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Review of Probability

In this chapter we shall recall some basic notions and facts from probability
theory. Here is a short list of what needs to be reviewed:

1) Probability spaces, o-fields and measures;
2) Random variables and their distributions;
3) Expectation and variance;

4) The o-field generated by a random variable;
5) Independence, conditional probability.

The reader is advised to consult a book on probability for more information.

1.1 Events and Probability

Definition 1.1

Let {2 be a non-empty set. A o-field F on 2 is a family of subsets of £ such
that

1) the empty set @ belongs to F;

2) if A belongs to F, then so does the complement f2 \4;
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3) if A;, Az, ... is a sequence of sets in F, then their union 4, U Az U--- also
belongs to F.

Example 1.1

Throughout this course R will denote the set of real numbers.. The family of
Borel sets F = B(R) is a o-field on R We recall that B(R) is the smallest
o-field containing all intervals in R.

Definition 1.2
Let F be a o-field on £2. A probability measure P is a function
P:F-[0,1)
such that
1} P =1,

2) if Ay, Aq,... are pairwise disjeint sets (that is, A; nA; = @ for ¢ # j)
belonging to F, then

PALHULHU - y=PlA)+P(Aa)+--- .

The tripie (§2,F,P) is called a probability space. The sets belonging to F
are called events. An event A is said to occur almost surely (a.s.) whenever
P(A)=1.

Example 1.2

We take the unit interval 2 = [0,1] with the o-field F = B({0,1]) of Bf)rel
sets B C [0,1], and Lebesgue measure P = Leb on [0,1]. Then (2, F, P)isa
probability space. Recall that Leb is the unique measure defined on Borel sets
such that

Lebla,b) =b-a
for any interval a,b]. {In fact Leb can be extended to a larger o-field, but we
shall need Borel sets only.)

Exercise 1.1

Show that if Ay, As,... is an ezpanding sequence of events, that is,

Ay CAC--,

L. Review of Probability 3

then
.P(A] UAQU"-)= lim P(An)
n=+o0
Similarly, if A;,ds,...0i52 contracting sequence of events, that is,
AI 2 A2 2000 ¥
then
PAnd4:n--)= lim P(4,).
n—roc

-
o

Hint Write Ay U A, U--. as the union of a sequence of disjoint events: start with
Au, then add a disjoint set to obtain 4, U Az, then add a disjoint set again to obtain
A1 A2 U A4, and so on. Now that you have a sequence of disjoint sets, you can use
the definition of a probability measure. To deal with the product 4, N A3 N--- write
it as a union of some events with the aid of De Morgan's law.

Lemma 1.1 (Borel-Cantelli)

Let Ay, Aa,... be a sequence of events such that PAJ+P(A)+--- < 0
and let anAﬂUAn-Q-] .. .ThEIl P(Blnﬁzﬁ--.) =0.

Exercise 1.2
Prove the Borel-Cantelli lemma above,

Hint B, B;,...isa contracting sequence of events.

1.2 Random Variables

Definition 1.3

If F is a o-field on £, then a function £:12 = R is said to be F-measurable if
{teBler

for every Borel set B ¢ B(R). If (2, F,P)is a probability space, then such a

function £ is called a rendom varigble.
Remark 1.1

A short-hand notation for events such as {€ € B} will be used to avoid clutter.
To be precise, we should write

{wen:£w)e B)
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in place of {€ € B}. Incidentally, {£ € B} is just a convenient way of writing
the inverse image £~} (B) of a set.

Definition 1.4

The o-fleld o (£) generated by a random variable £ : {2 - R consists of all sets
of the form {£ € B}, where B is a Borel set in R.

Definition 1.5

The o-field o {£; : i € I'} generated by a family {£; : i € I} of random variables
is defined to be the smallest ¢-field containing all events of the form {£; € B},
where B is a Borel set in Rand i € I.

Exercise 1.3

We call f: R — R a Borel function if the inverse image f~! (B) r.?f any Borel
set B in R is a Borel set. Show that if f is a Borel function and § is a random
variable, then the composition f (£) is o (£)-measurable.

Hint Consider the event {f (£) € B}, where B s an arbitrary Borel set. Can this

event be written as {§ € A} for some Borel set A?

Lemma 1.2 (Doob—Dynkin)

Let £ be a random variable. Then each & (£)-measurable random variable 5 can
be written as

n=f(£)

for some Borel function f: R 95 R

The proof of this highly non-trivial result will be omitted.

Definition 1.6
Every random variable £ : 2 —+ R gives rise to a probability measure
P¢(B) = P {£ € B}

on R defined on the o-field of Borel sets B € B(R). We call F; the distribution

of £. The function Fe : R — [0, 1] defined by
Fe(z)=P{{<z}
is called the distribution function of £.

1. Review of Probability

Exercise 1.4

Show that the distribution function Feis non-decreasing, right-continuous,
An R =0 n Re)=1

£

Hint For example, to verify tight-continuity show that Fe(zn) =+ Felz) for any
cregsing sequence ., such that . ~ z. You may find the results of Exercise
usefil.

-

Definition 1.7

If there is a Borel function Je : R = R such that for any Borel set B c R

PEEM=L&MM.

then £ is said to be a random variable with absolutely continuous distribut
and f; is called the density of . If there is a (finite or infinite) sequence
pairwise distinct real numbers x,,z,, ... such that for any Borelset BC R

P{¢eB}= Y Ple=g},

el

then £ is said to have discrete distribution with values x;,z3,... and m.
P{¢ =1z} atz;

Exercise 1.5

Suppose that £ has continuous distribution with density f;. Show that
d
ZF @ =fe(@)

if f¢ is continuous at x.

