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Why do lottery winners live longer than others (on average)?

Why do your friends have more friends than you do (on average)?

Why do sports teams that do very well one year tend to do less well
next year (on average)?

Why are movie sequels worse than the original (on average)?

Why does the popularity of a particular birth name tend to rise and
then fall?

The theme of this lecture is that these are all “general statistical effects”.
In any particular case there might also be relevant causal factors, but a
specific causal explanation is not required; believing that causal
explanation is necessary constitutes one of several fallacies.



In Fall 2014 my department taught four lower division courses, with
student enrollments 409, 197, 414, 192. The average of these four
numbers is 303. Is this the average class size? Well, from the
Professors’ viewpoint, it is.

What about the students’ viewpoint? There are 1,212 students; 409 of
them are in a class of size 409, and so on. The average of these 1,212
numbers is 342. So this is the average class size from the students’
viewpoint.

A common example is family (number of children) size. Suppose each
child is in exactly one family.
[board]



Mathematically, imagine individuals placed into groups.

p(i) = proportion of groups with exactly i individuals
µ = mean size of groups
q(i) = proportion of individuals in size-i groups.

The relationship is

q(i) = ip(i)/µ, i = 1, 2, 3, . . . .



Rewriting in terms of random variables
X = size of uniform random group
Y = size of group containing uniform random individual

The relationship is

P(Y = i) = iP(X = i)/EX .

This leads to several formulas: [board]

EY = E(X 2)/EX ; EX = 1/E(1/Y ).

And unless all groups are the same size, we always have

EY > EX



U.S. 2000 census data for household size

Household size Number of households
1 27,230,075
2 34,418,046
3 17,439,027
4 14,973,089
5 6,936,886
6 2,636,134

7 + 1,846,844
total 105,480,101

i 1 2 3 4 5 6 7+ ave
p(i) 25.8 32.6 16.5 14.2 6.6 2.5 1.7 2.6 = µ = EX
q(i) 10.0 25.3 19.2 22.0 12.7 5.8 5.1 3.4 = EY



In many settings, both viewpoints are relevant for different purposes – for
instance, the distribution of class size from the Professors’ viewpoint is
also relevant for the provision of classrooms.

Another use of size-biasing appears in auditing financial accounts. Given
a long list of bookkeeping entries, if you want to sample some to check
that they match actual legitimate expenses, then it is sensible to sample
with probability proportional to dollar amount, because what we are
ultimately interested in is the overall dollar amount of any discrepancies.



Here is a more subtle hypothetical example. Suppose vehicles on a
freeway move at different speeds, but each speed does not change in
time. What is the average speed of the traffic? Here are two ways you
might gather data.

(i) A police officer stands at a particular point with a radar gun and
measures the speed of each passing vehicle for an interval of time. Take
the average of those measured speeds.

(ii) Imagine an airplane that can see an long section of the freeway, and
imagine a device that at one time instant can measure the speeds of all
the vehicles in that section at that instant. Take the average of those
measured speeds.

These will give different answers!
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[board]
We get the same relationship for density functions

fY (v) = vfX (v)/EX

Y = speed measured by police officer
X = speed measured by plane.



Assuming that winning the lottery (winning a large sum) has no effect on
your future lifespan, what do we expect is the relationship between
lifetime of lottery winners compared to lifetime of the general population?

As an (unrealistic) starting model, suppose that at age 18 people decide
how many lottery tickets to buy per week, do not change this number as
they age, and that the choice of number has no connection with life
expectancy. Then a person who lives to 78 has twice the chance to win
as does a person who lives to 48, simply because they buy twice as many
tickets. So in this scenario the distribution of lifetime-after-age-18 of
lottery winners will be the lifetime-biased version of the distribution for
the general population, and in particular the mean lifetime will be
noticeably longer.

So it is a fallacy to argue

we observe that lottery winners live longer than others on average, so this
must be due to some cause – they become richer and happier and that
makes them live longer.

– it’s just a statistical effect.



