figure corresponds to an unpredictable sudden event, the right figure to

information slowly becoming available, but the left figure is impossible.



What can really happen is illustrated by the two ”extreme” cases in the
other figures. One case can be illustrated by the context of whether a
major earthquake will occur in a given place before a given deadline
(taken far ahead, so the current probability is 0.5). Assuming
earthquakes remain unpredictable, the possible graphs of how the
probability changes with time up to the deadline are shown in the second
figure. Here one’s intuition is correct: probabilities decrease as long as
the earthquake hasn’t happened, but jump to 1 if it does happen.

The third figure illustrates a third case, where new information only
makes small changes to one’s assessed probabilities. In this case the
changes must vary in direction (up and down) which leads to the
“jagged” curves in the third figure. This is reminiscent of stock market
prices, which is no coincidence. Under the classical ”rational” theory,
stock prices reflect estimates of discounted future profits, which
mathematically very similar to this ”third case” context. Over longer
time scales there are widely believed to also be various ”irrational” effects
– investor optimism or pessimism, for instance – but these overlay effects
do not affect the qualitative picture of shorter term randomness.



This us a notable insight from mathematical probability.

The characteristic jagged shape of stock prices is not specific to
the context of stocks or finance, but is a general feature of slowly
varying assessments of likelihoods of future events as new information
slowly becomes available.



2. Even if you’re sure it’s a bubble . . .
As well explained on the Wikipedia page, an economic bubble occurs
when the market price of an asset spends a time substantially above its
presumed “intrinsic value” before returning to that value. Such bubbles
can only be identified in retrospect. Whether or not a substantial recent
price increase constitutes a bubble which will later burst is always a
matter of debate. At the time of writing (June 2017) there is extensive
discussion surrounding the rapid appreciation of bitcoin: is this a bubble?

Bitcoin price, 2013 - mid 2017.



xxx show current graph
Suppose you are sure that a bubble is in progress; to make up some
numbers, suppose the current price is 2,000 and you are sure it will
return to 1,000 within one or two years. In principle you can profit by
“selling short”, receiving 2,000 today in exchange for having to pay 1,000
later. Your first thought might be “my only risk is that it’s not a bubble
after all, and the price never drops”. But this is wrong.

Even if you knew for certain that the bubble would burst, you
cannot guarantee to make money via this knowledge.

The mathematical point is that bubbles are in principle consistent with
the martingale theory underlying the efficient market hypothesis, and this
theory predicts, in our ”suppose” setting above,
with probability 1

x−1 the price will reach at least x(> 2) thousand before
dropping down to 1,000.
The graphic below shows 5 representative possibilities for the future
prices (until a return to 1,000).



5 ways a bubble might burst.

The point is that in short selling you need to post collateral to cover the
current price, and you have some limit on collateral available. If your limit
were 7,000 then in one of the representative cases you would be forced to
cover your position by paying 7,000. Thus (under the martingale theory
and ignoring various practical costs) you are essentially just making a
”fair bet” with chance 5/6 to gain 1,000 and chance 1/6 to lose 5,000.



Conclusion: Aside for EMH dogmatists, bubbles are presumed to result
from irrational exuberance by many investors. In principle this would be
soon counter-balanced by more rational investors selling short, but this is
difficult in practice.



3. Play boldly when you’re behind
Game theory involves a very specific setting:
players choose independently from a menu of actions with consequences
depending on all choices in a known way
But there are in fact very few everyday life, or familiar game, settings
which fit the specific setting of game theory. Instead, here is a general
principle which is relevant to the kind of games people actually play.

Play conservatively when ahead, play boldly when behind.

Of course this is much too well known to count as an insight. But one
can readily use it to make testable predictions. For instance

In American football, classify interceptions by quarter and whether the
team on offense was ahead or behind; of these 8 possibilities, the most
frequent will be ”4th quarter, behind”.

