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Some probability models of real-world phenomena are “quantitative” in
the sense that we believe the numerical values output by the model will
be approximately correct. At the other extreme, a toy model is a
consciously over-simplified model of some real-world phenomenon that
typically attempts to study the effect of only one or two of the factors
involved while ignoring many complicating real-world factors. It is thus
“qualitative” in the sense that we do not believe that numerical outputs
will be accurate.

As our first examples will show, providing a toy model to support a
scientific theory shows that the theory is at least possibly correct;
whereas if you are unable to provide a supporting toy model then the
theory looks dubious.



Today’s topics

Is “evolution by natural selection” mathematically plausible?

What explains the shape of evolutionary trees?

What maintains genetic diversity within species?

Are you related to your ancestors?



What was Charles Darwin’s contribution to science? In everyday
language we say “the theory of evolution” but this isn’t quite right. By
the middle of the nineteenth century, once dinosaur and other fossils were
being discovered, the proposition that life on Earth has been in existence
for a very long time, that earlier species had become extinct and that
other species had originated – this proposed fact wasn’t particularly
controversial.
Consider an analogy between

Empires in human history.

Species, in the history of life on Earth.

Wikipedia has a list of almost 200 empires, almost all of which no longer
exist; the fact that empires have risen and fallen was never controversial.

At one level, everything happened for some specific reason – why the
Inca Empire or Tyrannosaurus Rex are no longer here. But is there any
underlying general principle?



Ever since the first historian wrote, many general explanations for the rise
and fall of empires have been proposed – divine favor, racial superiority,
class struggle, technological superiority, societal ethics, ecological collapse
– but none is widely accepted, and indeed are generally taken to reflect
prejudices of the era when they were formulated.

In contrast, Darwin’s idea of “evolution by natural selection” was that
there is one underlying explanation of this process – natural selection.
Darwin and his nineteenth century followers did not have our current
notion of genetics and did not seek a mathematical formulation of their
theory. And indeed they were aware that there was a difficulty with the
whole idea, if approached from a certain common sense view of heredity
(“paint mixing”, below). Let me first describe the difficulty, and then
show how it is resolved in the correct theory of genetics.



If heredity were like paint mixing. Observation of animal breeding
might suggest offspring are a mixture of parents, like a mixture of blue
and yellow paint makes green paint. Of course this couldn’t be the whole
story, or every individual in a population would be identical by heredity,
but (unaware of genetics) we might imagine heredity working as “mixture
of parents, plus individual randomness”. And indeed this kind of
“additive” model does correctly predict the behavior of some real-world
quantitative characteristics, for instance height in humans.

However, let us consider a model for how natural selection might work on
a novel hereditable trait, if heredity were like paint mixing. We’ll give a
model that ignores randomness (both in number of offspring and
assumed “individual randomness”), but incorporating randomness doesn’t
change the conclusions.



A paint mixing model. One individual (in generation 0, say) has a new
characteristic giving selective advantage α, meaning that the mean
number of offspring reaching maturity is 2(1 + α) instead of 2. Each
offspring (generation 1) has only half of the characteristic (this is the
“like paint mixing” assumption), so has selective advantage α/2, so each
generation 1 offspring has mean number 2(1 + 1

2α) offspring in generation
2, and these generation 2 individuals have a quarter of the characteristic.
So the “penetration” (sum over individuals of their proportion of the
characteristic) of the characteristic in successive generations is

generation 0 1 2
mean number individuals 1 2(1 + α) 4(1 + α)(1 + 1

2α)
proportion of characteristic 1 1

2
1
4

penetration 1 1 + α (1 + α)(1 + 1
2α)



As time passes the mean penetration increases, not indefinitely but only
to a finite limit

β(α) =
∞∏

i=0

(1 + 2−iα)

which for small α is approximately 1 + 2α. This value doesn’t depend on
the population size (N, say). So the key conclusion is that the effect of a
single appearance of a new characteristic would be, after many
generations, that each individual in the population gets a proportion
around (1 + 2α)/N of the characteristic.

This conclusion is bad news for a theory of natural selection, because it
implies that to become “fixed” in a population, a new characteristic
would have to reappear many times – order N times – even when it
provides a selective advantage.