Of course our assumptions are unrealistic in detail. The age-at-winning
must match the age-profile of lottery ticket buyers, which is somewhat
tilted toward older adults. (see e.g. Kaplan Lottery winners: the myth
and reality).

The statistical effect here has nothing to do with lotteries in particular.
For instance if you compare

actors who have won an Oscar

actors who have been nominated for an Oscar but never won

then you expect the average lifetime of the former to be longer.



Size biasing in social networks.
In the simplest version, a social network is a graph where the vertices are
individual people and the edges indicate some specific type of
relationship, which for concreteness we’ll call friends. In such a network
there is a distribution

pi = proportion of people with i friends = P(J has i friends )

where J denotes a uniform random person. Now consider a two-stage
procedure; first pick a uniform random person J, then pick a uniform
random friend J∗ of J. What can we say about

p∗i = P(J∗ has i friends )?

This turns out to be conceptually similar to size-biasing, in that on
average J∗ will have more friends than does J – the friendship paradox.
Let’s look at two hypothetical examples.



c c c c c c c c c c c c
c c c c c c c c c c c c

all friends 4 out of 5 friends

[draw other edges on board]

The point of the example is that each network has p1 = p5 = 1
2 . But the

values (p∗i ) are different;

p∗1 = p∗5 = 1
2 (left network) , p∗1 = 1

10 , p
∗
5 = 9

10 (right network).

Thus in contrast to the basic size-biasing context, there isn’t a general
formula for (p∗i ); it depends on the structure of the network. But a math
argument [board] shows

E(number of friends of J) ≤ E(number of friends of J∗).

In words,

your friends have more friends than you do, on average.



(*) your friends have more friends than you do, on average.

Seeing this effect in data, one might be inclined to look for causal
explanations. Presumably there is some measurable aspect f of
personality which is correlated with number of friends – so maybe you
tend to have friends with higher values of f than you do. But the point is
that no such detailed explanation is needed; (*) is a purely statistical
effect, a logical consequence of the fact that different people have
different numbers of friends, not requiring a causal explanation of that
fact.

Math aside. If our original choice of random person J is size-biased by
“number of friends”, then for the random friend J∗ we do indeed have
the property that the distribution of number of friends is the same for J∗

as for J.



The regression effect and the regression fallacy. This is a textbook
topic . As a simple example, take a sport where teams play in leagues
and have a “final standing” each year, given by the proportion of games
won, in which case the average over all teams must be 0.5. The
regression effect predicts that

for a team with above average performance this year, say a final
standing of 0.6, its final standing next year is likely to be less than
this year’s 0.6.

Analogously, for a team with below average performance this year,
say a final standing of 0.4, its final standing next year is likely to be
more than this year’s 0.4.

This effect will be more noticeable for the best and worst teams.
[show page]
The prediction is correct substantially more than 50% of the time.

Another textbook example where one would confidently expect to see the
regression effect are midterm and final exams (with scores measured in
“standard units”, that is SDs above or below average).



The regression fallacy is to presume the regression effect must have
some cause specific to the given context, and then to ascribe it to the
intuitively most plausible potential cause. In the sports example above,
for the bottom teams one might speculate that new players or coaches
are hired after a bad year and that this causes the subsequent
improvement. In the exams example one might speculate that students
doing well on the midterm might slacken off working so hard later.

To see why such “causal” explanations are not necessary, consider a
different example: two people rate the same set of movies (or wines or
restaurants . . . ) on a (subjective) numerical scale, which is then
converted to standard units. For the subset of movies that the first
person rates around +1 (one SD above average) their average rating by
the other person will typically be some number ρ between 0 and 1. It
doesn’t matter which person is deemed “first”, so there can be no notion
here of some underlying cause of changes in time.



The phrase regression to the mean is often misinterpreted; here is my
suggestion for how to think about it. The key point is that it is an
assertion about averages, not about individuals.

