Lecture 11: Coding and Entropy.

David Aldous

October 10, 2017

The concept “information” arises in different ways in different fields of
the mathematical sciences — see the book Information: A Very Short
Introduction. This lecture relates to the field called Information Theory
— course EE 229A — just one of these fields.

Start with discussing a concept of entropy. This word also has several
different-but-related meanings in different fields of the mathematical
sciences; we focus on the one particular meaning relevant to “Information
Theory".

Note: in this lecture coding also has a special meaning — representing
information in some standard digital way for storage or communication.

Here is our “anchor data”.

[show xked]

Is the cartoon’s message sensible? In the Lecture 1 survey | asked for
common 5-letter words, and let us choose

happy apple beach yacht

and use a password strength checker.
[show]

[Volunteer to check your own password]

This lecture explains some of the background math.

For a probability distribution over numbers — Binomial or Poisson,
Normal or Exponential — the mean or standard distribution are examples
of “statistics” — numbers that provide partial information about the
distribution.

Consider instead a probability distribution over an arbitrary finite set S

p=(ps,s€S)

Examples we have in mind for S are

Relative frequencies of letters in the English language
0.14

abcdefghi jklImnopgrs tuwwzxysz

@ Relative frequencies of letters in the English language
@ Relative frequencies of words in the English language

@ Relative frequencies of phrases or sentences in the English language
[show Google Ngram]

o Relative frequencies of given names [show]

For such S mean does not make sense. But statistics such as
2
>
S

and

—> pslogps

do make sense.

What do these particular statistics p? and — > Ps log ps measure?

[board]: spectrum from uniform distribution to deterministic.
Interpret as “amount of randomness” or “amount of non-uniformity”.

First statistic has no standard name.
Second statistic: everyone calls it the entropy of the probability
distribution p = (ps,s € S).

For either statistic, a good way to interpret the numerical value is as an
“effective number” N.g — the number such that the uniform distribution
on Ng categories has the same statistic.

[show effective-names.pdf — next slide]

For many purposes the first statistic is most natural — e.g. the chance
two random babies born in 2013 are given the same name. The rest of
this lecture is about contexts where the entropy statistic is relevant.

effective number of names

frequency of name * eff.# of names this year

200 300 400 500

100

Effective Number of Names (1/sumofsquares) over time

Effective Number of Names (exp(entropy)) over time

female 8 female
male & male
s
8 4
s B
g 2
£
g
Y, 5
2 g
E ¢
5 /
5 g |
3
o 4
T T T T T T T T T T T T T T
1880 1900 1920 1940 1960 1980 2000 1880 1900 1920 1940 1960 1980 2000
year year
Frequency*Effective # of ‘common’ female names over time Frequency*Effective # of male names over time
— Tatiana (2009) 8 - — William (2009)
—— Peyton (1999) — 5\"1[%(91:;9)
— . — Justin
—— Brenda (1989) 5 — Michael (1979)
Candice (1979) € 8 4 T Davia (1969
— Annette (1969) 2 John (1959)
Ruth (1959) =
8
HER
B
=
5 2
)
5
g o
5 2
g
&
FE
g
o

T T T T T T T
1880 1900 1920 1940 1960 1980 2000

year

T T
1880 1900

T
1940

T T T T
1920 1960 1980 2000

year

In our context it is natural to take logs to base 2. So if we pick a word
uniform at random from the 2000 most common English words, this
random process has entropy log, 2000 ~ 11, and we say this as “11 bits
of entropy”.

[show xked again]

Of course we can't actually pick uniformly “out of our head” but the
notion of “effective population size” holds.

You may have seen the second law of thermodynamics [show]

The prominence of entropy in this “physical systems” context has led to
widespread use and misuse of the concept in other fields. This lecture is
about a context where it is genuinely a central concept.

A simple coding scheme is ASCII [show]
In choosing how to code a particular type of data there are three main
issues to consider.

@ May want coded data to be short, for cheaper storage or
communication: data compression

@ May want secrecy: encryption

@ May want to be robust under errors in data transmission:
error-correcting code

[comment on board]

At first sight these are quite different issues, but

Here is a non-obvious conceptual point.

Finding good codes for encryption is (in principle) the same as
finding good codes for compression.

Here “the same as” means “if you can do one then you can do the other”.

In this and the next 3 slides | first give a verbal argument for this
assertion, and this argument motivates subsequent mathematics.

A code or cipher transforms plaintext into ciphertext. The simplest
substitution cipher transforms each letter into another letter. Such
codes — often featured as puzzles in magazines — are easy to break using
the fact that different letters and letter-pairs occur in English (and other
natural languages) with different frequencies. A more abstract viewpoint
is that there are 26! possible “codebooks” but that, given a moderately
long ciphertext, only one codebook corresponds to a meaningful plaintext
message.

