
Chapter 3

Coincidences, near misses
and one-in-a-million chances

These topics are staples of popular science style books on probability; in this
lecture we dig a little below the surface.

3.1 The birthday problem and its relatives

The birthday problem– often called the birthday paradox – is described in
almost every textbook and popular science account of probability. My stu-
dents know the conclusion

with 23 people in a room, there is roughly a 50% chance that
some two will have the same birthday.

Rather than repeat the usual “exact” calculation I will show how to do
some back-of-an-envelope calculations, in section 3.2 below. Starting from
this result there are many directions we could go, so let me point out five of
these.

It really is a good example of a quantitative prediction that one could
bet money on. In class, and in a popular talk, I show the active roster of
a baseball team1 which conveniently has 25 players and their birth dates.
The predicted chance of a birthday coincidence is about 57%. With 30 MLB
teams one expects around 17 teams to have the coincidence; and one can

1e.g. atlanta.braves.mlb.com/team/roster active.jsp?c id=atl; each MLB team has a
page in the same format
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readily check this prediction in class in a minute or so (print out the 30
pages and distribute among students).

It’s fun to ask students to suggest circumstances where the pre-
diction might not be accurate. This is, if you actually see a group of
strangers in a room and know roughly why they are there – people rarely
go into rooms “at random” – what might make you unsure of the validity
of the standard calculation? Two common suggestions are
(i) if you see identical twins
(ii) that the calculation in general may be inaccurate because of non-uniformity
of population birth dates over the year.
Point (i) is clear and point (ii) is discussed in the next section (plausible
levels of non-uniformity turn out to have negligible e↵ect). Other circum-
stances involve very creative imagination or arcane knowledge (a party of
Canadian professional ice hockey players2). As mentioned above, it is a rare
example of a mathematically simple yet reliable model!

It illustrates the theme “coincidences are more likely than you
think”. This is an important theme as regards people’s intuitive percep-
tion of chance. But the birthday problem and other “small universe” set-
tings, where one can specify in advance all the possible coincidences and
their probabilities, are very remote from our notion of weird coincidences in
everyday life. A typical blurb for popular science books is “. . . explains how
coincidences are not surprising” while the author merely does the birthday
problem. This is surely not convincing to non-mathematicians. I will repeat
this critique more forcefully in section 3.9. My own (unsuccessful) attempt
to do better is recounted in section 3.5.

One can invent and solve a huge number of analogous math prob-
ability problems and I show a glimpse of such problems in section 3.2.
These can be engaging as recreational math and for illustrating mathemati-
cal techniques – but I find it almost impossible to produce novel interesting
data to complement such theory.

There is an opposite problem with sports data on “hot hands” for indi-
vidual players, or winning/losing streaks for teams. Here there is plenty of
data, but coming up with an accurate chance model is di�cult; saying that

2who have substantial non-uniformity of birthdays. A 1985 paper Birthdate and success
in minor hockey by Roger Barnsley and A. H. Thompson and subsequent work, popularized
in Gladwell’s Outliers, attributes this to the annual age cuto↵ for starting minor hockey.
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we see streaks longer than predicted in an oversimplified chance model is
not telling us anything concrete about the world of sports.

3.2 Using the Poisson approximation in simple mod-
els

In this section I want to make the point

mathematicians know how to do calculations in “small universe”
settings, where one can specify in advance all the possible coin-
cidences and their probabilities.

In fact while mathematicians have put great ingenuity into finding exact
formulas, it is simpler and more informative to use approximate ones, based
on the informal Poisson approximation3.
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Consider the birthday problem with k people and non-uniform distribu-
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Write median-k for the value of k that makes this probability close to 1/2
(and therefore makes the chance there is a coincidence close to 1/2). We
calculate

median-k ⇡ 1
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3My 1989 book Probability Approximations via the Poisson Clumping Heuristic consists
of 100 examples of such calculations, within somewhat more complicated models.
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For the uniform distribution over N categories this becomes

median-k ⇡ 1

2

+ 1.18
p
N

which for N = 365 gives the familiar answer 23.
To illustrate robustness to non-uniformity, imagine hypothetically that

half the categories were twice as likely as the other half, so p
I

= 4

3N

or
2

3N

. The approximation becomes 1

2
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p
N which for N = 365 becomes

22. The smallness of the change might be considered another “paradox”,
and is in fact atypical of combinatorial problems in general. In the coupon
collector’s problem, for instance, the change would be much more noticable.