Hint Express Fe (x) as an integral of fe.

Exercise 1.6

Show that if £ has discrete distribution with values Ty, %2,... , then Fy

constant on each interval (s, ¢] not containing any of the z;'s and has Jjumps
size .P{nf = I,'} at each z;.

Hint The increment Fy (1) - Fy (s) is equal to the total mass of the x;'s that belor
tp the interval [a,2).
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Definition 1.8

The joint distribution of several random variables §,...,£, s a probability
measure P, . ¢ on R" such that

Peytn (B) = P{(§1,---16n) € B)

for any Borel set B in R", If there is a Borel function fg,,. .¢. : R® < R such
that
P8 € BY = [ forie @rrenny ) dr oo

for any Borel set B in R, then fe, ... ¢, is called the joint density of £y,..., .

Definition 1.9
A random variable £ : 12 = R is said to be integrable if

LIEIdP(m.

Then
£ = [ ¢ap
n

exists and is called the ezpectation of £. The family of integrable ranflorfl vari-
ables £ : 2 - R will be denoted by L! or, in case of possible ambiguity, by
LY(02,F, P).

Example 1.3

The indicator function 1,4 of a set 4 is equal to 1 on A and 0 on the complement
7\ A of A. For any event A

E(l,,):/‘?lAdP:P(A).

We say that 5: {2 = R is a step function if

n
n= Zqilfi.‘:
i=1

where #y,. .., fjn are real numbers and A,,..., A, are pairwise disjoint events.

Then n "
Em= [ ndP=Yn [ 1dP=Y nP(A).
n =l n =1

1. Review of Probability 7

Exercise 1.7

Show that for any Borel function h: R — R such that h (£) is integrable
EG©) = [ hia) dFe (2).

Hint First verify the equality for step functions h : R ~; R, then for non-negative ones

by approximating them by step functions, and finally for arbitrary Borel functions by
splitting them into pasitive and negative parts.

In particular, Exercise 1.7 implies that if £ has an absolutely continuous
distribution with density Je, then

+00
E(h(g) = j h (=) f (z) d.

If £ has a discrete distribution with (finitely or infinitely many) pairwise distinct
values 1y, z3,... , then

E((©) = 3 h(w) P =z).

Definition 1.10
A random variable £ : 2 4 R is called square integrable if
f el dP < 0.
n
Then the variance of £ can be defined by
) = [ (€ - By ap

The family of square integrable random variables £: 12 = R will be denoted
by L2(2,F, P) or, if no ambiguity is possible, simply by L2,

Remark 1.2

The result in Exercise 1.8 below shows that we may write E(£) in the definition
of variance.

Exercise 1.8

Show that if £ is a square integrable random variable, then it is integrable,
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Hint Use the Schwarz inequality
[E¢n) < E(*) E(n*) (1.1)

with an appropriately chosen 7.

Exercise 1.9

Show that if 5 : 2 — [0, 00) is a non-negative square integrable random vari-
able, then

Eft) =2 jn ” tP{n > t)dt.

Hint Express E(n?) in terms of the distribution function F,(t) of 5 and then integrate
by parts.

1.3 Conditional Probability and Independence

Definition 1.11

For any events A, B € F such that P(B) # 0 the conditional probability of A

given B is defined by P(ANB)

P(4IB) =

Exercise 1.10
Prove the total probability formula
P(A) = P(A|B\)P(By) + P(A|B3)P(Bz) + - --

for any event 4 € F and any sequence of pairwise disjoint events By, B;,... € F
such that ByUB; U--- = 7 and P{B,) # 0 for any n.

Hint A={ANB)u(4nB)u-.-.

Definition 1.12
Two events A, B € F are called independent if
P(AN B} = P(A)P(B).

In general, we say that n events 4,,...,A, € F are independent if
P(Ai, NAi; N---NAL) = P(A;)P(Ay) -+ P(AL)

L. Review of Probability 9

for any indices 1 € iy <ip < --- <ip < n.

Exercise 1.11

Let P(B) # 0. Show that A and B are independent events if and only il
P(A|B) = P{A).

Hint If B(B;) # 0, then you can divide by it.

Definition 1.13

Two random variables £ and # are called independent if for any Borel sets
A,B € B(R) the two events

{£€ A} and {neB)

-

are independent. We say that n random variables £,,... 1£n are independent if
for any Borel sets By,...,B, € B(R) the events

{El eBl}!"'!{EnEBﬂ}

are independent. In general, a {finite or infinite) family of random variables
is said to be sndependent if any finite number of random variables from this
family are independent.

Proposition 1.1

If two integrable random variables £, : 2 + R are independent, then they are
uncorrelated, i.e.

E(&n) = E(€)E(n),

provided that the product £n is also integrable. If 1y-- s 2 11 = R are
independent integrable random variables, then

E66-- L) = E(6)E(&) - E(L),
provided that the product £,&; -+ - &, is also integrable.

Definition 1.14
Two o-fields G and H contained in F are called independent il any two events

A€g and BeH
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are independent. Similarly, any finite number of o-fields G1,...,Gn contained
in F are independent if any n events

AI € gl:---)An € gn
are independent. In general, a (finite or infinite) family of o-fields is said to be

independent if any finite number of them are independent.

Exercise 1.12

Show that two random variables £ and 5 are independent if and only if the
o-fields o (£) and & () generated by them are independent.

