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2 types of model.

Some probability models of real-world phenomena are “quantitative” in
the sense that we believe the numerical values output by the model will
be approximately correct. At the other extreme, a toy model is a
consciously over-simplified model of some real-world phenomenon that
typically attempts to study the effect of only one or two of the factors
involved while ignoring many complicating real-world factors. It is thus
“qualitative” in the sense that we do not believe that numerical outputs
will be accurate.

An example is the Galton-Watson branching process model I will
describe. This is a textbook topic in STAT 150 (a first course in
stochastic processes), but I want to emphasize the “just supercritical”
formula (2). Another example from STAT 150 is the M/M/1 queue
which I’ll mention at the end.



This Galton-Watson branching process model is used as a toy model
in many different settings. To have a concrete language, we talk about
“individuals” and “offspring”. To visualize individuals and offspring, you
can either imagine asexual reproduction or look only at males or only at
females in a two-sex species like humans.

The model is that there is a probability distribution
p := (pi , i = 0, 1, 2, . . .) and that each individual in a generation has a
random number of offspring in the next generation, this number being
picked from p independently for different parents.

By default we assume the process starts with 1 individual in generation 0;
so there is some random number Zn ≥ 0 of individuals in each generation
n = 0, 1, 2, 3, . . .. There are two logical possibilities for what might
happen in the long run:

either “extinction” meaning Zn = 0 for all large n

or “survival”, meaning Zn ≥ 1 for all n.



One of the highlights of an undergraduate course in stochastic processes
is the following theorem.
Write µ and σ for the mean and s.d. of the number of offspring.
Theorem. (a) If µ < 1 then P(extinction) = 1.
(b) If µ > 1 then ρ = P(extinction) < 1 and is the solution of the
equation

ρ = Φ(ρ) (1)

where Φ is the probability generating function defined by

Φ(z) =
∞∑
i=0

piz
i .

Keep in mind that the “independence” assumptions are tantamount to
assuming there is no “interaction” between individuals and that there are
no external constraints on population size – both assumptions are
unrealistic in almost all imaginable real-world contexts.



I won’t repeat the textbook derivation of the Theorem, but I will derive
an interesting approximate formula for a particular setting. The cases
µ < 1, µ = 1, µ > 1 are called subcritical, critical, supercritical. I want
to consider the “just supercritical” case where µ > 1 but µ− 1 is small.

For a just supercritical Galton-Watson process, P(survival) ≈ 2(µ−1)
σ2 .

(2)

[do calculation on board]



This is often not mentioned in textbooks, so let me give
Derivation of formula (2). Textbook facts about the probability
generating function for the random number X of offspring are

Φ(1) = 1, Φ′(1) = µ, Φ′′(1) = E[X (X − 1)] = σ2 + µ2 − µ ≈ σ2

the approximation holding because µ ≈ 1.
We want the survival probability ρ̄ = 1 − ρ. The equation in the
Theorem, ρ = Φ(ρ), can be rewritten in terms of ρ̄ as h(1 − ρ̄) = 0,
where h(x) = Φ(x) − x . Consider the series expansion: for small x ,

h(1 − x) ≈ h(1) − xh′(1) +
1

2
x2h′′(1).

Since h(1) = 0, h′(1) = µ− 1, h′′(1) ≈ σ2 the rewritten equation becomes

0 ≈ −ρ̄(µ− 1) +
1

2
ρ̄2σ2

and solving for ρ̄ gives the stated formula (2).



Keep in mind that the “independence” assumptions are tantamount to
assuming there is no “interaction” between individuals and that there are
no external constraints on population size – both assumptions are
unrealistic in almost all imaginable real-world contexts. This is why I call
it a “toy model”.

Let’s think of a toy model for the spread of epidemics such as influenza.
Each infected person will infect some random number of other people;
the mean such number is called the reproduction number µ. We can
use the previous Galton-Watson process to model the number of cases in
the initial phase; if µ < 1 the epidemic will not occur; if µ > 1 and there
are (at least) several initial cases then there will be an epidemic.
Once the epidemic grows it is natural to work with

g(t) = proportion of population infected.

If we ignore the fact that people recover, and if we assume that all pairs
of people are equally likely to have contact, then the rate of growth of
the epidemic is roughly proportion to the number of infected-uninfected
contacts, and this is most simply modeled by the



logistic equation
g ′(t) = cg(t)(1 − g(t)).

