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Renewal processes. I will talk about only a very little of the material in
[PK] Chapter 7.

Mental picture: light bulbs have random lifetime X , and we replace at
failure. So successive bulbs have IID lifetimes X1,X2,X3, . . . and we can
consider

Wn =
∑n

i=1 Xi = time of i ’th renewal

N(t) = max{n : Wn ≤ t} = number of renewals before t.

If X has Exponential(λ) distribution then the renewals form a rate-λ
Poisson point process, but here we allow a general distribution for X .
Write µ = EX . The law of large numbers says that as n→∞

Wn/n→ µ a.s., EWn/n→ µ.

It is intuitively clear that we can rewrite this “upside down”: on average
we must replace a bulb every µ time units, that is at average rate 1/µ
per unit time, so

N(t)/t → 1/µ a.s., EN(t)/t → 1/µ.
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We can rewrite this in terms of the rate of renewals at t. That is,
defining

λ(t) dt = P( some renewal in [t, t + dt])

we have λ(t)→ 1/µ as t →∞.

Here is the first “interesting” result about renewal processes. The
following are defined relative to a time t [board]

δt = t −WN(t) = time since last renewal before t

γt = WN(t)+1 − t = time until first renewal after t

βt = δt + γt = length of inter-renewal interval containing t.

Recall µ = EX and write F (x) = P(X ≤ x) and fX (x) for its density
function.

Theorem

As t →∞ the joint distribution (δt , γt) converges to the distribution of
(δ, γ) defined by the joint density

fδ,γ(a, c) = fX (a + c)/µ.

David Aldous Lecture 23



As t →∞ the joint distribution (δt , γt) converges to the distribution of
(δ, γ) defined by the joint density

fδ,γ(a, c) = fX (a + c)/µ.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
From this we can work out the marginal density of γ

fγ(c) =

∫ ∞
0

fδ,γ(a, c)da = (1− F (c))/µ, 0 < c <∞.

For δ we get the same result

fδ(a) = (1− F (a))/µ, 0 < a <∞.

For β we get

fβ(b) =

∫
fδ,γ(a, b − a)da = bfX (b)/µ, 0 < b <∞.

This is the “size-biased” distribution arising from X , discussed in a
different setting in Lecture 2. [next slide]
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X = number of children in a uniform random family

X̃ =number of children in the family of a uniform randomly picked
child.

N = number of families.

We calculate

Number of families with i children = NP(X = i)

Number of children in i-child families = i × NP(X = i)

Total number of children =
∑

i i × NP(X = i) = N EX

P(X̃ = i) =
i × NP(X = i)

N EX
=

i P(X = i)

EX
.

Say X̃ has the size-biased distribution of X .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
In the light bulb (renewal theory) setting this is an explanation of the
inspection paradox; the mean total lifetime Eβ of the bulb in use at a
given time is larger than the mean lifetime EX of a typical bulb.
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The cycle trick mentioned in previous lectures is part of renewal theory.
Suppose there are IID rewards Ri associated with renewals – precisely, the
pairs (X1,R1), (X2,R2), . . . are IID. Then

long-run average reward per unit time = ER/EX .

Example: scheduling replacements before failure.
In many examples other than light bulbs (e.g. car battery), the cost C1

of replacement before failure is less than the cost C2 of replacement at
failure. So we can consider a policy:

replace at (random) failure time X or at (fixed) time T , whichever comes
first.

What is the optimal choice of T ?

Replace at time X ∗ = min(X ,T )

Incur cost C = C2 if X < T , or cost C = C1 if X > T .

Long-run average cost per unit time = EC/EX ∗.
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Replace at time X ∗ = min(X ,T )

Incur cost C = C2 if X < T , or cost C = C1 if X > T .

Long-run average cost per unit time = EC/EX ∗.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
We need to write these quantities in terms of F (x) = P(X ≤ x) and the
associated density function f (x).

EX ∗ =

∫ T

0

xf (x)dx + T (1− F (T )).

EC = C2F (T ) + C1(1− F (T )).

We could now use calculus or numerics to find the value of T which
minimizes EC/EX ∗.
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The IID central limit theorem (CLT) says

Wn − nµ

σn1/2
→d Normal(0, 1)

P(Wn > t) ≈ 1− Φ(
t − nµ

σn1/2
).

We expect a corresponding CLT for the renewal counting process N(t):
for some “unknown” q

N(t)− t/µ

qt1/2
→d Normal(0, 1) ???

P(N(t) < n) ≈ Φ(
n − t/µ

qt1/2
) ???

But the events {Wn > t} and {N(t) < n} are the same, and this enables
us to calculate q [board] by considering n and t related by

n = t/µ+ qt1/2z .

David Aldous Lecture 23



So we get

q = σ/µ3/2

and then indeed
N(t)− t/µ

qt1/2
→d Normal(0, 1)

P(N(t) ≤ n) ≈ Φ(
n − t/µ

qt1/2
).
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