Hint The events in o (€} and o (5) are of the form {£ € A}, and {n € B}, where A
and B are Borel sets.

Sometimes it is convenient to talk of independence for a combination of
random variables and o-fields.

Definition 1.15
We say that a random variable £ is independent of a o-field G if the o-fields
a(f) and §

are independent. This can be extended to any (finite or infinite} family con-
sisting of random variables or o-fields or a combination of them both. Namely,
such a family is called independent if for any finite number of random variables
£....,m and o-fields Gy, ...,G, from this family the o-fields

o(&1)y- 010 (m) G- On

are independent.

1.4 Solutions

Solution 1.1
IfA C Ay C---,then
AU AU =4 U A\ AU (Aa\Ag)U---

1. Review of Probability 1

wherfe 't.he sets Ay, Ay \ Ay, A3\ Ag,... are pairwjse disjoint. Therefore, by th.
definition of probability measure
P4 VAU ) = P4 U(d2\ A)) U(dy \Az)u---)
= P{A)+P(A2\ A1)+ P(A3\ A2) + ---
Jim P (4.

v

The I4st equality holds because the partial sums in the series above are

P(4))+ P4, \A) +"'+P(An\An_[} = P(4, U-- U Ay,)

= P(4,).
If 4y 2 42 D---, then the equality
P(Al nAz ﬂ) = lim P(An)
n-o0
follows by taking the complements of An and applying De Morgan's law
AN (Ande N} =2\ A)U(2\ Aa) U

Solution 1.2

Slilnce B, is a contracting sequence of events, the results of Exercise 1.1 imply
that

P(BinByN--)

fl

i P(5,)
Jim P (AU Ay U--)

nll‘{_lo(P(An)'i'P':AnH]-l----J
= 0.

1A

jThe las:t equality holds because the series Yo P(4n) is convergent. The
inequality above halds by the subadditivity property

-

PAaUAnt1 U ) S P(Aa) + P(Apgr) +--- .
It follows that P(By N8, N--.) = 0.
Solution 1.3

If B is a Borel set in R and f : R ~ R is a Borel functi - .
' tion, th 1
a Borel set. Therefore nction, then f~1 (B) is also

{f)eB}={ce f-'(B)}

_helongs to the o-field o (£) generated by £. It follows that the composition f (£)
is o (£)-measurable.
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Solution 1.4
If z <y, then {§ <z} C{§ Sy} 50
Fe@)=P{é<z}<P{E<y}=FW)-

This means that Fy is non-decreasing.
Next, we take any sequence ; > x3 > --+ and put

lim z,=1.
n=co

Then the events
{<z}o (<2} D

form a contracting sequence with intersection
gz} ={<cn}n{f<n}n-..
It follows by Exercise 1.1 that
Fe(@)=P{{ <z} = lim P{{<za} = lim F¢(za).

This proves that Fg is right-continuous.
Since the events
{<-1}o{<-2>--

form a contracting sequence with intersection @ and
{€<1jc{e<2}c--
form an expanding sequence with union 12, it follows by Exercise 1.1 that
i = li ~n)= lim P{¢<-n}=P{@#) =0
:Blzlm F£ () = nl-l-sgo Fg( ) n-on;o {£ - } !
. . - - =1,
lim Fe(z) = lim F(n)=lim P{€<n}=P(n)
since Fy is non-decreasing.
Solution 1.5
If £ has a density f¢, then the distribution function F; can be written as

Fg(z)=P{ESz}=f;.fe(u) dy.

Therefore, if f¢ is continuous at z, then F; is qiﬁerentiable at z and

ad;F‘ (:) = _f€ {z).

1. Review of Probability 13

Solution 1.6
If s <t are real numbers such that x; # (s,1] for any £, then
Fe(t) = Fe(s) = P{£ <1} - P{e < s} = P{E € (,4]} = 0,

i.e. F¢(s)= F¢(t). Because Fy is non-decreasing, this means that Fg is constant
on (s,t). To show that F has a jump of size P{£ = z;} at each z;, we compute

Jim Fe()) - lim Fi(s) = Jim PlE <1} - lim P{E< s}
= P{{ <z} - Pl <z} = P{E = ).
Solution 1.7
If h is a step function, .

n
h=3 hia,

i=1

where hy,..., h, are real numbers and Ay,..., A, are pairwise disjoint Borel
sets covering R, then

E(h(E) = Y hE14, (€)=Y hP{ec 4)
i=1 *

i=1

= Zh,-Pg(A,-)=§Lh(z) dP5(¢)=Lh(r)dﬁ(z).

i=l

Next, any non-negative Borel function h can be approximated by a non-
decreasing sequence of step functions. For such an h the result follows by the
monotone convergence of integrals. Finally, this implies the desired equality
for all Borel functions h, since each can be split into its positive and ndfgative
parts, h = k* — b=, where h+, 4~ > 0.

Solution 1.8

By the Schwarz inequality (1.1} with 5 = 1, if £ is square integrable, then
[’ = [EQ N < £ (17) B(€%) = E(€*) < oo,

i.e. € is integrable.