I haven’t checked data but would bet a large sum on it. Are there
analogs in other sports? Logically, in Premier League matches where the
score is tied 5 minutes before the end, there should be more chance of a
goal in the last 5 minutes than in a typical 5 minutes. [explain]



A made-up example. Let me invent a numerical example where we can
observe the principle, and where readers may test their intuition about
just how boldly they should play. Players A and B have equal ability and
take turns in which they try to score points. In each turn they have a
choice of actions in attempting to score points, as in the table.

[write table on board]

Intuition tells us to try for 1 point at the start (conservative play), and
only change to trying for more points (risky play) if you are behind near
the end of the game. To make the rules precise we say that a tie (equal
points) is counted as a win for A, because B has an advantage in playing
second.



Games like this are very easy to analyze numerically via dynamic
programming. The results are shown below, as
(optimal choice of action for B ; B’s probability of winning the game),
depending on the number of turns remaining and the current point
difference (B - A). The mathematics is easy because B’s best choice on
the final play is obvious, and then we work backwards to calculate the
best choice for each player on each turn. The numbers seem roughly in
accord with intuition.
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(optional action ; chance of winning) for B

Point difference Turns remaining

5 4 3 2 1

+3 1 ; 0.88 1; 0.89 1; 0.91 1; 0.91 1; 1.0

+2 1 ; 0.81 2; 0.83 1; 0.86 1; 0.82 1; 1.0

+1 1 ; 0.71 1; 0.73 1; 0.76 1; 0.55 1; 1.0

0 1 ; 0.55 1; 0.55 1; 0.56 1; 0.30 1; 0.50

-1 1 ; 0.38 1; 0.37 1; 0.34 2; 0.19 2; 0.22

-2 2 ; 0.25 3; 0.24 3; 0.23 3; 0.12 3; 0.13

-3 3 ; 0.16 3; 0.15 4; 0.14 4; 0.06 4; 0.08

-4 4 ; 0.10 4; 0.08 5; 0.07 5; 0.02 5; 0.05



4. Philosophy: distinguishing aleatoric and epistemic uncertainty.

Philosophers have long emphasized a distinction between aleatoric and
epistemic uncertainty. Epistemic refers to lack of knowledge – something
we could in principle know for sure – in contrast to aleatoric “intrinsic
randomness” involved in which of possible futures will actually occur. As
a basic iconic example of the distinction between these two categories,
consider whether the top card of a deck will be an Ace after I shuffle and
look at it. The uncertainty here is aleatoric before I shuffle, but becomes
epistemic after shuffling but before looking.

Here are two more interesting cases. The first is from a 2011
Fox-Ulkumen article.



On April 29, 2011 Barack Obama made one of the most difficult
decisions of his presidency: launch an attack on a compound in
Pakistan that intelligence agents suspected was the home of Osama
bin Laden. In an interview Obama described the raid as the longest
40 minutes of his life [for two reasons]. First, he was not certain that
bin Laden was actually residing in the compound. “As outstanding a
job as our intelligence teams did,” said the President, “At the end of
the day, this was still a 55/45 situation. I mean, we could not say
definitively that bin Laden was there.” Second, regardless of whether
bin Laden was residing in the compound, it was not certain that the
operation would succeed. The President cited operations by previous
presidents that had failed due to chance factors, saying, “You’re
making your best call, your best shot, and something goes wrong
because these are tough, complicated operations.”

Note that these two sources of uncertainty are qualitatively distinct.
The first reflects the President’s lack of confidence in his knowledge
of a fact (i.e., whether or not bin Laden was residing at the
compound). The second reflects variability in possible realizations of
an event that is largely stochastic in nature if the mission were to be
run several times it would succeed on some occasions and fail on
others due to unpredictable causes (e.g., performance of mechanical
equipment, effectiveness of U.S. troops and bin Laden’s defenders on
a particular night).



The second case involves the Elo rating system from Lecture 3. As a
specific example, the International football teams of Germany and France
currently (August 2017) have Elo ratings of 2080 and 1954, which
corresponds to an estimated probability 67% of Germany winning a
hypothetical upcoming match. As in the first case, we see two sources of
uncertainty. The skill of each team is uncertain – we cannot hope to
capture the notion of “skill” in a single number and calculate that
number exactly. And then (even if we could) the result of a match would
still be “stochastic in nature” because of the multitude of individual
interactions.