Let me quickly mention two variants. If we ask for the coincidence of
three people having the same birthday, then we can repeat the argument
above to get

P(no three-person birthday coincidence) ⇡ exp
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and then in the uniform case,

median-k ⇡ 1 + 1.61N2/3

which for N = 365 gives the less familiar answer 83.
If instead of calendar days we have k events at independent uniform

times during a year, and regard a coincidence as seeing two of these events
within 24 hours (not necessarily the same calendar day), then the chance
that a particular two events are within 24 hours is 2/N for N = 365, and
we can repeat the calculation for the birthday problem to get

median-k ⇡ 1

2

+ 1.18
p
N/2 ⇡ 16.

Finding real-world instances where such theoretical predictions are applica-
ble seems quite hard, in that the first instances one might think of – major
fires in a big city, say – have noticeably non-uniform distribution.

3.3 Coincidences in everyday life

This lengthy discussion is mostly omitted in the lecture.
As Figure 3.14 suggests, a long and continuing tradition outside main-

stream science5 assigns spiritual or paranormal significance to coincidences,

4Photo found online; the gentleman is not me.
5e.g. Arthur Koesler The Roots of Coincidence, 1972.
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Figure 3.1: Noticeboard outside a church.

by relating stories and implicitly or explicitly asserting that the observed
coincidences are immensely too unlikely to be explicable as “just chance”.
Self-described rationalists dispute this, firstly by pointing out that (as il-
lustrated by the birthday problem) untrained intuition about probabilities
of coincidences is unreliable, and secondly by asserting that (in everyday
language) observing events with a priori chances of one in a gazillion is
not surprising because there are a gazillion possible other such events which
might have occurred. While the authors (and most readers, we imagine) take
the rationalist view, it must be admitted that we know of no particularly
convincing studies giving evidence that interesting real-life coincidences oc-
cur no more frequently than is predictable by chance. The birthday problem
analysis is an instance of what we’ll call a small universe model, consisting
of an explicit probability model expressible in abstract terms (i.e. the fact
that the 365 categories are concretely “days of the year” is not used) and
in which we prespecify what will be counted as a coincidence. Certainly
mathematical probabilists can invent and analyze more elaborate small uni-
verse models: here is an example by G.J. Kirby concerning the probability of
meeting someone you know on a trip away from your home district, and not
somewhere where either of you would usually be found. But such exercises
miss what we regard as three essential features of real-life coincidences:
(i) coincidences are judged subjectively – di↵erent people will make di↵erent
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judgements;
(ii) if there really are gazillions of possible coincidences, then we’re not going
to be able to specify them all in advance; – we just recognize them as they
happen;
(iii) what constitutes a coincidence between two events depends very much
on the concrete nature of the events.
Can we take one tiny step away from small universe models by studying a
setting with these three features?

Almost the only serious discussion of the big picture of coincidences from
a statistical viewpoint is a 1989 paper by Persi Diaconis and Fred Mosteller.
Our “gazillions” explanation6, which they call the law of truly large numbers
and which is also called Littlewood’s law, is one of four principles they invoke
to explain coincidences (the others being hidden cause; memory, perception
or other psychological e↵ects; and counting close events as if they were
identical). They summarize earlier data in several contexts such as ESP
and psychology experiments, show a few “small universe” calculations, and
end with the conclusion

In brief, we argue (perhaps along with Jung) that coincidences
occur in the mind of observers. To some extent we are handi-
capped by lack of empirical work. We do not have a notion of how
many coincidences occur per unit of time or how this rate might
change with training or heightened awareness. . . . Although Jung
and we are heavily invested in coincidences as a subjective mat-
ter, we can imagine some objective definitions of coincidences
and the possibility of empirical research to find out how fre-
quently they occur. Such information might help us.

