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This lecture: outline some “abstract” ideas – details in [BZ] Chapters 1,
2 – as background to the Martingale section.

Suppose we are given a family of RVs {W ,X ,Y ,Z}. An event such as

A = {W + X 2 < Z − 7}

is “determined” by the family – if we know the values of the family then
we know whether A happens.

Definition: The collection of all events determined by the family is called
(in symbols) σ(W ,X ,Y ,Z )
(in words) “the σ-field generated by the family {W ,X ,Y ,Z}”.

Now suppose we are given a family {W ,X ,Y ,Z} and another RV T .
The two assertions below are equivalent:
• T = g(W ,X ,Y ,Z ) for some function g
• The value of T is determined by the values of (W ,X ,Y ,Z )
We say “T is σ(W ,X ,Y ,Z )-measurable”.
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Different areas within the Mathematical Sciences use the word
“information” with different meanings. We will use the meaning

Information is a σ-field of events.

Intuitively, at some past time there were a lot of events A which were
uncertain, that is 0 < P(A) < 1. But now (time t) some of these events
are “known” – we know A happened or did not happen. The collection of
all known events is the σ-field which represents the “information” we
have at time t.

We use symbols like F or G to denote σ-fields. Note

F ⊆ G means: if A ∈ F then A ∈ G

That is F is a smaller collection than G.

For theory, we often write Ft for the σ-field of known events at time t,
without specifying it explicitly. This theory assumes we never forget, so

F0 ⊆ F1 ⊆ F2 ⊆ . . .

and such a sequence is called a filtration. In this context, saying a RV Y
is Ft-measurable means we know the value of Y at time t.
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For theory, we often write Ft for the σ-field of known events at time t,
without specifying it explicitly. This theory assumes we never forget, so

F0 ⊆ F1 ⊆ F2 ⊆ . . .

and such a sequence is called a filtration. In this context, saying a RV Y
is Ft-measurable means we know the value of Y at time t.

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
In specific examples we usually start with random variables and use them
to define the filtration. In particular given RVs X0,X1,X2, . . . we can
define

Ft = σ(X0, . . .Xt) the natural filtration.

Note that for real-valued Xi with X0 = 0 and sums Sn =
∑n

i=1 Xi we have

Ft = σ(X0, . . .Xt) = σ(S0, . . .St).
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Conditional expectation as a random variable. [from Lecture 4]

Given r.v.’s (W ,Y ) consider E(W |Y = y). This is a number depending
on y – in other words it’s a function of y . Giving this function a name h
we have

(∗) E(W |Y = y) = h(y) for all possible values y of Y .

We now make a notational convention, to rewrite the assertion (*) as

(∗∗) E(W |Y ) = h(Y ).

The right side is a r.v., so we must regard E(W |Y ) as a r.v.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Let’s relate this to today’s lecture using an elementary example. Take X
and Y independent die throws

E(X + Y |X ) = X + 7
2 .

Consider X ∗ = 10X ; then

E(X + Y |X ∗) = X + 7
2 .

because knowing the value of 10X is the same “information” as knowing
the value of X .
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Given r.v.’s (W ,Y ) consider E(W |Y = y). This is a number depending
on y – in other words it’s a function of y . Giving this function a name h
we have

(∗) E(W |Y = y) = h(y) for all possible values y of Y .

We now make a notational convention, to rewrite the assertion (*) as

(∗∗) E(W |Y ) = h(Y ).

The right side is a r.v., so we must regard E(W |Y ) as a r.v.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The central abstract idea of this lecture

It makes sense to talk about E(W |F) for a σ-field F .

In the case F = σ(Y ) we have E(W |F) = E(W |Y ), as defined above.
In general E(W |F) is a F-measurable RV.
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Recall the gambling interpretation of expectation

A fair bet (really, the fair odds for a bet) is one where your gain G
has EG = 0.

To receive a random amount of money X tomorrow, a fair “stake”
to pay today is EX

Now suppose we have some relevant “information” F . The fair stake (to
receive X ) may depend on the information; this makes the fair stake a
RV Z which must be F-measurable. Consider the gambling strategy:
choose an event A in F

place the bet if A happens; don’t bet if A does not happen.

Our gain is G = (X − Z )1A, and for the stake to be fair we must have
EG = 0. This argument leads to two related ideas.
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The gambling interpretation of E(X |F) is as the fair stake Z to
pay today in order to receive X tomorrow, when F is the known
information.

The abstract math definition of E(X |F) is as the F-measurable
RV Z such that

E[Z1A] = E[X1A] for all A in F .

We will study martingales. A martingale is a real-valued stochastic
process (X0,X1,X2, . . .) with a certain property. Thinking of Xt as your
“fortune” (amount of money) at time t, the property is

Xt is your time-t fortune in some sequence of fair bets.

The general math definition is as follows.
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There is a filtration

F0 ⊆ F1 ⊆ F2 ⊆ . . .

(Ft is the σ-field of known events at time t)

The process (X0,X1,X2, . . .) is adapted to the filtration, meaning
Xt is Ft-measurable – we know the value of Xt at time t.

E(Xt+1|Ft) = Xt for each t ≥ 0.

When this holds, (Xt) is a martingale. If the filtration is not specified
then we take the natural filtration Ft = σ(X0, . . . ,Xt).

Why study martingales? 3 reasons

Financial activities involving risk (stocks, insurance) are
mathematically rather like gambling.

One can often find aspects of other stochastic processes that are like
martingales, so the theory (like calculus or algebra) is
mathematically useful quite widely within Probability Theory.

For any real-world future event A, the probabilities Xt that the event
happens, given what is known at time t, must be a martingale.
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