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Ideas used in Lecture 7.

First-step analysis of simple asymmetric random walk.

Analysis of “success runs” chain using special structure.

Analysis of “death and immigration” chain using special structure.

Recall that the transition matrix P of a Markov chain can be represented
as a weighted directed graph. In this lecture we first look at some
“structure theory”. This will show us that some qualitative aspects of the
chain’s behavior do not depend on actual numerical transition
probabilities but only on the graph of possible transitions.

This material can be found in Chapter 4 of [KP].
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Here are some definitions that depend only on the graph of possible
transitions.

j is accessible from i if there is a (directed) path from i to j (or
i = j).

i and j communicate if each is accessible from the other.

Because “communicate” is an equivalence relation, the state space
States can be partitioned into communicating classes (CCs), say
C1,C2, . . ., such that i and j communicate if and only if they are in
the same CC.

A class C is open if it is possible to leave; that is if pij > 0 for some
i ∈ C and j /∈ C . Otherwise it is closed.

The graph is strongly connected if there is only one CC, that is if
all states communicate. In the Markov chain context this property is
called irreducible.

I will give some theory results but just outline proofs.
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Lemma. If the state space is finite then there exists at least one closed
CC.

If the hitting time TC = min{t : Xt ∈ C} on a closed class C is finite,
then the chain must remain in C for all times t ≥ TC .

Lemma. If the state space is finite then, for any initial i ,

Pi (TC <∞ for some closed C ) = 1.

The probabilities pi,C = Pi (TC <∞) can be calculated using first-step
analysis.
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Stationary distributions

Recall the distribution µ(t) of Xt evolves as µ(t) = µ(t − 1)P in
vector-matrix notation. So suppose a probability distribution
π = (πi , i ∈ States) satisfies

π = πP; that is
∑
i

πipij = πj ∀j . (1)

If the chain has initial (time-0) distribution µ(0) = π then µ(t) = π for
every time t. A distribution π satisfying (1) is called stationary.

This language is a bit confusing, when we imagine a Markov chain as a
particle jumping between states. The particle continues to move even
when we have a stationary distribution; stationary refers to the fact that
the probabilities (of where the particle is at time t) do not change with
time t.

We will soon see theory relating long-term behavior of a Markov chain to
its stationary distribution. First we look at some examples where we can
easily find the stationary distribution.
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Two remarks.

(1) The notion of stationary distribution is also useful when the number
of states is infinite, though some of our theorems assume a finite number
of states.

(2) Usually we find a stationary distribution by first finding numbers
wi > 0 such that ∑

i

wipij = wj ∀j

and then normalizing by setting

πi = wi/w , where w =
∑
i

wi .

If the number of states is infinite, this only works if w <∞.
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Special setting: Doubly stochastic chains

By definition a transition matrix P has the property pij ≥ 0 ∀i , j and the
stochastic matrix property ∑

j

pij = 1 ∀i .

A matrix that has the extra property∑
i

pij = 1 ∀j

is called doubly stochastic. Given a doubly stochastic transition matrix
on n states, it is clear that the uniform distribution πi = 1/n ∀i is a
stationary distribution.

Example: asymmetric RW on n-cycle. [board]

Example: card-shuffling models. [board]
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Special setting: success runs.
Here the states are {0, 1, 2, . . .} and the transition probabilities are of the
form

pi,i+1 = qi , pi,0 = 1− qi

where 0 < qi < 1.

Here we calculate [board]

πi =
si∑∞
j=0 sj

where si =
i−1∏
j=0

qj .

Here we are assuming
∑∞

j=0 sj <∞.
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Special setting: detailed balance.

Suppose we can find numbers wi > 0 such that

wipij = wjpji ∀i , j . (2)

Then
πi = wi/

∑
j

wj

is a stationary distribution.

[board]

The condition (2) is called detailed balance. It is stronger than the
balance condition ∑

i

wipij = wj ∀j

which is the requirement for (wi/
∑

j wj) to be a stationary distribution.
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Example: random walk on a weighted undirected graph.

Suppose we are given an undirected graph, and suppose there is a
“weight” aij = aji > 0 on each edge (i , j). Define ai =

∑
j aij . Then

pij = aij/ai

defines a transition matrix.

Easy to check [board] that the detailed balance condition (2) always
holds for wi = ai . So

πi = ai/a, a =
∑
j

aj

is a stationary distribution.
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