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Network can refer to many different things. In ordinary language social
network refers to Facebook-like activities, but mathematicians use it in
the context of any kind of relationships between individuals. This has
been a hugely popular research field over the last 10-15 years. I will give
a quick overview. As the “anchor” for this lecture I will discuss two
typical papers, one bad and one better.



What (mathematically) is a social network?

Usually formalized as a graph, whose vertices are individual people and
where an edge indicates presence of a specified kind of relationship.



In many contexts it would be more natural to allow different strengths of
relationship (close friends, friends, acquaintances) and formalize as a
weighted graph. But the interpretation of weight is context-dependent.
In some contexts (scientific collaboration; corporate directorships; U.S.
Senators) there is a natural quantitative measure, but not so in
“friendship”-like contexts. But anyway, instead of always saying “some
relationship” let me use the concrete word “friends”.

I won’t discuss the statistical side of networks – analyzing data. Instead
I’ll talk about math models. We consider some process in which the
individuals interact with their “friends”, and the interaction have some
effect – the individual might acquire information, or change an opinion,
or gain/lose money, or adopt some new tech item, or catch an illness, or
. . . . . . .

Mathematically, each individual i has a “state” Xi (t) at time t; there is
some process of interaction between friends, and some “update rule” for
how their state changes.



In one sense this is a very general framework. The “social network”
graph is arbitrary. The “meeting friends” process might be deterministic
(e.g. meet all friends each time unit) or you might meet at random times
(this usefully allows for “strength of friendship”). Together these specify
a meeting model. Then the update rule we can choose any state space
and any update rule, either deterministic or random.

In another sense we are only considering one-on-one interactions, not
broadcast information or majority decisions.

Conceptually the models we use have these two levels, which could be
specified independently. But in interesting real-world contexts, usually we
don’t actually know either ....

For the social network graph, research articles sometimes use real-world
data. But the math theory mostly uses variants of 4 basic idealized
networks, for which explicit calculations are comparatively easy.



The 4 popular basic “idealized networks”.

Complete graph: n people, everyone is friends.

d-dimensional grid (discrete torus) Zd
m; n = md .
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Small worlds. Start with the grid, add additional long edges, e.g. chosen
at random with chance ∝ (length)−α.

Random graph with prescribed degree distribution. A popular way to
make a random graph model to “fit” observed data is to take the
observed degree distribution (di ) and then define a model interpretable as
“an n-vertex graph whose edges are random subject to having degree
distribution (di )”. This produces a locally tree-like network – unrealistic
but analytically helpful. We will do some math with this configuration
model.



Here is a common topic, taken from the book Social Networks and the
Diffusion of Economic Behavior by Matthew Jackson. It refers to
“early adopters” of new products. I will quote his verbal discussion, then
talk about a math model.

Suppose that we randomly seed the population with some initial adopters
of the product. People who have the most friends are the most likely to
have friends that are initial adopters. Thus, all else held equal, people
with more friends are more likely to then become adopters at a second
stage. As we continue to follow the adoption process over time, we see a
general propensity for people with greater numbers of friends to adopt
earlier on and eventually at higher overall rates (presuming that people
with more friends are similar to those with fewer friends along other
dimensions).

This prediction is consistent with many empirical studies of diffusion,
such as the classic study of the adoption of a new drug by doctors in a
famous early study by Coleman, Katz and Menzel (1966).



125 internists, pediatricians, and general practitioners in Illinois were
followed over the span of 17 months in 1953-55. Their decisions of when
to begin prescribing a new antibiotic, tetracycline, were recorded. After 8
months, those who were in touch with 3 or more doctors who had
adopted the drug were more than twice as likely to adopt than those not
in touch with any adopting doctor. At the end of the study, after 17
months, those who were in touch with 3 or more doctors who had
adopted were approximately 20% more likely to adopt than those who
were not in touch with an adopter.



The fact that, all else held equal, more highly connected individuals have higher
propensities to adopt suggests a natural comparison between social structures.
For instance, if we examine denser social networks that have increased
connectedness of individuals, then we expect lower tipping points – how easy it
is to get the process started – and higher eventual rates of adoption of the
product or behavior. The diffusion has a sort of social multiplier associated
with it.

What this means is that once one makes it more likely to have some individuals

adopt, it then becomes more likely that their neighbors will also adopt, and so

on. In this situation, but slightly increasing the density of social networks, we

see a dramatic change in the properties of the system as we leap from one

setting where there is no diffusion to another where there is widespread

diffusion. As such, it is possible that a relatively small change in the density of

social interactions within a population can dramatically affect the end result.



