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We have seen two kinds of “purely random” process:

coin-tossing, dice-throwing, etc – IID sequences.

Poisson process of random points in d dimensions.

A third kind one might imagine is

a “purely random” continuous function.

It is not obvious what this means. To start, consider simple symmetric
random walk

Sn =
n∑

i=1

ξi ; P(ξi = ±1) = 1/2.

For large n, how can we draw the graph of (S0 = 0,S1, . . . ,Sn) on “unit
size” paper?

[board]

Know ESn = 0 and s.d.(Sn) =
√
n.
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The picture suggests that the “scaling limit” [jargon!] of the random
walk is a process (B(t), 0 ≤ t <∞) with the property
1. B(t) has Normal(0,t) distribution.

It turns out there is a mathematical object called “standard Brownian
motion” (BM) with properties (1) and

2. B(t)− B(s) has Normal(0,t-s) distribution (s < t).

3. For s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sk < tk the increments
B(t1)− B(s1), . . . ,B(tk)− B(sk) are independent.

4. The sample paths t → B(t) are (random) continuous functions of t.

Keep in mind this is a model – looking at some time-varying real-world
quantity, it may or may not behave like this BM model.

One example which does fit the model quite well is short-term stock
prices [show].

As the stock price graphs suggest, although continuous the sample paths
are irregular – not differentiable.
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BM is important because

1 one can do many explicit calculations.

2 it is a “building block” for defining other random processes.

This part of the course is more “mathematical” in the sense of
emphasizing calculations rather than toy models.

Here is a very simple instance of (1).
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Given parameters −∞ < µ <∞ and 0 < σ <∞ we can define

X (t) = µt + σB(t)

called Brownian motion with drift rate µ and variance rate σ2. In
particular X (1) has Normal(µ, σ2) distribution.

The appearance of the Normal distribution is not arbitrary (cf. the
Poisson distribution in the Poisson process), as shown by the next
theorem.

Theorem

If a process X (t), 0 ≤ t <∞ has X (0) = 0, continuous sample paths,
and (for each a > 0) the increments
X (a),X (2a)− X (a),X (3a)− X (2a), . . . are IID, then the process must
be BM with some drift and variance rates.

This is a consequence of the CLT.
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Explicit formulas for BM will ultimately be based on the Normal density
formula, but first let us see some “structural properties” of BM. Write
=d for “equal in distribution”.

1: Symmetry. (B(t), 0 ≤ t <∞) =d (−B(t), 0 ≤ t <∞).

2: Markov. Given t0 and the “past” (B(t), 0 ≤ t ≤ t0), the “future”

process B̃(u) = (B(t0 + u)− B(t0), 0 ≤ u <∞) has the distribution of
BM and is independent of the past process.

3: Scaling. For c > 0 the “scaled” process
B̃(u) = (c−1/2B(cu), 0 ≤ u <∞) has the distribution of BM.
[show Wikipedia demo]

4: Martingale. (B(t), 0 ≤ t <∞) is a martingale.
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Recall facts about the Normal density.

φ(z) = (2π)−1/2 exp(−z2/2), −∞ < z <∞
is the density of a “standard Normal(0, 1)” RV Z . Write the distribution
function as

P(Z ≤ z) = Φ(z) =

∫ z

−∞
φ(x)dx .

We have
EZ = 0, var (Z ) = 1.

A few lines of calculus show [board]

E|Z | =
√

2/π.

Calculations with B(t) easily done by scaling: B(t) =d t1/2Z and so (for
instance) E|B(t)| =

√
2t/π. The general relation

fcY (y) = c−1fY (y/c)

gives the density of B(t)

fB(t)(x) = t−1/2φ(t−1/2x) = (2πt)−1/2 exp(−x2/(2t)), −∞ < x <∞.
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