Examples like this suggest that, amongst contexts where we perceive
chance, it is

sometimes mostly aleatoric

sometimes mostly epistemic

and otherwise can be dissected into epistemic and aleatoric
components.

Is this right? Part of the purpose of my list of 100 contexts where we
perceive chance is to xxx. And of course if you first define epistemic, and
then define aleatoric as everything else, then we have a tautology – one
needs positive definitions. So I am suspicious of the usefulness of such a
dissection.



What do other people say? Here is a juxtaposition of two quotes. The
first is from Craig Fox at UCLA Business School:

Successful decisions under uncertainty depend on our
minimizing our ignorance, accepting inherent randomness and
knowing the difference between the two.

The second is from Taleb’s Black Swan:

In theory randomness is an intrinsic property, in practice,
randomness is incomplete information . . . . . . ; . The mere fact
that a person is talking about the difference implies that he has
never made a meaningful decision under uncertainty – which is
why he does not realize that they are indistinguishable in
practice. Randomness, in the end, is just unknowledge.



Let’s reconsider the two examples. In seeking to estimate the chance that
(given he was there) the bin Laden raid would be successful, one can only
compare with previous similar operations, as Obama implied. But exactly
the same is true for estimating the chance that bin Laden was there;
presumably the intelligence services have considerable experience in
trying to locate people trying to hide, so estimating the chance of success
in this case must rely on results from previous similar efforts. From the
viewpoint of estimating the overall probability of success, the distinction
surely makes no difference.

In the football case, given an algorithm for a calculating a numerical
measure of skill, one would use data from past matches to estimate the
win-probability as a function of skill difference. And there undoubtedly is
”epistemic uncertainty” in any method of trying to capture the notion of
”skill” in a single number and calculate that number exactly. But this
doesn’t come explicitly into a calculation; ideally one would just compare
different algorithms on historical data to see which works best. Both
estimates (of skill and win-probability given skill) come from analysis of
the same data, past results.



So I am inclined to agree with Taleb – this is “a distinction without a
difference” as far as estimating probabilities is concerned.

However the psychological aspects of how people typically think about
probability remain interesting. Ongoing research of Fox-Ulkumen seeks to
study in detail “the psychological implications of reasoning under
epistemic versus aleatory uncertainty” as it affects actual
decision-making.



5. What about Bayes?
I haven’t managed to write a lecture on Bayesian vs Frequentist statistics. So
here are just some fragments.

In everyday 20th century style statistics there isn’t much difference; both create
a model in which there is a likelihood function L(x |θ) for data given parameter;
you can then either give a CI (confidence interval) for θ or give a posterior
distribution for θ based on your chosen prior. Being concerned about this
distinction is (to me) rather like being concerned more with the wrapping than
with the Christmas present inside.

And here is a skeptical quote from my late colleague David Freedman.

My own experience suggests that neither decision-makers nor their
statisticians do in fact have prior probabilities. A large part of
Bayesian statistics is about what you would do if you had a prior.
For the rest, statisticians make up priors that are mathematically
convenient or attractive. Once used, priors become familiar;
therefore, they come to be accepted as “natural” and are liable to be
used again; such priors may eventually generate their own technical
literature. Similarly, a large part of [frequentist] statistics is about
what you would do if you had a model; and all of us spend enormous
amounts of energy finding out what would happen if the data kept
pouring in.



My experience is that serious statisticians who actually deal with data use
whichever methods seem appropriate. I don’t know any natural example
where both methods give sensible but different answers.

At a more philosophical or “popular science” level, writers often
exaggerate the scope of Bayesianism. Some observations.

A. The notion that all uncertainty can or should be expressed as
numerical probabilities strikes me as very naive.
[show page]

B. What happens when strong priors meet contradictory evidence?
[show page]

C. Combining scale-free priors with very little data often leads to
implausible conclusions.