Now imagine a hypothetical language in which every string of letters like
QHSKUUC ... had a meaning. In such a language, a substitution cipher
would be unbreakable, because an adversary seeing the ciphertext would
know only that it came from of 26! possible plaintexts, and if all these
are meaningful then there would be no way to pick out the true plaintext.
Even though the context of secrecy would give hints about the general
nature of a message — say it has military significance, and only one in a
million messages has military significance — that still leaves 107° x 26!
possible plaintexts.

Returning to English language plaintext, let us think about what makes a
compression code good. It is intuitively clear that for an ideal coding we
want each possible sequence of ciphertext to arise from some meaningful
plaintext (otherwise we are wasting an opportunity); and it is also
intuitively plausible that we want the possible ciphertexts to be
approximately equally likely (this is the key issue that the mathematics
deals with).

Suppose there are 21990 possible messages, and we're equally likely to
want to communicate each of them. Suppose we have a public ideal
code for compression, which encodes each message as a different
1000-bit string, Now consider a substitution code based on the 32 word
“alphabet” of 5-bit strings. Then we could encrypt a message by

(i) apply the public algorithm to get a 1000-bit string;

(i) then use the substitution code, separately on each 5-bit block.

An adversary would know we had used one of the 32! possible codebooks
and hence know that the message was one of a certain set of 32!
plaintext messages. But, by the “approximately equally likely” part of the
ideal coding scheme, these would be approximately equally likely, and
again the adversary has no practical way to pick out the true plaintext.

Conclusion: given a good public code for compression, one can easily
convert it to a good code for encryption.

Math theory

The basis of the mathematical theory is that we model the source of
plaintext as random ‘characters” Xi, X5, X3, ... in some “alphabet”. It is
important to note that we do not model them as independent (even
though | use independence as the simplest case for mathematical
calculation later) since real English plaintext obviously lacks
independence. Instead we model the sequence (X;) as a stationary
process, which basically means that there is some probability that three
consecutive characters are CHE, but this probability does not depend on
position in the sequence, and we don’t make any assumptions about
what the probability is.

For any sequence of characters (xi,. .., x,) there is a likelihood
Uxty ..y Xn) =P(X1 = x1,..., Xy = Xp).

The stationarity assumption is that for each “time” t (really this is
“position in the sequence”)

]P(Xt+1 = X1y.-- 7Xt+n = X,,) =]P(Xl = X1y.-- ,X,, = X,,). (1)
Consider the empirical likelihood
Ly =0(X1,...,Xn)

which is the prior chance of seeing the sequence that actually turned up.
The central result (Shannon-McMillan-Breiman theorem: STAT205B) is

The asymptotic equipartition property (AEP). For a stationary
ergodic source, there is a number &nt, called the entropy rate of the
source, such that for large n, with high probability

—log L, ~ nx &nt.

It is conventional to use base 2 logarithms in this context, to fit nicely
with the idea of coding into bits.

I will illustrate by simple calculations in the IID case, but it's important
that the AEP is true very generally. We will see the connection with
coding later.

For n tosses of a hypothetical biased coin with P(H) =2/3,P(T) =1/3,
the most likely sequence is HHHHHH ... HHH, which has likelihood
(2/3)", but a typical sequence will have about 2n/3 H's and about n/3
T's, and such a sequence has likelihood = (2/3)2"/3(1/3)"/3. So

log, Ln ~ n(3 log, 5 + 5 log, 3).

Note in particular that log-likelihood behaves differently from the
behavior of sums, where the CLT implies that a “typical value” of a sum
is close to the most likely individual value.

Recall that the entropy of a probability distribution q = (g;) is defined

as the number
£(a) =— _ gjlog, q;. (2)
J

The AEP provides one of the nicer motivations for the definition, as
follows. If the sequence (X;) is IID with marginal distribution (p,) then
for x = (x1,...,x,) we have

0 = [Tr

where ny(x) is the number of appearances of a in x. Because
na(Xi, ..., Xn) =~ np, we find

L %]‘—[pgp-3
a
—logy Ly~ n < Zpa log, pa> :

So the AEP identifies the entropy rate of the IID sequence with the
entropy £ = —) _ p,log, p, of the marginal distributions X.

Three technical facts.

Fact 1. (easy). For a 1-1 function C (that is, a code that can be be
decoded precisely), the distributions of a random item X and the coded
item C(X) have equal entropy.

Fact 2. (easy). Amongst probability distributions on an alphabet of size
B, entropy is maximized by the uniform distribution, whose entropy is
log, B. So for any distribution on binary strings of length m, the entropy
is at most log, 2™ = m.

Fact 3. (less easy). Think of a string (Xi,..., Xx) as a single random
object. It has some entropy &. In the setting of the AEP,

k~1E — &nt as k — .