The solution, up to an arbitrary time-shift, is

g(t) =
1

1 + e−ct
.



Reality check. In that toy model, 100% of population is eventually
infected. In fact, in the annual “seasonal influenza” epidemic in the U.S.,
typically the percentage of population infected is in the range 5% - 20%.

So what’s wrong with the toy model? Many things, in particular

people recover (infective for about 7 days)

and the population is not homogeneous:

different levels of partial immunity

different people have different numbers of inter-personal contacts

spatial locations matter.

These all affect the eventual proportion of population infected, but the
S-shaped curve remains typical.

[next slide]



 

Influenza-Associated Hospitalizations 
CDC monitors hospitalizations associated with laboratory-confirmed influenza infections using the 
FluSurv-NET surveillance system which combines data from the Emerging Infections Program (EIP) 
and additional participating sites. Based on FluSurv-NET surveillance data, the cumulative 
hospitalization rate (per 100,000 population) for October 1, 2012-April 30, 2013 was 44.4 overall 
and 66.4 among children aged 0-4 years, 14.5 among children aged 5-17 years, 16.2 among adults 
aged 18-49 years, 41.3 among adults aged 50-64 years, and 192.4 among adults aged ≥65 years. 
 
Influenza-associated hospitalization rates during the 2012-2013 season were higher than in 
previous years, particularly among aged 65 years and older where the cumulative hospitalization 
rate was two and half times the highest rate previously reported (75.9 during the 2007-2008 
season) since surveillance began in this age group in the 2005-2006 season.  
 

FluSurv-NET* Laboratory-Confirmed Cumulative Hospitalization Rates  
(per 100,000), 2012-13 Season 
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Bottom line. Regardless of details, models of the spread of a ”feature”
– epidemics or technology or opinions etc in human society – starting
from a few individuals mostly have similar behavior: either the feature
dies out quickly, or it starts growing exponentially until reaching some
proportion of the population. The exponential growth rate is just

µ = number of new individuals who obtain the feature from a typical individual .



Tipping points

The phrase “tipping point” was popularized by Malcolm Gladwell’s 2000
book The Tipping Point: How Little Things Can Make a Big Difference.
[show Google Ngram]. Let me start by asking

How do people actually use this phrase as a metaphor?

What is the underlying physics analogy?

I will then show how this phenomenon arises in toy probability models.

In previous years one could use Google to search blogs and here are 8
examples found for the 2014 course.



A Tipping Point for Too Much Talent. August 27, 2014
Can a sports team ever have too much talent?
Those of us following the trades and roster jockeying by National
Football League, Premier League and National Basketball Association
teams could reasonably assume that the answer is no. But a new study
of hundreds of games in several professional sports leagues suggests that,
in fact, talent does have a tipping point, beyond which too many great
players become detrimental to a teams success, a finding with broad
implications for coaches at all levels of play, as well as fans and athletes
possessing transcendent and more-average gifts.

Ebola tops EU meeting with warnings crisis is at “tipping point”.
Oct. 20, 2014
European foreign ministers gather in Luxembourg Monday to try and
formalise a joint EU response to combat the Ebola virus amid diplomatic
warnings the crisis has reached a ”tipping point”.



The 3D printing Tipping Point: Quality up, Cost down. 2 Nov 2014
If 3D printing wasn’t on your radar, it certainly should be now.
Innovators are capitalizing on new ways to use the technology, creating
3D-printed homes and cars that may be faster and cheaper as the
technology continues to improve. Have we reached the tipping point
where 3D printing quality is going up and its cost is going down?

Apple Pay Is Here: A Tipping Point? Oct. 21, 2014
Apple Pay is now available and with the success of the iPhone 6 there is
a real possibility that the payment system will really change. There is a
lot going on in the area of ”unbundled” banking opportunities and it is
really starting to draw in ”money” players. Forget what the ”old”
banking system looks like...think of how an ”unbundled” banking system
might look like.



Is 2014 the “Tipping Point” for the GMO Labeling Movement?
September 29, 2014
In Oregon and elsewhere, voter sentiments are trending more in favor of
consumers’ “right to know.”