Let’s take a paragraph to speculate what a mathematical theory of real-
life coincidences might look like, by analogy with familiar random walk/Brownian
motion models of the stock market. Daily fluctuations of the S&P500 index
have a s.d. (standard deviation) of a little less than 1%. Nobody has an
explanation, in terms of more fundamental quantities, of why this s.d. is 1%
instead of 3% or 0.3% (unlike physical Brownian motion, where di↵usivity
rate of a macroscopic particle can be predicted from physical laws and the
other parameters of the system). But taking daily s.d. as an empirically-
observed parameter, the random walk model makes testable predictions of
other aspects of the market (fluctuations over di↵erent time scales; option
prices). By analogy, the observed rate of subjectively-judged coincidences in

6Further comments will be given in section 3.8.
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some aspect of real life may not be practically predictable in terms of more
fundamental quantities, but one could still hope to develop a self-consistent
theory which gives testable predictions of varying aspects of coincidences.

The simplest aspect to study is surely single-a�nity coincidences, exem-
plified in real life by stories such as

In talking with a stranger on a plane trip, you discover you both
attended the same elementary school, which is in a city not on
that plane route.

Call this (“same elementary school”) a specific coincidence; one might plau-
sibly estimate, within a factor of 2 or so, the a priori probability of such
a specific coincidence. Now a specific coincidence like this suggests a coin-
cidence type, in this case “having an a�nity (both members of some rela-
tively small set of people) with the stranger”, where the number of possible
a�nities (attended first ever Star Trek convention; grow orchids; mothers
named Chloe) is clearly very large and subjective. Nevertheless one could
try to estimate (within a factor of 10, say) the chance of some coincidence
within this coincidence type. Next one can think of many di↵erent specific
single-a�nity coincidences (finding a dollar bill in the street, twice in one
day; seeing on television someone you know personally) which should be as-
signed to di↵erent types, and it is hard to imagine being able to write down
a comprehensive list of coincidence types, even within the very restricted
domain we’re calling “single a�nity”. Finally, real life o↵ers many di↵erent
domains of coincidence, in particular multiple a�nity coincidences (exempli-
fied by the well known Lincoln-Kennedy coincidences urban legend); these
are the mainstay of anecdotes but are harder to contemplate mathematically.

To summarize: the usual rationalist analysis of coincidences starts out
by observing that estimating the a priori chance of some observed specific
coincidence isn’t the real issue; one has to think about the sum of chances of
all possible coincidences. But rationalists seem to have despaired of actually
doing this, and merely assert that in the end one would find that coincidences
occur no more frequently than “just chance” predicts. We think this is too
pessimistic an attitude; though one may not be able to prespecify all possible
coincidences, surely one can learn something from observed instances?

3.4 Coincidences in the news

Every time I teach the course I see relevant examples in current or recent
news or in my email inbox that I can use. Here are two examples from the
2014 course.
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Plane crash cluster. There were 3 passenger jet crashes in 8 days in sum-
mer 2014 (Air Algerie July 24th, TransAsia July 23rd, Malaysian Airlines
July 17). How unusual is this?

The relevant data is that over the last 20 years, crashes with substantial
fatalities have occurred at rate 1/40 per day, so under the natural IID prob-
ability model the number N of crashes in a given 8 days has approximately
Poisson(0.2) distribution, for which

P(N = 3) ⇡ 0.23/6 ⇡ 1.33⇥ 10�3.

A calculation outlined here, which accounts for overlaps of 8-day intervals,
shows that in the model such a cluster will occur “by chance” about once
every 10 years. So this coincidence is not terribly unlikely.

This setting provides a concrete context for the section 3.3 general dis-
cussion. We have a context – plane crashes – and we model an observed
coincidence as an instance of some “specific coincidence type” – here “3
crashes in 8 days”. But there are many other “specific coincidence types”
that might have occurred, in the context of plane crashes. We could consider
a longer window of time – a month or a year – and could consider coinci-
dences involving the same airline or the same region of the world or the
same airplane model. Even if a coincidence within any one “specific type”
were unlikely, the chance that there is a coincidence in some one of them
– somewhere within the context of plane crashes – may be large. In other
words, claims that “what happened is so unlikely that it couldn’t be just
chance” typically rely on an analysis of the specifics of what did happen,
but a meaningful analysis needs also to consider other types of coincidences
that didn’t happen.

Assignment of court cases. U.S. District Court Judge (Washington DC)
Richard Leon handled 3 cases involving the FDA and tobacco companies.

