Lecture 29

David Aldous

6 November 2015

・ロン ・四 と ・ ヨ と ・ ヨ と …

= 900

We have seen two kinds of "purely random" process:

- coin-tossing, dice-throwing, etc IID sequences.
- Poisson process of random points in *d* dimensions.
- A third kind one might imagine is
 - a "purely random" continuous function.

It is not obvious what this means. To start, consider simple symmetric random walk $$\mathbf{r}$$

$$S_n = \sum_{i=1}^n \xi_i; \quad \mathbb{P}(\xi_i = \pm 1) = 1/2.$$

For large *n*, how can we draw the graph of $(S_0 = 0, S_1, ..., S_n)$ on "unit size" paper?

[board]

Know $\mathbb{E}S_n = 0$ and s.d. $(S_n) = \sqrt{n}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

The picture suggests that the "scaling limit" [jargon!] of the random walk is a process $(B(t), 0 \le t < \infty)$ with the property **1**. B(t) has Normal(0,t) distribution.

It turns out there is a mathematical object called "standard Brownian motion" (BM) with properties $\left(1\right)$ and

2. B(t) - B(s) has Normal(0,t-s) distribution (s < t).

3. For $s_1 < t_1 \le s_2 < t_2 \le \ldots \le s_k < t_k$ the increments $B(t_1) - B(s_1), \ldots, B(t_k) - B(s_k)$ are independent.

4. The sample paths $t \rightarrow B(t)$ are (random) continuous functions of t.

Keep in mind this is a **model** – looking at some time-varying real-world quantity, it may or may not behave like this BM model.

One example which does fit the model quite well is short-term stock prices [show].

As the stock price graphs suggest, although continuous the sample paths are irregular – not differentiable.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

BM is important because

one can do many explicit calculations.

It is a "building block" for defining other random processes.

This part of the course is more "mathematical" in the sense of emphasizing calculations rather than toy models.

Here is a very simple instance of (1).

글 🖌 🔺 글 🕨

3

Given parameters $-\infty < \mu < \infty$ and $0 < \sigma < \infty$ we can define

$$X(t) = \mu t + \sigma B(t)$$

called Brownian motion with drift rate μ and variance rate σ^2 . In particular X(1) has Normal (μ, σ^2) distribution.

The appearance of the Normal distribution is not arbitrary (cf. the Poisson distribution in the Poisson process), as shown by the next theorem.

Theorem

If a process $X(t), 0 \le t < \infty$ has X(0) = 0, continuous sample paths, and (for each a > 0) the increments $X(a), X(2a) - X(a), X(3a) - X(2a), \ldots$ are IID, then the process must be BM with some drift and variance rates.

This is a consequence of the CLT.

Explicit formulas for BM will ultimately be based on the Normal density formula, but first let us see some "structural properties" of BM. Write $=_d$ for "equal in distribution".

1: Symmetry. $(B(t), 0 \le t < \infty) =_d (-B(t), 0 \le t < \infty).$

2: Markov. Given t_0 and the "past" $(B(t), 0 \le t \le t_0)$, the "future" process $\tilde{B}(u) = (B(t_0 + u) - B(t_0), 0 \le u < \infty)$ has the distribution of BM and is independent of the past process.

3: Scaling. For c > 0 the "scaled" process $\widetilde{B}(u) = (c^{-1/2}B(cu), 0 \le u < \infty)$ has the distribution of BM. [show Wikipedia demo]

4: Martingale. $(B(t), 0 \le t < \infty)$ is a martingale.

Recall facts about the Normal density.

$$\phi(z) = (2\pi)^{-1/2} \exp(-z^2/2), \ -\infty < z < \infty$$

is the density of a "standard Normal(0,1)" RV Z. Write the distribution function as

$$\mathbb{P}(Z\leq z)=\Phi(z)=\int_{-\infty}^z\phi(x)dx.$$

We have

$$\mathbb{E}Z = 0$$
, $\operatorname{var}(Z) = 1$.

A few lines of calculus show [board]

$$\mathbb{E}|Z|=\sqrt{2/\pi}.$$

Calculations with B(t) easily done by scaling: $B(t) =_d t^{1/2}Z$ and so (for instance) $\mathbb{E}|B(t)| = \sqrt{2t/\pi}$. The general relation

$$f_{cY}(y) = c^{-1}f_Y(y/c)$$

gives the density of B(t)

$$f_{B(t)}(x) = t^{-1/2}\phi(t^{-1/2}x) = (2\pi t)^{-1/2}\exp(-x^2/(2t)), \ -\infty < x < \infty.$$