Solution 1.9

Let F(t) = P {5 < t} be the distribution function of 7. Then

Elp) = L ” 2ar).
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Since P(n > t) = 1 — F(t), we need to show that
o0 ol
[ t*dF(t) =2 [ t(1-F()dt (1.2)
i o

First, let us establish a version of (1.2) with oo replaced by a finite number a.
Integrating by parts, we obtain

/ ’ t2dF (1) f ) 2 d(F(t) - 1)
¢ 1}

]

2(F@E) - 1)|° - 2]0° HF(D) - 1)dt

—a*(1 - Fla)) +2 / (1 — F(t))dt. (1.3)
0
We see that (1.2) follows [rom (1.3), provided that
a’(l — F{a)) =+ 0, asa-+oo. (14)
But
0<e?(1 - Fla)) =a®*P(n > a) < (n+ 1)?P{n > n) < 4n’P(y > n),

where n is the integer part of a, and

E@*) = f PdP < 0.
it gz;; {k<n<k+1}

Hence,
p(n>n <] dP = / FdP 50  (15)
Al {nzn} .,;. {kSn<k+1}

as n — co, which proves (1.4).

Solution 1.10
Since Byu By U---= 12,
A= AN(BUBU--)={ANB)U(ANB)U--- ,

where
(ANB)N(AnB))=An(BinB;)=And=0.

By countable additivity

P(4) = P{(ANB)U(ANB)U---)
P(ANB)+P(ANBy) +---
P (A|By) F(By) + P(A|By) P(Ba) +--- .

1. Review of Probability 1:

Solution 1.11
If P(B) # 0, then A and B are independent if and only if

P(ANB)
P(B)

|
In turn, this equality holds if and only if P (4) = P (A|B).
Solution 1.12

P(A)=

The o-fields o (£) and o (n) consist, respectively, of events of the form
{¢€ A} and {ye B},

where A and B are Borel sets in R Therefore, o {€) and o {n) are independent

if and only if the events {€ € A}, and {n € B} are independent for any Bore.
sets 4 and B, which in turn is equivalent to £ and 7 being independent.
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Conditional Expectation

Conditional expectation is a crucial tool in the study of stochastic processes.
It is therefore important to develop the necessary intuition behind this notion,
the definition of which may appear somewhat abstract at first. This chapter is
designed to help the beginner by leading him or her step by step through several
special cases, which become increasingly involved, culminating at the general
definition of conditional expectation. Many varied examples and exercises are
provided to aid the reader’s understanding,.

2.1 Conditioning on an Event

The first and simplest case to consider is that of the conditional expectation
E (¢|B) of a random variable ¢ given an event B.

Definition 2.1

For any integrable random variable £ and any event B € F such that P(B) #0
the conditional expectation of £ given B is defined by

E(€|B) = P_(IE) j; £ dP.

17
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Example 2.1

Three coins, 10p, 20p and 50p are tossed. The values of those coins that land
heads up are added to work out the total amount £. What is the expected total
amount £ given that two coins have landed heads up?

Let B denote the event that two coins have landed heads up. We want to
find E (€| B). Clearly, B cousists of three elements,

B = {HHT,HTH, THH}

each having the same probability §. (Here H stands for heads and T for tails.)
The corresponding values of § are

E(HHT) = 10+ 20 = 30,

(HTH) = 10+ 50 = 60,

€(THH) = 20+ 50 = 70.

Therefore

1 1 /30 60 70y 1
Et&lBJ=———P(B)j;£dP=§(g+-8-+-8~)—53i-

Exercise 2.1
Show that E (¢]|R2) = E(£).

Hint The definition of £ (£) involves an integral and so does the definition of £ (£|12).
How are these integrals related?
Exercise 2.2

how that if
Show that { 1 forwe A

1“(“)={ 0 forwgAd
(the indicator function of A), then
E(1418) = P(4|B),

where

P(AN B)
P(B)

is the conditional probability of A given B.

P(A|B) =

Hint Write IB 14 dP as P(AN B).
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2.2 Conditioning on a Discrete Random
Variable -

The next step towards the general definition of conditional expectation involves
conditioning by a discrete random variable n with possible values gy, 3, . . . such
that P {n = y,} # 0 for each n. Finding out the value of 5 amounts to finding
out whicl'of-the events {5 = y,,} has occurred or not. Conditioning by 5 should
therefore be the same as conditioning by the events {n = u.}. Because we do
not know in-advance which of these events will occur, we need to consider all
possibilities, involving a sequence of conditional expectations

E€{n=n}),Eltl{n=w)),... .

A convenient way of doing this is to construct a new discrete random variable

constant and equal to E (€] {n = y,}) on each of the sets {# = yn}. This leads
us to the next definition.

Definition 2.2

Let £ be an integrable random variable and let 7 be a discrete random variable

as above. Then the conditional expectation of § given 1 is defined to be a random
variable E(£}n) such that

B(€lnw) = BEl {n=yn)) i nw) = yn

foranyn=1,2,....

Example 2.2

Three coins, 10p, 20p and 50p are tossed as in Example 2.1. What is the
conditional expectation E (£]n) of the total amount £ shown by the three coins
given the total amount 5 shown by the 10p and 20p coins only?

Clearly, n is a discrete random variable with four possible values: 0, 10, 20
and 30. We find the four corresponding conditional expectations in a similar
way as in Example 2.1:

E{€){n=0))=25, E(£{n=10}) =35,
E{¢l{n=20})=45, E (¢ {n=30}) = 55.
Therefore

2 ifpgw)=0,

3B ifpw) =10,
4% if plw) =20,
35 if plw) = 30.

