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Ideas used in Lecture 8.

Communicating classes, defined in terms of possible transitions.

Definition of stationary distribution.

Special structures making it easy to calculate the stationary
distribution: doubly stochastic, detailed balance, RW on weighted
undirected graph, success runs.

To repeat the first item, recall that the transition matrix P of a Markov
chain can be represented as a weighted directed graph. In the previous
lecture we first looked at some “structure theory” – some qualitative
aspects of the chain’s behavior do not depend on actual numerical
transition probabilities but only on the graph of possible transitions.
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j is accessible from i if there is a (directed) path from i to j (or
i = j).

i and j communicate if each is accessible from the other.

Because “communicate” is an equivalence relation, the state space
States can be partitioned into communicating classes (CCs), say
C1,C2, . . ., such that i and j communicate if and only if they are in
the same CC.

A class C is open if it is possible to leave; that is if pij > 0 for some
i ∈ C and j /∈ C . Otherwise it is closed.

The graph is strongly connected if there is only one CC, that is if
all states communicate. In the Markov chain context this property is
called irreducible.
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Here is another definition that depends only on the graph of possible
transitions. Suppose we can partition the states into k ≥ 2 subsets
D0,D1, . . . ,Dk−1 such that every transition i → j takes the particle from
its current subset to the next subset. That is

if i ∈ Du and pij > 0 then j ∈ Du+1 (1)

where u + 1 is taken modulo k .

If (1) holds for some k the chain is said to have period k. (More
precisely, the period is the largest k for which (1) holds). If not, the
chain is called aperiodic.

Some later theory will involve the assumption that a chain is irreducible
and aperiodic. Given irreducible, to check the chain is aperiodic it is
sufficient to know that pii > 0 for some i . The general
necessary-and-sufficient condition – see [PK] section 4.3.2 – is that for
some state i

greatest common divisor of {t : p
(t)
ii > 0} is 1.
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Stationary distributions

Recall the distribution µ(t) of Xt evolves as µ(t) = µ(t − 1)P in
vector-matrix notation. So suppose a probability distribution
π = (πi , i ∈ States) satisfies

π = πP; that is
∑
i

πipij = πj ∀j . (2)

If the chain has initial (time-0) distribution µ(0) = π then µ(t) = π for
every time t. A distribution π satisfying (2) is called stationary.

This language is a bit confusing, when we imagine a Markov chain as a
particle jumping between states. The particle continues to move even
when we have a stationary distribution; stationary refers to the fact that
the probabilities (of where the particle is at time t) do not change with
time t.
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If µ(t) and µ(∞) are probability distributions on States, then
convergence µ(t)→ µ(∞) as t →∞ means µi (t)→ µi (∞) as t →∞
for each i ∈ States.

So if µ(t) is the distribution of X (t) then µ(t)→ µ(∞) means

µi (t) = P(X (t) = i)→ µi (∞) for each i ∈ States. (3)

Suppose that for a chain with transition matrix P we know (3) holds.
Then (3) implies

µ(t + 1) = µ(t)P→ µ(∞)P

which implies, because µ(t + 1)→ µ(∞),

µ(∞) = µ(∞)P

That is, the limit distribution of X (t), if it exists, must be a stationary
distribution, which we will now call π.
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Mean occupation times. Consider a state i and time t.

t−1∑
s=0

11(X (s)=i) = number of visits to i before t

1
t

t−1∑
s=0

11(X (s)=i) = proportion of time at i before t

E[ 1t

t−1∑
s=0

11(X (s)=i)] = mean proportion of time at i before t

= 1
t

t−1∑
s=0

P(X (s) = i).

From algebra/calculus, if a(t)→ a(∞) then 1
t

∑t−1
s=0 a(s)→ a(∞).

Conclusion. For a Markov chain, if µ(t)→ π then

(mean proportion of time at i before t)→ πi .
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We can extend this idea by imagining costs c(i) (or gains). That is,
suppose spending unit time in state i incurs a cost c(i). Then, by
summing over all states i .

1

t
E (total cost during times {0, 1, . . . , t − 1}) →

∑
i

ciπi .

In our earlier context of setting up first-step analysis of hitting times
EiTA, we can also consider the mean total cost up to time TA – see [PK]
sec. 3.4.2.

David Aldous Lecture 9



We now come to the central part of theory for Markov chains. Everyone
says this theory in slightly different ways. See [PK] section 4.4; also a
concise theory treatment with proofs is in [BZ] sections 5.3 - 5.4.

Assume irreducible; state space may be finite or countable infinite.
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Recall Ti = min{t ≥ 0 : Xt = i} and define also the return time

T+
i = min{t ≥ 1 : Xt = i}.

Fix a reference state b.

Theorem

Suppose irreducible.
(a) If state space is finite then EbT+

b <∞.
(b) Suppose EbT+

b <∞. Define

a(b, i) = Eb

T+
b∑

s=1

11(X (s)=i)

= mean number of visits to i before returning to b. So a(b, b) = 1. Then

πi =
a(b, i)

EbT+
b

is a stationary distribution, and is the only stationary distribution.
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Discussion.
(a) There is a calculation which checks this π does satisfy π = πP.
(b) Because π is the same for each choice of b we have another formula

πi = 1
EiT

+
i

for each i .

(c) For an irreducible chain, the properties
EiT

+
i <∞ for some i

EiT
+
i <∞ for all i

are equivalent. When these hold we call the chain positive-recurrent.
(d) The theorem implies that every finite-state irreducible chain is
positive-recurrent. So every finite-state irreducible chain has a unique
stationary distribution.
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