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Ideas used in Lecture 8.

@ Communicating classes, defined in terms of possible transitions.
@ Definition of stationary distribution.
@ Special structures making it easy to calculate the stationary

distribution: doubly stochastic, detailed balance, RW on weighted
undirected graph, success runs.

To repeat the first item, recall that the transition matrix P of a Markov
chain can be represented as a weighted directed graph. In the previous
lecture we first looked at some “structure theory” — some qualitative
aspects of the chain’s behavior do not depend on actual numerical
transition probabilities but only on the graph of possible transitions.
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@ j is accessible from i if there is a (directed) path from i to j (or
i=j).

@ / and j communicate if each is accessible from the other.

@ Because “communicate” is an equivalence relation, the state space
States can be partitioned into communicating classes (CCs), say
Gy, G, ..., such that / and j communicate if and only if they are in
the same CC.

@ A class C is open if it is possible to leave; that is if p;j > 0 for some
i€ Candj¢ C. Otherwise it is closed.

@ The graph is strongly connected if there is only one CC, that is if
all states communicate. In the Markov chain context this property is
called irreducible.
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Here is another definition that depends only on the graph of possible
transitions. Suppose we can partition the states into k > 2 subsets

Dy, D1, ..., Dk_1 such that every transition i — j takes the particle from
its current subset to the next subset. That is

if i € D, and pjj > 0 then j € Dyyq (1)

where u + 1 is taken modulo k.

If (1) holds for some k the chain is said to have period k. (More
precisely, the period is the largest k for which (1) holds). If not, the
chain is called aperiodic.

Some later theory will involve the assumption that a chain is irreducible
and aperiodic. Given irreducible, to check the chain is aperiodic it is
sufficient to know that p;; > 0 for some i. The general
necessary-and-sufficient condition — see [PK] section 4.3.2 — is that for
some state i

greatest common divisor of {t : p,(,-t) >0} is 1.

David Aldous Lecture 9



Stationary distributions

Recall the distribution p(t) of X; evolves as p(t) = p(t — 1)P in
vector-matrix notation. So suppose a probability distribution
m = (m;, | € States) satisfies

m=nP; thatis » mp;=m;Vj. (2)

If the chain has initial (time-0) distribution 1(0) = 7 then p(t) = 7 for
every time t. A distribution 7 satisfying (2) is called stationary.

This language is a bit confusing, when we imagine a Markov chain as a
particle jumping between states. The particle continues to move even
when we have a stationary distribution; stationary refers to the fact that
the probabilities (of where the particle is at time t) do not change with
time t.
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If 14(t) and p(co) are probability distributions on States, then
convergence p(t) — u(oo) as t — oo means p;(t) — pi(oc0) as t — 0o
for each i € States.

So if u(t) is the distribution of X(t) then u(t) — u(co) means
wi(t) =P(X(t) = i) — pi(oo) for each i € States. (3)

Suppose that for a chain with transition matrix P we know (3) holds.
Then (3) implies
pu(t +1) = p(t)P — p(co)P

which implies, because p(t + 1) — p(c0),
pu(o0) = p(oc)P

That is, the limit distribution of X(t), if it exists, must be a stationary
distribution, which we will now call 7.
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Mean occupation times. Consider a state / and time t.

t—1
Z 1(x(s)=iy = number of visits to i before t
s=0
t—1

%Z 1(x(s)=iy = proportion of time at i before t
s=0

t—1
E[% Z 1(x(s)=iy] = mean proportion of time at i before t
s=0

— 1Y B(X(s) = 1)

From algebra/calculus, if a(t) — a(oo) then %Zz;é a(s) — a(o00).
Conclusion. For a Markov chain, if u(t) — 7 then

(mean proportion of time at i before t) — ;.
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We can extend this idea by imagining costs c(i) (or gains). That is,
suppose spending unit time in state i incurs a cost c¢(/). Then, by
summing over all states i.

1
—E (total t during ti 0,1,...,t—1 — .
; (total cost during times { 1 E,- G

In our earlier context of setting up first-step analysis of hitting times
E; T, we can also consider the mean total cost up to time Tx — see [PK]
sec. 3.4.2.
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We now come to the central part of theory for Markov chains. Everyone
says this theory in slightly different ways. See [PK] section 4.4; also a
concise theory treatment with proofs is in [BZ] sections 5.3 - 5.4.

Assume irreducible; state space may be finite or countable infinite.
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Recall T; = min{t > 0: X; = i} and define also the return time
T =min{t>1: X, =i}.

Fix a reference state b.

Theorem

Suppose irreducible.
(a) If state space is finite then E, T, < oo.
(b) Suppose E, T,} < co. Define

Ty
a(b,i) =Eb Y Lix(s)=)
s=1

= mean number of visits to i before returning to b. So a(b, b) = 1. Then

_a(b, i)
T EpT,

T

is a stationary distribution, and is the only stationary distribution.
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Discussion.
(a) There is a calculation which checks this 7 does satisfy m = 7 P.
(b) Because 7 is the same for each choice of b we have another formula

1

= ET7r for each /.

T

(c) For an irreducible chain, the properties

E; T;" < oo for some i

IE,-T,-+ < oo for all i
are equivalent. When these hold we call the chain positive-recurrent.
(d) The theorem implies that every finite-state irreducible chain is
positive-recurrent. So every finite-state irreducible chain has a unique
stationary distribution.
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