Net Neutrality in the U.S. Reaches a Tipping Point. Oct 31 2014
We’ve spent years working to advance net neutrality all around the world.
This year, net neutrality in the United States became a core focus of ours
because of the major U.S. court decision striking down the existing
Federal Communications Commission (FCC) rules. The pressure for
change in the U.S. has continued to grow, fueled by a large coalition of
public interest organizations, including Mozilla, and by the voices of
millions of individual Americans.



Big Cats at a Tipping Point in the Wild. August 7, 2014
With lions, leopards, and other big cat species on a downward spiral, we
sit at a tipping point when it comes to the conservation of some of the
worlds most iconic animals.

Is Syria on the Verge of a Tipping Point? September 8, 2014
The Syrian civil war, which has dragged on for three years, has until now
been deadlocked in a bloody war of attrition. However, the forceful
emergence of ISIS, renamed the Islamic State (IS), may ironically have
opened the door for a change in the conflict.



Is there any unifying concept behind these stories? Wikipedia hasn’t
figured this out . . . . . .
[show Tipping point (disambiguation)]
The metaphor of tipping suggests a rapid switch between two
qualitatively very different states. The online Marriam-Webster dictionary
says

the critical point in a situation, process, or system beyond which
a significant and often unstoppable effect or change takes place

To me there is a subtle distinction between two contexts.

tipping point as something within a specific observed process
causing a change from before to after

Change in “parameters” – the background setting – which affects
the process being observed.

[board: the previous examples]



In the context of democratic politics a steady shift in public opinion can
result at some point in rapid changes due to different governments and
laws. This really is like tipping, though is a consequence of human rules
(like sports rules) rather unlike any physical phenomenon.









Digression: the word parameter.
In undergrad Statistics we often use the word in the context of fitting
data to a distribution – Normal(µ, σ2) distribution for heights. In serious
scientific modeling, a parameter is better regarded as something relevant
in the “background setting” which is measurable. Examples in this
lecture:

mean number of offspring

mean number of individuals infected with flu by one individual

cost/quality of 3D printing

percentage of voters with a given opinion

microprocessor capacity

atmospheric CO2

temperature or pressure

quantity/dryness of combustible material in a forest

arrival rate of customers



Phase transitions. To the question “what is H2O?” the simplest answer
is “water”. We all know water exists in three forms – ice, liquid water,
steam – but we intuitively perceive liquid water as the “normal” form.
That is, we view ice as “frozen water” rather than viewing water as
“melted ice”. But to Physics each form is equally natural; the particular
form depends on the values of several parameters, primarily temperature,
but also pressure and presence of impurities. Phase transition refers to
the fact that the transition between forms occurs at very specific
temperatures (0◦ and 100◦ Celsius).

Boiling water or making ice cubes are everyday instances of observable
phase transitions, but for our purposes they are atypical in that we can
easily and directly control the relevant parameter (temperature).

Note also that “phase transition” refers to the general phenomenon
rather than to a particular ice cube. To illustrate the theme of this
lecture let me move on to another example.





Untended campfires. Imagine starting a campfire in the woods and then
leaving, with no subsequent human intervention. What might happen? Well,
two possibilities come to mind. The campfire might die out or it might start a
large forest fire. Which happens depends on a lot of factors – temperature and
humidity and wind, amount of combustible material near the campfire, etc –
which again we call parameters.

Now imagine there are quite a few irresponsible people leaving campfires; some
will cause forest fires and others won’t, depending on the parameters in the
particular instance. Mathematical scientists envisage the phase transition
abstractly as the boundary between the parameter values which make a forest
fire unlikely and the values which make it likely. More concretely, in a climate
like California with mild wet winters and hot dry summers there will be a
roughly predictable time of year when the forest fire result becomes likely, and
this time of year is the “tipping point” for forest fires.

Here are two key points to note in this example. First, the “tipping point”

refers to the general phenomenon of forest fires, not to a particular fire.

Second, the relevant parameters have very different natures. Some are outside

human control (weather), others are part of human social/economic life (laws

against starting fires; the Forestry Department clearing undergrowth to help

prevent forest fires), while others are very specific to the particular instance

(combustible material nearby).



Just as tipping point is now widely used in non-technical writing, so is
phase transition now used throughout the mathematical sciences with
some broader meaning. Let me try to describe the central idea, which I
will call Phase transition tipping point (PTTP).

