
Lecture 20

David Aldous

14 October 2015

David Aldous Lecture 20



Continuous-time Markov chains [PK] section 6.6

In discrete time t = 0, 1, 2, . . . we specify a Markov chain by specifying
the matrix P of transition probabilities

pij = P(X (t + 1) = j |X (t) = i , past ).

In continuous time 0 ≤ t <∞ we specify transition rates

qij = lim
δ↓0

P(X (t+δ)=j|X (t)=i, past )
δ

or informally
P(X (t + dt) = j |X (t) = i) = qijdt

but note these are defined only for j 6= i . Then note that

P(X (t + dt) 6= i |X (t) = i) =
∑
j 6=i

P(X (t + dt) = j |X (t) = i)

=
∑
j 6=i

qijdt = qidt

where
qi =

∑
j 6=i

qij .
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In discrete time the time-t distribution π(t) = (πi (t)) = (P(X (t) = i))
evolves as π(t + 1) = π(t)P. In continuous time we have [board]

d
dtπj(t) =

∑
i 6=j

πi (t)qij − πj(t)qj qj :=
∑
k 6=j

qjk .

We can re-write this in vector-matrix notation as

d
dtπ(t) = π(t)Q

where Q is the matrix with off-diagonal entries (qij) and with diagonal
entries defined by

qii = −qi = −
∑
j 6=i

qij .

Note this implies that the condition for a probability distribution π to be
a stationary distribution is

πQ = 0 (the zero vector).

Note [PK] write A instead of Q.
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Starting at state i ,
Si = min{t : X (t) 6= i}

is called the sojourn time in i . It is the time spent at i before jumping
to another state. The fact

P(X (t + dt) 6= i |X (t) = i) = qidt

is the fact
P(Si ∈ [t, t + dt] |Si > t) = qidt

which shows that Si has Exponential(qi ) distribution. At time Si the
process jumps to another state: the probability it jumps to state j is
[board]

p̂ij = qij/qi .
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This leads to a “jump and hold” description of a continuous-time Markov
chain.

After jumping into a state i , the process remains in state i for a
random time with Exponential(qi ) distribution.

Then it jumps to some other state, to state j 6= i with probability
p̂ij = qij/qi .

So the matrix
P̂ = (p̂ij), where p̂ii = 0

is the transition matrix for the discrete-time jump chain X̂ (0), X̂ (1), . . .
that shows the successive states visited.

The relationship between the stationary distributions (where they exist) π
and π̂ can be seen using a long-run argument [board] or algebraically

from the equations π̂P̂ = π̂, πQ = 0:

πi = cπ̂i/qi ; π̂i = c−1qiπi

for c = 1∑
j π̂i/qi

=
∑

j qiπi .
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In very special cases we can solve the differential equations

d
dtπ(t) = π(t)Q

where Q is the matrix with off-diagonal entries (qij) and with diagonal
entries defined by

qii = −qi = −
∑
j 6=i

qij .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Example: For the rate-λ PPP on [0,∞) the counting process N(t) is the
continuous-time chain with qi,i+1 = λ.

Example: 2-state chain: q01 = λ, q10 = µ.
[board]

P0(X (t) = 0) = µ
λ+µ + λ

λ+µ exp(−(λ+ µ)t).
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Example: Yule process

parameter β > 0

states 1, 2, 3, . . .

transition rates qi,i+1 = βi

X (0) = 1.

The differential equations are

d
dtπj(t) = β[(j − 1)πj−1(t)− jπj(t)].

One can solve these equations – see [PK] section 6.1.3

πj(t) = P(X (t) = j) = e−βt(1− e−βt)j−1, j = 1, 2, . . .

In other words X (t) has Geometric e−βt distribution, so EX (t) = eβt .
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The Yule process is a basic example of a continuous-time branching
process [picture on board]

The Yule process is also an example of a “pure birth” process, meaning
the only transitions are i → i + 1. For such processes the distribution of
X (t) can be related to the sum of independent Exponentials RVs – see
[PK] section 6.1.2.
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