E (¢l (w) =
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Example 2.3

Take §2 = [0, 1) with the o-field of Borel sets and P the Lebesgue measure on
[0.1). We shall find E(£]y) for

1 ifzelo,i)
o) =27% pl@)=q 2 ifze(},d),
0 ifze($1)

Clearly, 5 is discrete with three possible values 1,2,0. The corresponding events
are

{q = l} = [0’ ';']u
n=2} = (3.),
{n=0) = (,1).
For z € [0, 3]
4 2
E(€ln)(z) = E(€lf0, 1) = % jo 2%ds = 2.

Forze(},2)

[

i 1
E(gln)(z) = E(E(3.2) = 1 A 2z = 11 ’

And for z € (3,1j

1t 38
B@) =BG = 5 [ (2= T

‘The graph of E(]n) is shown in Figure 2.1 together with those of £ and 5.

Exercise 2.3
Show that if 5 is a constant function, then E(£]n) is constant and ‘equal to

E(£).

Hint The event {# = c} must be @ or 2 for any c€ R.

Exercise 2.4

Show that
P(4|B) fwel
EQ1afla}w) = { P(AI?\B) ifw¢ B

for any B such that 1 # P(B) #£ 0.

S e el SR e R e e e —
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N n El€ln)
2 2? i v 2? <
! = i
] e e i

Figure 2.1. The graph of E(€ln) in Example 2.3

Hint How many different values does 15 take? What are the sets on which these
values are taken?

Exercise 2.5
Assuming that 5 is a discrete random variable, show that
E(E(&In) = E(9).

Hint Observe that

[B E(¢ln)dP = fa ¢ap

for any event B on which 7 is constant. The desired equality can be obtained by
covering 2 by countably many disjoint events of this kind.

Proposition 2.1
If £ is an integrable random variable and 1 is a discrete random variable, then

1) E{¢ln)is o {(n)-measurable;
2) For any A € o (y)

L E(€ln)dP = [A £dP. (2.1)

Proof
Suppose that g has pairwise distinct values y;,ys,... . Then the events

{’szl}-{l'i=yz},...
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are pairwise disjoint and cover f2. The o-field o {n) is generated by these events,
in fact every A € o (n) is a countable union of sets of the form {5 = y,}. Because
E(£|n) is constant on each of these sets, it must be o (57)-measurable.

For each n we have

j Bmap = [ E(l{n =)
{n=pa} {7=wn}

- /{n=y-} ddP

Since each 4 € o(n) is a countable union of sets of the form {y = y,}, which
are pairwise disjoint, it follows that

[ B@mar = [ ear,
A A
as required. O

2.3 Conditioning on an Arbitrary Random
Variable

Properties 1} and 2) in Proposition 2.1 provide the key to the definition of the
conditional expectation given an arbitrary random variable 7.

Definition 2.3

Let £ be an integrable random variable and let n be an arbitrary random
variable. Then the conditional ezpectation of £ given 5 is defined to be a random
variable E(£]n) such that

1) E(€}n) is o (y)-measurable;
2) For any A€o (n)

LE(EIn)dP;LEdR

Remark 2.1
We can also define the conditional probability of an event A € F given n by

P(Aln) = E(1aln},

where 1, is the indicator function of A.

i el 4 S A
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Do the conditions of Definition 2.3 characterize E (€]n) uniquely? The

lemma below implies that E (£|n) is defined to within equality on a set of
full measure. Namely,

if £ = ¢ as., then E(f|p) = E(€']n) as. (2.2)
The existence of E (£|n) will be discussed later in this chapter.

-

Lemma 2.1

Let (12, F, P) be a probability space and let G be a o-field contained in F. Ifg
is a G-measurable random-variable and for any Beg

/fdP:O,
B
then £ =0 as.

Proof
Observe that P {£ > £} = 0 for any ¢ > 0 because
0<eP{E2¢) = edPS/ £dP =0.
{€2e} {e2¢}

The last equality holds, since {£ > ¢} € G. Similarly, P {€ < ~¢} = 0 for any
€ > . As a consequence,

Pl-egé<el=1

for any ¢ > 0.
Let us put

Then P(A,) =1 and
{e=0} = An.

n=]

Because the 4,, form a contracting sequence of events, it follows that

P{e=0} = lim P(4,) =1,

as required. O
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One difficulty involved in Definition 2.3 is that no explicit formula for E (£ ln)
is given. If such a formula is known, then it is usually fairly easy to verify
conditions 1) and 2). But how do you find it in the first place? The examples
and exercises below are designed to show how to tackle this problem in concrete
cases.

Example 2.4

Take 2 = [0, 1] with the o-field of Borel zets and P the Lebesgue measure on
[0,1). We shall find E(€|n) for

2 ifre(0,l),
&(z) = 232, n(z) = { T :.f: € E%Ii’

Here 5 is no longer discrete and the general Definition 2.3 should be usled.
First we need to describe the o-field o(y). For any Borel set B C [3,1] we

have
B={neB}eoln)

and
0.})uB={neBlu{n=2}ea(n).

In fact sets of these two kinds exhaust all elements of o (). The inverse image
{n € C} of any Borel set C C R is of the first kind if 2 ¢ C and of the second
kindif2e C.