• In January 2010 he prevented the Food and Drug Administration from
blocking the importation of electronic cigarettes.

• In February, 2012 he blocked a move by the FDA to require tobacco
companies to display graphic warning labels on cigarette packages.

• In July 2014 he ruled in favor of tobacco companies and invalidated a
report prepared by an FDA advisory committee on menthol.

A journalist emailed me the question:
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What are the chances that one judge would pull these major
cases when cases are supposedly assigned randomly?

In other words, is this just coincidence, or does it suggest maybe these cases
were not assigned randomly? Note that we are not discussing the merits of
the judgments – it would be nonsensical to model the judgements as random.

It turns out there are e↵ectively7 17.5 judges in this court, so (if random
assignment) the chance all 3 cases go to the same judge is 1/17.5⇥1/17.5 ⇡
1/300.

But there were over 10,000 cases in the period. Imagine looking at all
those cases and looking to see where there is a group of 3 cases which are
”very similar” in some sense. The sense might be “same plainti↵ and same
issue”, as here, but one can imagine many other types of possible similarity.
Guessing wildly, suppose there are 100 such groups-of-3. Then because, for
each such group, there is the same 1/300 chance of all going to the same
judge, then the chance that this happens for some group amongst the 100
groups is a little smaller than 100/300 = 1/3, so would not be surprising.

Now of course the FDA-tobacco issue is unusually interesting. A more
precise analysis would to go through the 10,000+ cases and find out the
number of groups-of-3 that were “very similar” in some sense of interest to
a journalist. This is some (presumably not very large) number n, and the
chance that some group “of interest to a journalist” were all assigned to the
same judge (by pure chance) is around n/300. Now I have no idea what n
is, but

experience with other kinds of coincidence says that there are
many more occurrences and more types of ”very similar in an
interesting way” than you would imagine

and the next section provides a further illustration of this point.

3.5 Coincidences in Wikipedia

This section describes a project that we were unable to complete, but which
remains interesting to me. The project was to examine coincidences amongst
articles in Wikipedia obtained using the “random article” option. This is
less “real-life” than one would like, but has the advantages of possessing the
essential features (i-iii) mentioned in section 3.3, while also allowing data to
be gathered quickly and allowing independent replication by other people.

7some are part time.
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Table 3.1: Coincidences observed in our study. “Chance” is our estimate of
the chance that two random articles from Wikipedia would fit the specific
coincidence named. The left column is trial number and the right column
shows number of articles included in that trial. The total number of articles
read was 1, 413. The median number of articles per trial was 44.5.

article article specific coincidence chance
⇥10�8

1 Kannappa Vasishtha Hindu religious figures 12 56
2 Harrowby United F.C. Colney Heath F.C. Engl. am. Football Clubs 160 120
3 Delilah Paul of Tarsus Biblical figures 20 30
4 USS Bluegill (SS-242) SUBSAFE U.S. submarine topics 6 18
5 Kindersley-Lloydminster Cape Breton-Canso Canadian Fed. Elec. Dist. 110 23
6 Walter de Danyelston John de Stratford 14/15th C British bishops 1 81
7 Loppington Beckjay Shropshire villages 4 55
8 Delivery health Crystal, Nevada Prostitution 9 46
9 The Great Gildersleeve Radio Bergeijk Radio comedy programs 4 23
10 Al Del Greco Wayne Millner NFL players 3000 77
11 Tawero Point Tolaga Bay New Zealand coast 3 32
12 Evolutionary Linguistics Steven Pinker Cognitive science ??? 36
13 Brazilian battleship Sao Paulo Walter Spies Ironic ship sinkings < 1 28
14 Heap overflow Paretologic Computer security ??? 52
15 Werner Herzog Abe Oshero↵ Documentary filmmakers 1 92
16 Langtry, Texas Bertram, Texas Texas towns 180 53
17 Crotalus adamanteus Eryngium yuccifolium Rattlesnake/antidote < 1 80
18 French 61st Infantry Division Gebirgsjäger WW2 infantry 4 45
19 Mantrap Township, Minnesota Wyko↵, Minnesota Minnesota town(ship)s 810 41
20 Lucius Marcius Philippus Marcus Junius Brutus Julius Caesar associate 4 91
21 Colin Hendry David Dunn Premier league players 150 62
22 Thomas Cronin Jehuda Reinharz U.S. College presidents 32 44
23 Gösta Knuttson Hugh Lofting Authors of children’s lit. 32 31
24 Sergei Nemchinov Steve Maltais NHL players 900 16
25 Cao Rui Hua Tuo Three Kingdoms people 37 18
26 Barcelona May Days Ion Moţa Spanish Civil War 5 116
27 GM 4L30-E transmission Transaxle Auto transmissions 3 37
28 Tex Ritter Reba McEntire Country music singers 8 24
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Design of study. We did 28 separate trials of the procedure:

