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Continuous-time Markov chains [PK] section 6.6

In discrete time t = 0,1,2,... we specify a Markov chain by specifying
the matrix P of transition probabilities

pj = B(X(t +1) = jIX(t) = i, past ).
In continuous time 0 < t < co we specify transition rates

P(X(t+6)= \X(t) i, past )

g5 = lim
or informally
P(X(t + dt) = j|X(t) = i) = q;dt
but note these are defined only for j # i. Then note that
P(X(t+dt) #ilX(t) =1) = Y P(X(t+dt)=j|X(t) = i)
JF#

= Z q,-jdt = q;dt
J#i

qi = § qij-
J#i

where



In discrete time the time-t distribution 7(t) = (m;(t)) = (P(X(t) = 1))
evolves as m(t 4+ 1) = w(t)P. In continuous time we have [board]

Smi() =Y m(tay —m(t)a =Y qu.

i ki

We can re-write this in vector-matrix notation as

where Q is the matrix with off-diagonal entries (g;;) and with diagonal

entries defined by
qgi = —q; = qu,-j.
J#i
Note this implies that the condition for a probability distribution 7 to be
a stationary distribution is

7Q =0 (the zero vector).

Note [PK] write A instead of Q.
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Starting at state /,
Si=min{t: X(t) #i}

is called the sojourn time in /. It is the time spent at i/ before jumping
to another state. The fact

P(X(t + dt) # i|X(t) = i) = gidt
is the fact

P(S; € [t, t + dt] |S; > t) = q;dt

which shows that S; has Exponential(g;) distribution. At time S; the
process jumps to another state: the probability it jumps to state j is
[board]

Pij = Gij/ G-
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This leads to a “jump and hold” description of a continuous-time Markov
chain.

@ After jumping into a state /, the process remains in state / for a
random time with Exponential(g;) distribution.

@ Then it jumps to some other state, to state j % i with probability
Pij = qij/ qi-
So the matrix R
P = (pj), where p; =0
is the transition matrix for the discrete-time jump chain X(0), X(1),...
that shows the successive states visited.

The relationship between the stationary distributions (where they exist) 7
and 7 can be seen using a long-run argument [board] or algebraically

from the equations 7P =7, 7Q =0:
~ A -1
T = Cmi/qi; T =cC qm;

for c = m/q/ Z qiT;.
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In very special cases we can solve the differential equations

2n(t) =7(t)Q

where Q is the matrix with off-diagonal entries (g;;) and with diagonal

entries defined by
gii = —qi = —Z%"
J#i

Example: For the rate-A PPP on [0, o) the counting process N(t) is the
continuous-time chain with g; ;11 = A.

Example: 2-state chain: go1 = A\, g10 = p-
[board]

Po(X(t) = 0) = 5t + 535 exp(—(A + p)t).

David Aldous Lecture 20



Example: Yule process

@ parameter 8 > 0

@ states 1,2,3,...

@ transition rates qj 11 = Bi

e X(0)=1.
The differential equations are

smi(t) = BlG — Dmj_a(t) — jmy(t))-
One can solve these equations — see [PK] section 6.1.3
mi(t) =P(X(t) =)= e PH(1—e Pty L j=1,2,...

In other words X(t) has Geometric e~#* distribution, so EX(t) = e”t.
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The Yule process is a basic example of a continuous-time branching
process [picture on board]

The Yule process is also an example of a “pure birth” process, meaning

the only transitions are i — i + 1. For such processes the distribution of
X(t) can be related to the sum of independent Exponentials RVs — see

[PK] section 6.1.2.
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