If E(&|n) is to be o (n)-measurable, it must be constant on [0, %) because 5
is. If for any z € [0, })

E(¢in)=) = E(€li0, 3))

1
P([0,2)) Jo.p»

_1rt
_E/;h:dz
1

Ei
then !

dz = dz,
L$EMWﬂ Lﬁam

i.e. condition 2) of Definition 2.3 will be satisfied for A = [0, }).
Mareover, if E(¢]n) = € on [}, 1}, then of course

fl

{(z)dz

LEmmwm=Lﬂma

" T T . et ————
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for any Borel set B C [1,1].
Therefore, we have found that

1 : 1

- F ifz € [0, 5),
Ein(=) { 2 ifzel},l]
\
Because every element of ¢(n) is of the form B or [6,3)u B, where B c [3.1]
is a Borel set, it follows immediately that conditions 1} and 2) of Definition 2.3
are satisfied. The graph of E(¢|n) is presented in Figure 2.2 along with those
of £ and 7.

R K 4 Eleln)
2 2+— 2

2]

— —
1 z 0 1 Z 0

Figure 2.2. The graph of E (¢]y) in Example 2.4

Exarcise 2.6 .

Let 2 = [0, 1] with Lebesgue measure as in Example 2.4. Find the conditional
expectation £ (£|n) if

flx) =22, p{z)=1-|2z-1|.

Hint First describe the o-field generated by . Observe that 5 is symmetric about 1,
What does it tell you about the sets in o (7)? What does it tell you about E (€n) ifit
is to be o (g)-measurable? Does it need to be symmetric as well? For any A in o ()
try to transform f 4 §dP to make the integrand symmetric.

Exercise 2.7

Let 12 be the unit square [0, 1} x [0, 1) with the o-field of Borel sets and £ the

Lebesgue measure on [0, 1] x [0, 1). Suppose that £ and 7 are random variables
on §2 with joint density

Jenloy)=z+y
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for any z,y € [0,1}, and f¢ n(z,y) = 0 otherwise. Show that

_2+3n

Hint Tt suffices {why?) to show that for any Borel set B

243
EdP = / ——dP.
/(-qem tneg) 3+ 00

Try to express each side of this equality as an integral over the square [0, 1] x [0, 1]
using the joint density fe o(z.y).
Exercise 2.8

Let {2 be the unit square [0, 1) % [0, 1] with Lebesgue measure as in Exercise 2.7.
Find E {£|n) if £ and 5 are random variables on 17 with joint density

3
Featzy) =5 (@ +")
for any z,y € [0,1)], and f¢ ,(z.¥) = 0 otherwise.

Hint This is slightly harder than Exercise 2.7 because here we .have to derive a formula
for the conditional expectation. Study the solution to Exercise 2.7 to find a way of
obtaining such a formula.

Exercise 2.9

Let 2 be the unit disc {{a:.y] (i < l} with the o-field of Borel sets and
P the Lebesgue measure on the disc normalized so that P(2) =1, i.e.

P(A):%'[dedy

for any Borel set A C 2. Suppose that £ and n are the projections onto the r
and y axes,
)=z, nlz.y)=y

for any (z,y) € £2. Find E (£*|n).

Hint What is the joint density of £ and n? Use this density to transform the integral

f §dP .
{neB}

for an arbitrary Borel set B so that the integrand becomes a function of 5. How 15
this function of 5 related to E (£%|n)?
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2.4 Conditioning on a o-Field

We are now in a position to make the final step towards the general definition
of conditional expectation. It is based on the observation that £ (E|n} depends
only on t}n{ o-field o () generated by 7, rather than on the actual values of 1.

Proposition 2.2
If o(n) = o(n'), then E(€|n) = E(£|y’) as. (Compare this with (2.2).)

Proof

This is an immediate consequence of Lemma 2.1. D

Because of Proposition 2.2 it is reasonable to talk of conditional expectation
given a o-field. The definition below differs from Definition 2.3 ooly by using an
arbitrary o-field § in place of a o-field o () generated by a random variable 1.

Definition 2.4

Let £ be an integrable random variable on a probability space (12, F, P}, and
let G be a o-field contained in ¥, Then the conditional expectation of £ given
§ is defined to be a random variable E (£|G) such that

1) E(¢|G) is G-measurable;
2) Forany A€ ¢

w

fd E(g)G)dP = L £dP. (2.3)

Remark 2.2

The conditional probebility of an event A ¢ F given a o-field G can be defined
by

P(AIG) = E(14]6),

where 1,4 is the indicator function of A.

The notion of conditional expectation with respect to a g-field extends
conditioning on a random variable 5 in the sense that

E(€lo(n) = E (€l
where a(n} is the o-field generated by .
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Proposition 2.3

E(£|G) exists and is unique in the sense that if £ = ¢' as., then E(£9) =
E(€'|G) a.s.

Proof

Existence and uniqueness follow, respectively, from Theorem 2.1 below and
Lemma 2.1. O

Theorem 2.1 (Radon-Nikadym)

Let (12, F,P) be a probability space and let § be a o-field contained in F.
Then for any random variable £ there exists a G-measurable random variable

¢ such that
Lch=Lch

The Radon-Nikodym theorem is important from a theoretical point of view.
However, in practice there are usually other ways of establishing the existence
of conditional expectation, for example, by finding an explicit formula, as in
the examples and exercises in the previous section. The proof of the Radon-
Nikodym theorem is beyond the scope of this course and is omitted.

for each A € G.

Exercise 2.10
Show that if G = {#, 2}, then E(£|G) = E(€) a.s.

Hint What random variables are G-measurable if G = {8, 2}?
Exercise 2.11
Show that if £ is G-measurable, then E(£|G) = € a.s.

Hint The conditions of Definition 2.4 are trivially satisfied by £ if £ is G-measurable.

Exercise 2.12
Show that if B € G, then
E(E(§|9)|B) = E(¢|B).

Hiat The conditional expectation on either side of the equality involves an integral
over B. How are these integrals related to one another?