read random articles online until noticing a first coincidence with
some earlier article; record the names of the two coinciding ar-
ticles and the number of articles read, and write down a phrase
describing the specific coincidence observed.

“Coincidence” means some subjectively noticeable close similarity in article
subject or content; of course your subjective judgements might be di↵erent
from mine. In principle the statistically e�cient design would be to print
out (say) 500 articles and carefully search them for all coincidences, but we
are seeking to mimic real life where we notice coincidences without searching
for them. We explicitly did not backtrack to re-read material, except to find
the name of the earlier coincident article.

Why didn’t this project work out? If one repeated the procedure,
the next 28 “specific coincidences” would be almost all di↵erent from those
in the table. Our goal was to formulate and list higher-level “coincidence
types” so that most specific coincidences would fall into some “type”; then by
counting pages in Wikipedia (using its own lists and categories) we could give
a theoretical prediction of the rate of seeing coincident pages, to compare
with experimental data.

We were unable to finish, partly because of the “long tail” of both types
and specific coincidences within types, and partly because what a human
sees as a coincidence is broader than what is picked up via such lists.

3.6 Classifying coincidences in everyday life

This is only briefly mentioned in lecture as a potential student project.

David Hand’s 2014 book The Improbability Principle: Why Coincidences,
Miracles, and Rare Events Happen Every Day gives the standard rationalist
explanation of coincidence: there are a vast number of possible events, so
even if individual events are vastly unlikely, some such events will occur.
Like other discussions of coincidences, it describes real-world events and
anecdotes selected by the author in some unspecified way. In the spirit
of our Lecture 1 examples, I would prefer to study examples obtained in
some less subjective way. Fortunately there is a source of such examples.
The Cambridge Coincidences Collection page invites readers to post their
own coincidence stories. That site suggests typical types of coincidence, as
follows.
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• Surprising repetitions: for instance when youve had not contact
with someone for ages, then find two connections to them very close
together in time. Or when over several years multiple members of the
same family are born with the same birthday. Or even a repetition of
a really rare event like winning the lottery twice, or your life being
saved twice by the same person!

• Simultaneous events: for example when two people phone each
other at exactly the same time.

• Parallel lives: such as when two people in a small group find they
share a birthday or an unusual name, or when two people discover
their lives match each other in bizarre details.

• Uncanny patterns: imagine picking letters in Scrabble that spell
your name.

• Unlikely chains of events: perhaps you lost your false teeth over-
board and found them inside a fish you caught twenty years later?

From a somewhat di↵erent perspective Hand’s book concludes with the in-
vention of some “laws”:

• The law of inevitability (the lottery case),

• the law of truly large numbers (vast number of possible coincidences),

• the law of selection (“surgeons bury their failures”),

• the law of the probability lever (inaccurate modeling of probabilities,
as in the Sally Clark children’s SIDS case),

• the law of near enough (we count near misses as hits).

A student project is to study real-world examples and devise a more sys-
tematic classification of types of everyday coincidence.

3.7 Near misses

Closely related to coincidences are a range of events that one might view as
near-misses. That phrase originated in the setting a physically aiming at a
target (I’ll call that the geometric setting) but is also used in other settings
I will call combinatorial – see examples below. The message of this section
will be
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In combinatorial (rather than geometric) settings, near-misses
may be much more likely than exact hits, and this phenomenon
is exploited by designers of Lotto-like games.