The genetic model. How does genetics really work? Here is a (very)
toy model. We consider genes (physically, a small segment of a
chromosome) rather than individuals, so there are 2N genes in each
generation. On average, a gene has 1 copy in the next generation, with
some s.d. (= σ, say). For a new allele (the alleles are the possible forms
of a given gene) which confers a small selective advantage, we suppose
the average number of copies becomes µ = 1 + α for some small α > 0.
Note this can only be true while the number of copies is small relative to
the population, and during that time the number of copies in successive
generations behaves as a just supercritical Galton-Watson process
described in previous lecture.

In particular, either the new allele disappears from the population quite
quickly (extinction, in the Galton-Watson terminology) or the number of
copies starts to grow exponentially; then (as in the epidemic model in
previous lecture) the proportion of this new allele in the population grows
as an S-shaped curve and eventually the allele becomes fixed in the
population – every gene is this allele.



The mathematical point is that the earlier formula for survival probability
of just supercritical Galton-Watson processes can be applied in the
present model.

For a single mutation giving an allele with small selective advantage α,
the chance that the allele becomes fixed is about 2α

σ2 . (1)

This conclusion is much better news for a theory of natural selection,
because now the population size doesn’t matter. If the chance above
were 1/10, say, then an advantageous mutation needs to reappear only
10 or 20 times to be likely to become “fixed” in the population,
regardless of how large the population size N is.



The whole process of an allele becoming fixed in this way is called a
selective sweep. Once a sweep is under way, the number of copies
grows at rate α per generation, and so

duration of a selective sweep ≈ log(2N)
α generations . (2)

So our “toy model” of heredity (which Mendel guessed and was
confirmed round 1900) shows that “evolution by natural selection” is at
least possible, mathematically. The key point is that genes are discrete
entities – metaphorically, heredity is digital not analog.

(Continuous phenotypes like height are affected by many genes –
envisage something like a CLT).



A conceptual point is to distinguish between what we have just discussed

• microevolution at the level of genes (allele frequencies) within a given
species

and what “evolution” means in popular language

• macroevolution at the level of species.

The evolutionary relationships between species are described graphically
via phylogenetic trees, and these provide interesting examples of
statistical data.

Historically, biologists first did classification of species based on
morphology – the physical structure – of living species. Next they sought
to fit extinct species (based on fossils) into the evolutionary tree. Finally
DNA provides a quantitative measure of similarity between living species.



[show hominids]

[show parrots]

[show horse and dinosaur trees]



One can make probability models for macroevolution – see paper Toy
models for macroevolutionary patterns and trends – but these are “made
up” without reference to actual biology. The simplest models just assume
there is some chance a species will go extinct and some chance it will
produce a daughter species, giving a continuous-time analog of the
Galton-Watson process.

A puzzle concerns the “shape” of phylogenetic trees. The data does not
match the simple models! The next figure is from my paper Stochastic
Models and Descriptive Statistics for Phylogenetic Trees, showing the
scatter diagram for the splits in a phylogenetic tree of 475 species of seed
plants.
[board]
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Today’s topics

Is “evolution by natural selection” mathematically plausible? YES

What explains the shape of evolutionary trees? MYSTERIOUS

What maintains genetic diversity within species?

Are you related to your ancestors?



Probability models of microevolution refer to more concrete entities –
alleles and mutation and “fitness” as defined by number of offspring –
even though they then make the unrealistic assumption that one can
separate the effect of one gene from all the other factors affecting fitness.

The “gene-centered view of evolution” – that it makes sense to think in
terms of genes without regard to species – was popularized by Richard
Dawkins in The Selfish Gene.

Why test human medicine on mice?



What maintains genetic diversity? We have an everyday notion of
species – rabbits and robins and roses – because we can recognize
different individuals as similar. After learning about genetics and
evolution by natural selection, a rather subtle question arises: why is
there any genetic difference at all between different individuals in the
same species? That is, if “evolution by natural selection” worked
according the the simple “selective sweeps by more fit alleles” story, then
why hasn’t it already happened, so that all the less fit alleles have been
replaced by the most fit allele, leading to individuals genetically identical
except for sex-related traits?