A system which fluctuates but (in what we perceive as an existing or
“normal” situation) is long-term stable (dynamic equilibrium).

The way it fluctuates is governed by some parameter; with some
other parameter values the system would be unstable or have a
qualitatively different equilibrium.

There are slow changes in parameter (caused by external factors).

The PTTP occurs when the parameter crosses the boundary
between one stable equilibrium and another.

Epidemics are a basic example – is µ greater than or less than 1? Here
is another basic “probability model” example.



Queueing theory is one of the major classical topics in applied probability,

included in a typical first course on stochastic processes. Curiously, the “phase

transition” analogy is not emphasized in textbooks.

A queue is exemplified by a store with one person (the server) at the
checkout stand. There is a certain demand for checkout service;
hypothetically, if there are 25 customers in a certain hour and on average
they each require 2 minutes service time, then the server will be busy for
50 minutes in that hour, which we interpret as a traffic intensity of
50/60 = 5/6. If the traffic intensity increased to 8/6, then after an hour
we would expect to see (if nothing else changed) a waiting line in which
the last customer would have to wait around 20 minutes.

Of course in practice this rarely happens, for two obvious reasons.
Potential customers seeing a long line might well forego shopping there;
and to avoid that possibility, store management will ensure that an extra
server will be available when needed.



This simple story illustrates two points. The mathematical point is that
when the traffic intensity (conventionally denoted ρ) is greater than 1 the
server cannot possibly keep up, and the wait line would grow longer and
longer; but when ρ < 1 then the server must be idle (no customers) for a
proportion 1 − ρ of the time, implying that the waiting line must become
empty fairly frequently.

These two qualitatively different behaviors of a system are the sign of a
PTTP, and in a case like this with only a single parameter, the PTTP
ρ = 1 is called the critical value. The second point is that variations in
the traffic intensity are caused by features of the broad human social
world – which affects the times of day and of week we seek to shop –
external to the “system” within the store.



Mean customer wait time. The qualitative phase transition above does
not depend on explicit modeling of the queue, but any more quantitative
result does, and a natural quantity to consider is the mean customer wait
time before being served, in the case ρ < 1. You can see intuitively why
the details matter by considering extreme cases. If customers were
scheduled by appointment then one could arrange that waiting was never
necessary; whereas for a jumbo jet load of passengers arriving
simultaneously at immigration, there will inevitably be a wait line.

So this is where probability enters the story – we need some probability
model. The simplest model is called the M/M/1 model whose essential
features are that arrival times are assumed to be as a Poisson process
(“purely random”) and that service times are assumed to have
Exponential distribution.



Within this model, a formula whose derivation can readily be found in
textbooks is

mean number customers in front of you = ρ
1−ρ (3)

from which it follows that

mean wait time until your service starts = ρ
1−ρ × A (4)

where A is the mean service time per customer.

Let me repeat that the validity of such formulas depends on the precise
assumptions, which would typically be unrealistic! Part of the technical
side of queueing theory is to find analogous formulas in other, hopefully
more realistic, models.



Should you feel guilty about delaying minor tasks? Here is a
thought-provoking consequence of formula (4). Suppose your list of tasks
you need/want to do per week is longer than time available per week.
Rational plan: first decide to allocate a fixed length of time per week to
doing these tasks, then prioritize tasks and put on your “to do” list only
those important enough – cut off so the average time needed per week
equals the time you have allocated.

This scheme sounds good, but is ruined by randomness. Your list of tasks
will be a queue with ρ = 1, so formula (4) says the mean waiting time
until a typical task is completed will become infinite!

[discuss further]



Let us look at branching processes and toy models of epidemics from this
viewpoint. Recall the Galton-Watson branching process model, usually
stated in terms of “individuals” and “offspring”.

Write µ and σ for the mean and s.d. of the number of offspring. There is
a PTTP at critical value µ = 1, in the following sense.
If µ < 1 then P(survival) = 0.
If µ > 1 then P(survival) > 0.

There is a conceptually subtle point here; we are making a statement
about the process, not about a realization of the process.



Scientists have thought extensively about potential tipping points
involving climate change, although details are uncertain.

[show Wikipedia and paper]


