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Other examples of martingales.

1. Consider the rate-λ Poisson counting process (N(t), 0 ≤ t <∞). Here

Mt = N(t)− λt

is a (continuous-time) martingale. [board]

2. The Polya urn process. Consider a box, initially with r0 ≥ 1 red
balls and b0 ≥ 1 black balls. At each step, pull out a uniform random
ball, and the return it into the box along with another new ball of the
same color. Consider

Mt = proportion of balls that are red at time t.

Then (Mt) is a martingale. [board]
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3. Fisher-Wright genetic model. (2-type, no mutation or selection)
(from Lecture 5)

2N genes in each generation, of types a or A.

“children choose parents”: each gene is a copy (same type) of a
uniform random gene from previous generation.

Then

Xt = number of type-a in generation t

is a Markov chain, with states {0, 1, 2, . . . , 2N} and transition
probabilities

pij = P(Bin(2N, i
2N ) = j) =

(
2N

j

)
( i
2N )j 2N−i

2N )2N−j .

- - - - - - - - - - - - - - - - - - - - - - - - - -
(Xt) is a martingale.
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Here is a counter-intuitive problem.

regular deck of cards – 26 red and 26 black.

I deal, face-up.

At some time you have to bet that the next card will be red.

If you bet on the first card then P(next card is red) = 1/2.

Is there a better strategy (for instance by counting the number of
red/black cards dealt)?

Theorem

Whatever strategy you use, P(next card is red) = 1/2.
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Theorem

Whatever strategy you use, P(next card is red) = 1/2.

At event “t’th card is red.

Ft = information from first t cards.

given Ft the remaining cards are in random order, so
P(At+1|Ft) = P(A52|Ft).

key idea: betting on next card is like betting on bottom card.

Mt = P(A52|Ft) is a martingale.

the time τ when we make the bet (on card τ + 1) is a stopping time.

P(win bet|Ft , τ = t) = P(At+1|Ft , τ = t) = P(A52|Ft , τ = t).

P(win bet|Fτ ) = Mτ

P(win bet) = EP(win bet|Fτ ) = EMτ

but optional sampling theorem says
EMτ = EM0 = EM52 = P(A52) = 1/2.
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In more advanced probability, we use the optional sampling theorem to
prove a variety of general inequalities and general convergence
theorems. I will give one example of each.

The basic property of a martingale was

E(Xt+1|Ft) = Xt .

Replacing the equality by an inequality gives two new definitions:

E(Xt+1|Ft) ≤ Xt . (supermartingale)

E(Xt+1|Ft) ≥ Xt . (submartingale)

Theorem

If (Xt) is a supermartingale and Xt ≥ 0 then

P(max
t≤t0

Xt ≥ b) ≤ EX0

b , b > 0.

Letting t0 →∞ we can conclude

P(sup
t

Xt ≥ b) ≤ EX0

b , b > 0.
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Theorem

If (Xt) is a supermartingale and Xt ≥ 0 then

P(max
t≤t0

Xt ≥ b) ≤ EX0

b , b > 0.

The event {maxt≤t0 Xt ≥ b} is the event {τ ≤ t0} for the stopping time

τ = min{t : Xt ≥ b}.

The optional sampling theorem for supermartingales says

EXτ∗ ≤ EX0

for stopping times τ∗. Apply to τ∗ = min(τ, t0 + 1).

[continue on board]
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Convergence theorems

Simple symmetric random walk Sn =
∑n

i=1 ξi for IID P(ξ = ±1) = 1/2 is
a martingale, but clearly there is no finite limit Sn → S∞. There are
several theorems that say, roughly, that for a “martingale-like” process
(Xn),

if supn E|Xn| <∞ then Xn → some X∞ a.s..

Theorem

If (Xn) is a supermartingale and Xn ≥ 0 then Xn → some X∞ a.s.

Theorem

If (Xn) is a submartingale and supn Emax(Xn) <∞ then Xn → some X∞
a.s.

[Note the second theorem implies the first].
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