Here is our exemplar, which will be familiar to players of Scrabble-like word
games. If we pick 5 letters of the alphabet, what are the chances that
(a) The letters can be arranged to form an English word?
(b) The letters can be arranged to form an English word, if we are allowed
to change one letter (our choice of letter) into any other letter we choose?
As intuition suggests, (a) is unlikely but (b) is likely. The numerical chances
depend on how exactly you pick the random letters and how large your
vocabulary or dictionary is, but in our small experiment chance (a) was
about 18% and chance (b) was about 94%.

Near misses in geometric settings. Before trying to explain what
“combinatorial settings” means, it may help (and is easier) to illustrate
the opposite notion of “geometric setting”. On a dartboard there is a small
“bulls eye” (scoring 50 points in the traditional British game) surrounded
by a ring (scoring 25 points) of twice the radius. If you have some small
probability p of hitting the 50, then you will have probability about 3p of hit-
ting the 25, because the area is three times larger. Similarly in the asteroid
example from (xxx) section 8.7, the chance an asteroid comes within 4,000
miles (the Earth’s radius) of the Earth’s surface will be about three times
the chance of actually hitting the Earth. This is just the local uniformity
principle from Lecture 8, the point being that the ratio “3” of probabil-
ities depends only on the fact that we’re dealing with a problem in two
dimensions. In contrast, if we view 10 out of 10 Heads in coin tossing as a
“coincidence” and 9 out of 10 as a near miss, then the ratio of probabilities
is 10. But here, “10” isn’t a magic number associated with coin-tossing; if
we had chosen a di↵erent, rarer coincidence we would get a larger ratio.

Near-misses in Lotto picks. Instead of Scrabble or coin tossing, a more
common occurrence of “combinatorial” near-misses is in Lotto-type games.
If you pick 6 numbers out of 51, then when the lottery picks 6 numbers,
the chance you get 5 out of 6, relative to 6 out of 6, is now 6 ⇥ 45 = 270
to 1. This is dramatically di↵erent from the ratio “3” we saw in geometric
examples. And indeed, part of the reason for designing lotteries in this
“pick k numbers out of n” format is to ensure many near-misses, on the
reasonable assumption that observing near-misses will encourage gamblers
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to continue playing8 If, instead, lottery tickets simply represented each of
the 18 million possibilities as a number like 12, 704, 922 between 1 and 18
million, then (counting a near-miss as one digit o↵) there would be only
around 64 near-misses.

A typical student project is to study near-misses in bingo with many
players – when one person wins, how many others will have lines with 4 out
of 5 filled?

Manipulation of near-misses. Exploiting mathematics to design games
with many near-misses is generally considered to be within ethical bound-
aries (every game has rules designed to make it interesting), but other
schemes have arguably crossed the boundary. The 2005 book License to
Steal by Je↵ Burbank devotes a chapter to the following story, (summary
from an amazon.com review).

. . . a slot machine manufacturer had programmed its machines
to make it look as if losing spins had just missed being winners
– “near misses.” The owners claimed that the machine wheels
would spin randomly, as they are supposed to, but that once the
spin had randomly been determined to be a loser, the wheels
would re-adjust to show a near miss. This made it more exciting
for the player, who would play more. But the regulators thought
it might compromise the appearance of randomness. They de-
cided the near miss feature would not be allowed, but when the
company appealed on the grounds that retrofitting thousands of
machines would be too expensive, the [Nevada Gaming] Com-
mission cut them some slack. They still went bankrupt.

3.8 What really has a 1 in a million chance?

This is fun to do in class, or in a Statistics Dept’s open day for the public,
First I ask students

If you overheard the phrase ”1 in a million chance” in someone
else’s casual conversation, what might they be talking about?

and students typically o↵er both iconic examples (winning the lottery, struck
by lightning) and more imaginative suggestions. Then I ask

8See e.g. a 1986 paper by R.L. Reid The psychology of the near miss for discussion.
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How could we get data on actual casual usage of the phrase ”1
in a million chance”?

and neither the students nor I can think of anything much more practical
than searching in blogs, some results of which were shown at the start of
Lecture 1. Finally I ask for suggestions for

events that we can convince ourselves really do have a 1 in a
million chance

(up to a factor of 2, let’s say). Then I go through the students’ suggestions;
can we quantify the chances, and (if so) are they around 1 in a million?