B R e = S S —
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2.5 General Properties

Proposition 2.4
Conditiogal expectation has the following properties:

1) Elaf + &(IG) = aE(£|G) + bE(C|G) (linearity);

2) E(E(£IG)) = E(¢);

3) E(&I6) = €E(¢|0) |f£ is G-measurable (taking out what is known);

4) E(£|G) = E(£) if € is independent of G (an independent condition drops
out);

8) E(E(IG)H) = E(E[H) if H C G {tower property);
6) If £ > 0, then E(£[G) >0 {positivity).

Here a,b are arbitrary real numbers, £, { are integrable random variables on a
probability space (12, F, P) and G, # are o-fields on {2 contained in . In 3) we
also assume that the product £¢ is integrable. All equalities and the inequalities
in 6) hold P-a.s.

Proof
I)Forany Be ¢

ja (aE(€IG) + BE(CIG)) dP

a [B E(€|6)dP + b j; E(¢IG) dP

a./;EdP+b[B(dP
[B(aubc)da

By uniqueness this proves the desired equality.

2} This follows by putting 4 = ? in (2.3). Also, 2) is a special case of 5)
when H = {9, 12}.

3) We first verify the result for { =14, where 4 € G. In this case

j; LuE(mIG)dP = L __Bllg)ap

= [ ndP
AnB

f 1andP
B
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for any B € G, which implies that
14 E(niG) = E(14n|G)

by uniqueness. In a similar way we obtain the result if £ is a G-measurable step

function, m
= Z ajla;,
i=

where A; € G for j = 1,...,m. Finally, the result in the general case follows
by approximating £ by G-measurable step functions. .

4) Since ¢ is independent of G, the random variables £ and 1z are inde-
pendent for any B € G. It follows by Proposition 1.1 {independent random
variables are uncorrelated) that

[B E()dP

E(§)E(1p)
E{£15)

j; £dp,

Il

which proves the assertion.
5) By Definition 2.4

fﬂ E(€l6) dP = ]B £dP

f E(eHyap = [ eap
B B
for every B € H. Because H C G it follows that
[ Beigyap = [ Eemap
B B

for every B € H. Applying Definition 2.4 once again, we obtain
E(E(EIG)IH) = E(§IH).

for every B € G, and

6) For any n we put

A= {E(EIG) <-1}-

Then A, € G. H€ >0 as,, then
1
= | E(fG)dP < --P(4,),
OS/A,“’P /,. (6l6) dP < - P

2. Conditional Expectation 3

which means that P (A,) = 0. Because

{EE¢19) <0} = 4,

n=]
it follows«that
_ P{E(£l6) < 0} =0,
completing t:ime proof. O

The next theorem, which will be stated without proof, involves the notion
of a convex function, such as max ( 1,z) or e™*, for example. In this course the
theorem will be used mainly for |z], which is also a convex function. In general,
we call a function ¢ : R - R convez if for any z,y € R and any A € [0,1)

PAZ+ (1 -y < de(x)+(1-Np(y).

This condition means that the graph of  lies below the cord connecting the
points with coordinates (z, ¢ (x)) and (v, (3)).

Theorem 2.2 (Jensen's Inequality)

Let @ : R — R be a convex function and Jet £ be an integrable random variable
on a probability space (2, F, P) such that 10 (£) is also integrable. Then

¢(E(E|9)) < E(p(£)IG) as.

rJ
for any o-field ¢ on {2 contained in F.

2.6 Various Exercises on Conditional
Expectation

Exercise 2.13

Mrs. Jones has made a steak and kidney pie for her two sons. Eating more
than a half of it will give indigestion to anyone, While she is away having tea
with a neighbour, the older son helpy himself to a piece of the pie. Then the
younger son comes and has a piece of what is left by his brother. We assume
that the size of each of the two pieces eaten by Mrs. Jones’ sons is random and
uniformly distributed over what is currently available, What is the expected
size of the remaining piece given that neither son gets indigestion?
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Hint All possible outcomes can be represented by pairs of numbers, the portions of
the pie consumed by the two sons. Therefore 52 can be chosen as a subset of the
plane. Observe that the older son is restricted only by the size of the pie, while the
younger one is restricted by what is left by his brother. This will determine the shape
of §2. Next introduce a probability measure on {2 consistent with the conditions of
the exercise. This can be done by means of a suitable density over £2. Now you are in
a position to compute the prabability that neither son will get indigestion. What is
the corresponding subset of 127 Finally, define a random variable on 2 representing
the portion of the pie left by the sons and compute the conditional expectation.

Exercise 2.14

As a probability space take 2 = [0,1) with the o-field of Borel sets and the
Lebesgue measure on [0,1). Find E (¢n) if

o [ 2 for0<z<d,
£(x) = 2°, ’7(1')_{21_1 fori<z<l

Hit What do eveats in ¢ (p) look like? What do o (;7)-measurable random variables
look like? If you devise a neat way of describing these, it will make the task of
finding E (£|n) much easier. You will need to transform the integrals in condition 2)
of Definition 2.3 to find a formula for the conditional expectation.

Exercise 2.15

Take f1 = [0,1) with the o-field of Borel sets and P the Lebesgue measure on
[0,1]. Let

(z) = z(1 - z)
for r € [0,1). Show that

Bleln)(a) = £2 20 -2)
for any z € [0, 1].