Finally a conceptual comment. Identifying the entropy rate of an IID
sequence with the entropy of its marginal distribution indicates that
entropy is the relevant summary statistic for the non-uniformness of a
distribution when we are in some kind of multiplicative context. This is
loosely analogous to the topic of Lecture 2, the Kelly criterion, which is
tied to “multiplicative” investment.

Entropy as minimum code length

Here we will outline in words the statement and proof of the fundamental
result in the whole field. The case of an IID source is Shannon’s source
coding theorem from 1948. The “approximation” is as n — oo.

A string of length n from a source with entropy rate Ent can be coded as a
binary string of length = n x &nt but not of shorter length.

More briefly, the optimal coding rate is Ent bits per letter.

Why not shorter?

Think of the entire message (Xi, ..., X,) as a single random object. The
AEP says the entropy of its distribution is approximately n x &nt.
Suppose we can code it as a binary string (Yi,..., Y,) of some length
m. By Fact 1, the entropy of the distribution of (Y1,..., Y},) also

~ n x &nt, whereas by Fact 2 the entropy is at most m. Thus m is
approximately > n x Ent as asserted.

How to code this short.

We give an easy to describe but completely impractical scheme. Saying
that a typical plaintext string has chance about 1 in a million implies
there must be around 1 million such strings (if more then the total
probability would be > 1; if less then with some non-negligible chance a
string has likelihood not near 1 in a million). So the AEP implies that a
typical length-n string is one of the set of about 2"%" strings which
have likelihood about 27 "% (and this is the origin of the phrase
asymptotic equipartition property). So in principle we could devise a
codebook which first lists all these strings as integers 1,2,...,2"%ént
and then the compressed message is just the binary expansion of this
integer, whose length is log, 27" = n x &nt. So a typical message can
be compressed to length about n x &nt; atypical messages (which could
be coded in some non-efficient way) don't affect the limit assertion.

The second argument is really exploiting a loophole in the statement.
Viewing the procedure as transmission, we imagine that transmitter and
receiver are using some codebook, but we placed no restriction on the
size of the codebook, and the code described above uses a ridiculously
large and impractical codebook,

The classical way to get more practical codes is by fixing some small k
and coding blocks of length k, Thus requires a codebook of size A,
where A is the underlying alphabet size. However, making an optimal
codebook of this type requires knowing the frequencies of blocks that will
be produced by the source. In the 1970s it was realized that with
computing power you don't need a fixed codebook at all — there are
schemes that are (asymptotically) optimal for any source. Such schemes
are known as Lempel-Ziv style. | outline an easy to describe, but not the
textbook, scheme.

Suppose we want to transmit the massage

010110111010/011001000......

and that we have transmitted the part up to |, and this has been decoded
by the receiver. We will next code some initial segment of the subsequent
text 011001000....... To do this, first find the longest initial segment
that has appeared in the already-transmitted text. In this example it is
0110 which appeared in the position shown.

010110111010|011001000......

Writing n for the position of the current (first not transmitted) bit, let

n — k be the position of the start of the closest previous appearance of
this segment, and £ for the length of the segment. Here (k,£¢) = (10,4).
We transmit the pair (k, £); the receiver knows where to look to find the
desired segment and append it to the previously decoded text. Now we
just repeat the procedure:

0101101110100110|01000......

the next maximal segment is 0100 and we transmit this_as (7,4).

How efficient is this scheme? We argue informally as follows. When we're
a long way into the text — position n say — we will be transmitting
segments of some typical length ¢ = ¢(n) which grows with n (in fact it
grows as order log n but that isn't needed for this argument). By the AEP
the likelihood of a particular typical such segment is about 2~¢*&nt and
so the distance k we need to look back to find the same segment is order

2FExént S to transmit the pair (k,£) we need log, ¢ + log, k ~ £ x &nt

bits. Because this is transmitting ¢ letters of the text, we are
transmitting at rate &nt bits per letter, which is the optimal rate.

What part of this theory can we check ourselves?

The Unix compress command implements one version of the Lempel-Ziv
algorithm. A simple theoretical prediction is that if you take two “similar”
long pieces of text, and compress them separately, then the ratios
compressed length/uncompressed length should be almost the same.

It takes only a few minutes to check an example. Let me use a text of
History of the Decline and Fall of the Roman Empire, downloaded from
Project Gutenberg.

[do demo]

Note a conceptual point: theory assumes a certain notion of randomness
(stationarity) but the algorithms actually work well in the completely
opposite realm of meaningful language.

So what is the connection with passwords/cryptography?

[show xkcd again and discuss]

Further reading

The standard textbook is Cover and Thomas Elements of Information
Theory.

Floridi Information: A Very Short Introduction gives an overview of the
breadth of the concept of “information”.

A best-seller popular account is Glick The Information.