Here are just a few examples. The classroom is a few hundred yards
from the faultline, so consider

(i) A major (> 6.7 magnitude) earthquake on the Hayward fault in the
next 50 minutes.
A 2007 estimate puts the chance at about 1% per year, so the chance (i) is
indeed around 1 in a million. Next consider

(ii) One of the next 25 babies born in the U.S. will become President.
The U.S. birth rate is currently about 4.3 million per year. If we guess a
President will serve on average about 6 years, then it is reasonable to figure
that about 1 in 6 times 4.3 million = 25 million babies will someday be
President.

For many other examples one would need to rely on population percent-
age data. Using such data as estimates for individuals is a big topic that
might be discussed in more detail in another lecture. If “you” is interpreted
as “a randomly-picked 20-year-old in the U.S.” then the chance

(iii) you will die (sometime) by being struck by lightning
is roughly 1 in 100,000, from population statistics. But if I point to one of
my students as “you”, it is not true – the chance depends so much on that
individual’s behavior that I cannot assess the chance, just like I can’t assess
the chance of you-the-reader winning the lottery sometime (I guess you buy
fewer lottery tickets than the average person, but have no idea how many).

As a practical matter one can use common sense to guess how variable
the chance is between individuals, and use population data when you guess
it’s not greatly variable (recall we are allowing a factor of two error). In this
sense

(iv) being killed during a 150 mile auto trip in California
has a 1 in a million chance.

Finally, for a memorable instance where people underestimate a chance,
I point to a male student and ask for the chance
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(v) you get breast cancer sometime.
it’s rare in men, but not so rare as they think, about 1 in 1,000 lifetime
incidence. It may well be greatly variable with family history, so I can’t say
that 1 in 1000 is the chance for “you”, but it’s way more than 1 in a million.

3.9 How not to explain coincidences

Being a professional mathematician, [Littlewood] . . . defined a
miracle as an event that has special significance when it occurs,
but occurs with a probability of one in a million. This definition
agrees with our common-sense understanding of the word “mira-
cle. Littlewood’s Law of Miracles states that in the course of any
normal person’s life, miracles happen at a rate of roughly one
per month. The proof of the law is simple. During the time that
we are awake and actively engaged in living our lives, roughly
for eight hours each day, we see and hear things happening at a
rate of about one per second. So the total number of events that
happen to us is about thirty thousand per day, or about a million
per month. With few exceptions, these events are not miracles
because they are insignificant. The chance of a miracle is about
one per million events. Therefore we should expect about one
miracle to happen, on the average, every month. Broch tells
stories of some amazing coincidences that happened to him and
his friends, all of them easily explained as consequences of Lit-
tlewood’s Law.

Freeman Dyson, in a review in the New York Review of Books.

To me, this is mind-bogglingly awful prose – an exemplar of how not to
write for the public. That is not the usual meaning of the word miracle
(“an e↵ect or extraordinary event in the physical world that surpasses all
known human or natural powers and is ascribed to a supernatural cause”),
so using that word creates needless confusion. It is di�cult to determine
which real events have a 1 in a million chance, so invoking unspecified hy-
pothetical events is hardly convincing. But the main point is that we are
discussing a quantitative issue – those who assign spiritual or paranormal
significance to some coincidences would hardly deny that “ordinary” coin-
cidences also happen, but assert that some occur that are so very unlikely
that they cannot be explained as just chance. One may believe, as part
of a rationalist world-view, the assertion “amazing coincidences might be
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explicable as consequences of Littlewood’s Law”. But to demonstrate they
are thus explicable, rather than merely assert it, would require an actual
quantitative argument from real-world data.

3.10 Hot hands

There has been considerable study of hot hands and streaks; this is the topic
of Chapter 1 of Grinstead-Peterson-Snell’s Probability Tales, which could be
used as a lecture in this course. A blog by Alan Reifman discusses ongoing
streaks, and it’s a good topic for student projects. The overwhelming con-
clusion of many statistical analyses is that in almost all sports the hot hand
phenomenon is nonexistent or of negligible size. But as Amos Tversky once
said

I’ve been in a thousand arguments over this topic. I’ve won them
all, and I’ve convinced no one.

One analogous setting concerns cricket, in which there is a concept “getting
your eye in” meaning that a batsman is more likely to be dismissed early in
his innings, and this “cold hand” analog does stand up to statistical analysis.