Many different answers have been proposed, and undoubtedly many are
valid in different contexts. A textbook answer is heterozygote advantagei,
illustrated by sickle cell anemia in humans. (Given that most phenotype
variations presumably arise from complicated interactions between genes,
there is much scope for this kind of effect). Another answer is frequency
dependent selection, where it is advantageous to be different from others,
in contexts of predation or competition. Another answer is that we may
just be seeing a selective sweep in progress, though the toy model
prediction (2) for sweep duration suggests this is unlikely.

[board: time scale of evolution]



We will consider the neutral theory which asserts that much of the
variation we see in a species at a particular time is “non-selective”;
different alleles have arisen by chance mutations some time in the past
but have almost zero difference in fitness, implying that the frequencies
of alleles in successive generations change only in some “random” way
rather than being pushed in one direction by selection.

Rather obviously this appeals to mathematical probabilists, so let me
show some predictions within this theory.



Consider a gene with several alleles A,B,C . . .. In diploid
populations consisting of N individuals in each generation there
are 2N copies of each gene. An individual can have two copies
of the same allele or two different alleles. Assume generations
do not overlap. For example, annual plants have exactly one
generation per year. In the model, each copy of the gene found
in the new generation is drawn independently at random from
all copies of the gene in the old generation.

This is “the Wright-Fisher model without mutation or selection”,
edited from Wikipedia Genetic Drift.

The model looks strange as biology, but turns out to be mathematically
tractable, and behaves similarly to more plausible models in which
parents have offspring independently while some external mechanism
keeps the population size roughly stable.



If we never had mutations then eventually the random fluctuations of
allele frequency from generation to generation would make all but one
allele die out.

We now introduce mutation by supposing that, each time a gene is
copied, there is a small chance p of a mutation, and that each such
mutation produces a brand new allele. The process of “numbers of alleles
of different types” is abstractly a certain complicated finite-state Markov
chain.



From the theory of Markov chains there must be a stationary distribution
for the proportions X1 ≥ X2 ≥ X3 . . . of different alleles, listed in
decreasing order for definiteness. The remarkable Ewens’s sampling
formula gives the exact distribution of the (Xi ), but instead let me derive
a simpler statistical measure of diversity.

Consider S :=
∑

i X
2
i and note that ES is the chance that two

randomly-picked genes are the same allele; then we can view

neff := 1/ES

as “effective number of different co-existing alleles of the gene” in the
population.

[This is an idea we saw in a previous lecture: next slide]



What do these particular statistics
∑

s p
2
s and −

∑
s ps log ps measure?

[board]: spectrum from uniform distribution to deterministic.
Interpret as “amount of randomness” or “amount of non-uniformity”.

First statistic has no standard name.
Second statistic: everyone calls it the entropy of the probability
distribution p = (ps , s ∈ S).

For either statistic, a good way to interpret the numerical value is as an
“effective number” Neff – the number such that the uniform distribution
on Neff categories has the same statistic.

For many purposes the first statistic is most natural – e.g. the chance
two random babies born in 2013 are given the same name.



We shall derive the formula (in the neutral theory)

neff ≈ 1 + 4Np. (3)

The approximation holds in the (realistic) case where N is large and p is
small, and we think of 4Np as a number – maybe 0.2, maybe 10 – that is
neither very large nor very small.

Discussion of formula (3). This confirms and quantifies the idea that
pure randomness (mutations without selective advantage) can maintain a
fixed level of diversity as time goes by; so the neutral theory is at least a
possible explanation of diversity. But how realistic is the model?

What you don’t see in the model description or the concluding formula,
but is buried in the derivation, is the requirement that the model must
have been realistic over the last (order) N generations. Thinking of total
species population N as in the millions, this is hardly plausible, since the
time involved would become larger than species lifetime. Also, the model
implicitly ignores geographic location of individuals – any pair can breed
– and it is often argued that what is relevant is a much smaller “effective
population size” of interbreeding subpopulations.