[board: example with sports teams]

Why are movie sequels worse than the original (on average)?
[board: this is also survivorship bias]



Dust to dust models

Here is a topic not treated in basic textbooks or popular science
accounts. The type of data under consideration can be illustrated by
three examples. For the first two there is extensive data and for the third
there is extensive math theory.
Given names. The percentage of U.S. babies each year with a particular
given name.
Stocks. One can measure the “size” of a corporation, e.g. as market
capitalization, and then take its size as a percentage of the total market
capitalization.
Alleles. The relative frequency of each allele of a gene.

This is categorical data. In the first two examples we know there are
many categories (names; corporations). In the third example we are
interested in the case where there are in fact many alleles;.

We saw categorical data in a previous lecture. Here are some copied
slides.



For a probability distribution over numbers – Binomial or Poisson,
Normal or Exponential – the mean or standard distribution are examples
of “statistics” – numbers that provide partial information about the
distribution.

Consider instead a probability distribution over an arbitrary finite set S

p = (ps , s ∈ S)

Examples we have in mind for S are
Relative frequencies of letters in the English language



Relative frequencies of words in the English language
Relative frequencies of phrases or sentences in the English language
[show Google Ngram]
Relative frequencies of given names [show]

For such S mean does not make sense. But statistics such as∑
s

p2s

and
−
∑
s

ps log ps

do make sense.



For categorical data it is often most natural to list the categories in
ranked order; largest, second largest, etc as with baby names.

What can we say about changes in frequencies, as time goes by? We can
observe the changes for any particular category, but how do we pick the
category to study? Three possible ways

Pick the largest category.

Pick a category uniformly at random.

Pick a random size-biased category, i.e. the category of a uniform
random individual.

The final scheme is the best way to see a “typical” category.
[explain]



Now imagine that the category frequencies change in some unpredictable
way such that
(i) the statistical properties of the distribution of frequencies of category
do not change in time
(ii) there is no intrinsic reason why a particular category should have a
larger or smaller frequency.
We can make simple “toy” probability models of such contexts (details
not important) and in any such model, theory predicts

Take a size-biased pick of a category at a particular past time
t0. That category size will have tended to increase from a low
level in the far past to a maximum at some time near t0 and
then to decrease toward a very low level in the far future
(relative to t0), if enough time has passed since t0 for us to
observe the latter.

Let me call this the “dust to dust” property (no standard name). In some
sense it’s a variant of regression effect – saying that our initial size-biased
pick “regresses” toward behaving like a uniform pick over categories,
which would have a very small frequency.



The given names data-set
This fascinating data-set was introduced in a previous lecture where we
observed a dramatic increase in diversity over the last 30 years.
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To examine our “dust to dust” prediction we need to adjust for this
increasing diversity effect (by simply multiplying observed frequency of a
specific name by effective number of names).
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Elizabeth (0.00907268)
Tracy ( 0.008949355)
Sandra (0.007218656)
Tamara (0.002757023)
Penny (0.001399856)
Kerry (0.001098659)
Venessa (6.047663e-05)
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Christopher (0.01996616)
Scott (0.01602726)
Timothy (0.01306148)
Charles (0.01212189)
Shawn (0.00462529)
Tommy (0.001258191)
Tad (9.502106e-05)

The graphics show adjusted frequencies of seven names, chosen size-biased by

1969 births (i.e. the names of uniform random picks of babies born in 1969).

The triangles show the year of maximum adjusted popularity of each name; the

median difference from 1969 is around 10 years, demonstrating our

dust-to-dust phenomenon.



Projects.

I surmise that when Colleges state their ”average class size” they are
using the Professor’s viewpoint rather than the (more honest)
student viewpoint. Can you find data to check this?

Find stock market data to examine the qualitative ”dust-to-dust”
property.

Find data on the t-year correlation for sports team winning
percentage.

The paper You Name It – How Memory and Delay Govern First
Name Dynamics by David A. Kessler et al. contains different math
analysis – how does it compare to ours?

The 2000 book A Matter of Taste: How Names, Fashions and Culture
Change by Stanley Lieberson provides a fascinating sociological analysis.