Let’s think about inventing a “toy model” to accompany the story above.
Take discrete time t = 0, 1, 2, . . .. Suppose each person v has a threshold
ξ = ξ(v) (possible values 0, 1, 2, . . .) and will “adopt” when at time t + 1
when ξ friends have adopted at time t. So the people with ξ = 0 adopt
at time 0.

If we specified a graph and the values of the thresholds ξ(v) then we
have defined a deterministic process – could simulate. But what about a
probability model that we could try to study mathematically?

Take the ξ(v) to be IID, with specified distribution.

Take the configuration model for the graph, with specified degree
distribution pi = proportion people with i friends.

So each person v has some random number d(v) ≥ 1 of friends, with
distribution (pi ), and they are “randomly connected” [explain on board].

This produces a locally tree-like network – unrealistic but analytically
helpful. I will outline how to set up equations for
qt(d) = probability a person with d friends adopts by time t.



Recall size-biasing and friendship paradox.
Typical person U has P(d(U) = i) = pi .
But for random friend U∗ of U, because of the “random links”

P(d(U∗) = i) = ipi/µ, µ = ED.

This is the size-bias concept. Note the setting is slightly different from
the friendship paradox, which holds for an arbitrary network. The
size-bias relation here depends on the particular “configuration model”
we are assuming.

We study qt(d) = probability a person with d friends adopts by time t.



U∗ is random friend of U

P(d(U∗) = i) = ipi/µ, µ = ED.

We study qt(d) = probability a person with d friends adopts by time t.

Key idea:
qt+1(d) = P(Bin(d , αt) ≥ ξ(U))

where αt is probability U∗ has adopted by time t.
- - - - - - - - - - - - - - -
[board]
- - - - - - - - - - - - - - -
Because U∗ has d(U∗)− 1 other friends,

αt = Eqt(d(U∗)− 1) =
∑
i

ipi
µ qt(i − 1).

Now we can numerically calculate the vector qt+1 from the vector qt .



That was a “toy model” – we just “made up” some rules, without any
evidence the real world behaves according to those rules, and we did not
test against data. Doing this is OK as math, but claiming real-world
relevance (other than as possible behavior) is plain “bad science”.

Here is an example of how a toy model paper should be presented,

[show yule.pdf]

Here is a “bad science” example – I show their web page, the actual
paper is on my list as Social consensus through the influence of
committed minorities by J.Xie et al.

[show web page]



Their model is one of many variants of the following voter model.

Each person holds one of two opinions, D or R.

Each friends-pair meets at random times (rate-1 Poisson process). if
different opinions, one (random) person changes opinion.

This is a finite Markov chain, and eventually everyone will have the same
opinion. The time this takes depends on the graph, but is always a long
time (at least n = population size).

Their model changes this update rule, in particular by assuming some
percentage of people with one opinion never change opinions.

So this is a ‘toy model” where rules are simply “made up”; it shows the
stated effect is possible, but claiming this explains specific real-world
phenomena is bad science.



. . . . . . but toy models are fun to study as Math. Here’s a model I made
up myself. We again recycle the result from the basic toy model for
epidemics.

Let’s think of a toy model for the spread of epidemics such as influenza.
Each infected person will infect some random number of other people;
the mean such number is called the reproduction number µ. We can
use the previous Galton-Watson process to model the number of cases in
the initial phase; if µ < 1 the epidemic will not occur; if µ > 1 and there
are (at least) several initial cases then there will be an epidemic.
Once the epidemic grows it is natural to work with

g(t) = proportion of population infected.

If we ignore the fact that people recover, then the rate of growth of the
epidemic is roughly proportion to the number of infected-infected
contacts, and this is most simply modeled by the



logistic equation
g ′(t) = cg(t)(1− g(t)).

The solution, up to an arbitrary time-shift, is

g(t) =
1

1 + e−ct
.



Model: Fashionista.
At the times of a rate-1 Poisson process, a new fashion originates with a
uniform random person, and is time-stamped. When two people meet, they
each adopt the latest (most recent time-stamp) fashion. By general Markov
chain theory there is an equilibrium distribution, for the random partition of
people into “same fashion”.

For the complete graph network, the analysis is simple. Combining all the

fashions appearing after a given time, these behave (essentially) as one

infection in the basic epidemic model (over the pandemic window), hence as a

random time-shift of the logistic curve F . So when we study the vector

(X n
k (t),−∞ < k <∞) of proportions of people adopting different fashions k,

we expect n→∞ limit behavior of the form

1
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