Mathematical derivation of formula (3). The key feature that makes
the model mathematically tractable is that we can easily study genealogy.
Ignoring mutations for the moment, a gene in the present generation is a
copy of a gene in the previous generation, which is a copy of a gene in
the previous generation, and so on: there is a “line of descent”. Now
consider two randomly-picked genes in the present generation, and trace
back the two lines of descent until they meet, some random number G of
generations back, at their “most recent common ancestor”. From the
definition of the model, at each stage there is chance 1/(2N) that the
lines merge, and so G has the Geometric(1/(2N)) distribution.
[board]
Introducing mutations (without selection) doesn’t change the behavior of
lines of descent. Given G = g , the two sampled genes have the same
allelic type if and only if none of the 2g copies since the most recent
common ancestor caused a mutation, so

P(Two sample genes are the same type|G = g) = (1− p)2g .



P(Two sample genes are the same type|G = g) = (1− p)2g . (4)

Recalling the interpretation

ES = P(Two sample genes are the same type)

we see that we just want the unconditional probability associated with
(4). A textbook calculation is that for X with Geometric(q) distribution

EzX =
∑
i≥1

q(1− q)i−1z i =
qz

1− z(1− q)
≈ q

q + 1− z

the final approximation holding when 1− z is small. Now (4) can be
rewritten as ES = E(1− p)2G , so setting z = (1− p)2 ≈ 1− 2p and
q = 1/(2N) we get

ES ≈ 1/(2N)

1/(2N) + 2p
=

1

1 + 4Np
.



I will show two more genetics calculations.

MRCA of entire population. A related question that has a nice answer
within the Wright-Fisher model concerns T = number of generations
back to the most recent common ancestor (MRCA) of the entire
population. Note we are referring to a particular gene site, not the entire
genome. Write M = 2N for the number of genes in a generation. We
saw above that the time (number of generations back) G to the MRCA
of two individual genes has EG ≈ M, and one might expect ET to be
considerably larger. Surprisingly, it isn’t. In fact

In the Wright-Fisher model without selection, the mean number of
generations back to the MRCA of the entire population is ≈ 2M. (5)



In the Wright-Fisher model without selection, the mean number of
generations back to the MRCA of the entire population is ≈ 2M.

Imagine starting with a single neutral mutation. If there were no
mutations in future, the chance this allele becomes fixed in the
population would be 1/M, by a martingale argument (cf. Lecture 9: the
number of copies of the allele fluctuates as a fair game). And the time
taken for this “neutral sweep” would be order M, by (5). The chance is
much less, and the time much larger, than for a selective sweep (1, 2).



Mathematical derivation of formula (5). Look backwards from the
present; in each generation there is some number of “lines of descent”
leading to present-generation genes.

[board]

As we proceed backwards these sometimes merge. Where we see i ≥ 2
different lines of descent, the chance that some two lines meet in the
next (previous in time) generation is ≈

(
i
2

)
/M. So the mean number of

generations for the number of lines to decrease from i to i − 1 is
≈ M/

(
i
2

)
. The number of generations T back to the MRCA is the

number required for the number of lines to decrease from M to 1, so

ET ≈
M∑

i=2

M/

(
i

2

)
= M

M∑
i=2

2

i(i − 1)
= 2M(1−M−1) ≈ 2M.



How many of your ancestors are you related to? Genetically, that is.
This is fun to say in a popular talk.

You have 2 parents, 4 grandparents, 8 great-grandparents, and back 10
generations you have somewhat less than 1,024 ancestors (some of the
lines of descent will have merged). How many of these ancestors have
you actually inherited DNA from? You have 46 chromosomes, so if you
inherited whole chromosomes you could only be genetically related to 46
of the ancestors.

In fact the situation is more complicated because there is chromosomal
crossover and under a simplified model, one can calculate that you
inherited DNA from about 370 of your 10’th generation ancestors. Less
than half of them. So even if you can prove that one of your ancestors
was King George III or the Qianlong Emperor, this doesn’t mean you
have royal blood.

So “10” is the critical number of generations, in the sense of the number
at which the proportion (of ancestors to whom you are genetically
related) drops below half. This is analogous to the criterion by which “7”
was deemed to be the critical number of shuffles required to mix a deck
of cards.


