Lecture 36

David Aldous

30 November 2015

イロン イロン イヨン イヨン

= 900

The M/G/1 queue model is

- Customers arrive at times of a rate- λ Poisson point process
- Service times Y_1, Y_2, \ldots are IID.
- Write $\nu = \mathbb{E}Y$ and note that $1/\nu$ is "service rate".
- X(t) = number of customers at time t.
- 1 server.

Here $(X(t), 0 \le t < \infty)$ is **not** a continuous-time Markov chain. But we can do some calculations.

(ロ) (同) (三) (三) (三) (○)

Here is a third method which calculates something different. There is a **discrete-time** Markov chain associated with the M/G/1 queue: X_n = number of customers just after the departure of the *n*'th customer.

Here [board]

$$X_{n+1} = \max(X_n - 1, 0) + A_n$$

 A_n = number of arrivals during next service period

and the A_n are IID.

As a special property of the M/G/1 queue, the stationary distribution of (X_n) is the same as the equilibrium distribution of "number of customers" in the original queue process. Using this fact we can calculate the expectation of "number of customers".

[calculation on board - follows [PK] sec. 9.3.1].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

The $M/G/\infty$ queue model is

- Customers arrive at times of a rate- λ Poisson point process
- Service times Y_1, Y_2, \ldots are IID.
- Service starts immediately (infinite number of available servers)
- X(t) = number of customers at time t.

Easy to analyze as follows. Customer *i* arrives at some time T_i and has some service time Y_i ; we can represent (T_i, Y_i) as a Poisson process in \mathbb{R}^2 with rate

$$\lambda(t, y) = \lambda f(y); \quad f(y) \text{ is density of } Y.$$

[board] Starting empty, distribution of X(t) is Poisson with mean $\lambda \int_0^t \mathbb{P}(Y \ge s) ds$. So in $t \to \infty$ limit the mean is $\lambda \mathbb{E}Y$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Example: airport parking lot. [not in text]

Cars arrive at (large) rate λ and remain for Exponential(1) times. The numbers of parked cars form a $M/M/\infty$ queue and the stationary distribution is Poisson(λ). But there is also a "spatial" aspect; imagine parking spaces numbered 1, 2, 3, ... and each arriving car parks in the lowest-numbered empty space.

Question: when "you" arrive, you park in some space U: what is the distribution of U?

Answer. Fix 0 < u < 1 and consider

 N_u = number of empty spaces among spaces $[1, u\lambda]$.

This "number of empty spaces" process is approximately a M/M/1 queue with "arrival" rate $u\lambda$ and "service" rate λ . So at stationarity

$$\mathbb{P}(N_u = 0) = 1 - u, \quad \mathbb{E}N_u = rac{u}{1-u}.$$

 $\mathbb{P}(U \le u\lambda) = \mathbb{P}(N_u \ge 1) \approx u, \ 0 < u < 1.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()