Hint Observe that 5 (x) = 7 (1 — ). What does it tell you about the o-field generated
by 5? Is 1 (£ (z) + £(1 — z)} measurable with respect to this a-field? If so, it remains
to verify condition 2) of Definition 2.3.

Exercise 2.16
Let &, 7 be integrable random variables with joint density fe o(z,y). Show that

fa z fenlz,n) dz
fn fe"l(z, ") dz '

Hint Study the solutions to Exercises 2.7 and 2.8.

E(§ln) =
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Remark 2.3
If we put
- jE.lr(zl y)
fen (aly) = AT
where
1200 = [ fealen) iz
R

is the density of 1, then by the result in Exercise 2.16

EEln) = [ fen aln) de.
We call f¢, (zly) the conditional density of £ given 7.
Exercise 2.17
Consider L? (F) = L? (02, F, P) as a Hilbert space with scalar product
(AL (F)3EO EE) ek

Show that if £ is a random variable in L? (F) and G is a o-field contained in
F, then E(£|G) is the orthogonal projection of £ onto the subspace L?(G) in
L3 (F) consisting of G-measurable random variables.

Hint Observe that condition 2) of Definition 2.4 means that £~ E(£|G) is orthogonal
(in the sense of the scalar product above) to the indicator function 14 for any A€G.

-

2.7 Solutions

Solution 2.1
Since P(?) =1 and Ip€dP = E(§),
1
E(E0) = o =
@" = 5o [ eap=5(0).

Solution 2.2
By Definition 2.1

E(14]B)

1
ﬁ?)f,,‘”‘“

1
== [ ap
P(B) Jans®
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- _ P(AnB)
- P(B)
= P(A|B).
Solution 2.3
Since n is constant, it has only one value ¢ € R, for which
{n=c}=10

Therefore E (£|n) is constant and equal to
E¢ln}w) = E{€[{n=c}} = E(§lN) = E(§)

for each w € f2. The last equality has been verified in Exercise 2.1.

Solution 2.4

The indicator function 1 takes two values 1 and 0. The sets on which these
values are taken are

{1g=1} =8, {1 =0} =2\ B.

Thus, forw € B
E{1al1p)(w) = E(14]|B) = P(A|B),

as in Exercise 2.2. Similarly, forw € 2\ B
E(1a|1a}w) = E(14|2\ B) = P(A|2\ B).
Solution 2.5

First we observe that

LE({|B)JP=L(%B)/55 dP) dP-.:/B£ dP (2.4)

for any event B.

Since # is discrete, it has countably many values y,¥2,... . We can as-
sume that these values are pairwise distinct, i.e. i # y; if 1 £ j. The sets
{n=wn},{n=1y},... are then pairwise disjoint and they cover the whole
space f2. Therefore, by (2.4)

E(E(En) = /ﬂ E(gln) dP
= E =yn))dP
= f(m} €l {n = pn))
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N Zn: j{n=v-l tap

- = E(§).
Solution 2.6

First we need to describe the o-field & () generated by 5. Observe that 7 is
symmetric about 1,
7(z) =5 (1 -z)

for any x € {0,1]. We claim that o (5) consists of all Borel sets 4 C [0,1]
symmetric about %, i.e. such that

A=1-4 (2.5)

Indeed, if 4 is such a set, then A = {5 € B}, where
B={2z:z€ AN[0,1]}

is a Borel set, so A € o(p). On the other hand, if A € ¢ (n), then there is a
Borel set B in R such that A = {5 € B}. Then
zeAd e n(z)eB
¥ [=3 ﬂ(l — 27) [ B
& 1-ze A,
so A satisfies (2.5).

We are ready to find E(£[r). If it is to be o (n)-measurable, it must be
symmetric about 1, i.e.

E(¢in) (z) = E(¢ln) (1 - 2)

for any z € [0,1]. For any A € o (1) we shall transform the integral below so
as to make the integrand symmetric about 1:

jzx’dx = [:c“d:c+fx2dx
A A A
= [z"d“[ (L) d
A 1-4
=]z=dz+[(1-z)2dz
A A

= -[A(zz-i-(l-x)z) dz.
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+E AT AE(EIU)
2 72 2 i
1 1 1 \/
— pu— _;—o—’
0 1 % 0 1 Z ] 1 T

Figure 2.3. The graph of E (£|n) in Exercise 2.6
It follows that )
E(gln) (@) =2"+(1-2)°.
The graphs of £, 7 and E (£]n) are shown in Figure 2.3.
Solution 2.7

Since

{neB)=[0,1]x B

for any Borel set B, we have
[ eap= [ [afeazmisay
{neB) Jpin
= / (j :(z+y)d::) dy
B \Jo,1]
1 1
= [ Gra)

and
2+3n j‘j‘2+3y
4P = ar. Jen(z. ) drdy
-[{WEB}3+6" B R3+6y‘&"
243y ,/ )
= [ —= z+y)de |dy
' B3+Gy([o.||( )

1 1
- [Gr)w

Because each event in o () is of the form {n € B} for some Borel set B ,;'.I;is
means that condition 2) of Definition 2.3 is satisfied. The random variable 3;73

T T AR
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is & (n)-measurable, so condition 1) holds too. It follows that

E(£ln) = ;I—gz--
Solution 2.8
We are Iopldng for a Borel function F : R = R such that for any Borel set B
f €dP = [ F(g) dP. (2.6)
{neB) {neB)

Then E (£]n) = F (n) by Definition 2.3.

We shall transforia both integrals above using the joint density f ,(z,y)
in much the same way as in the solution to Exercise 2.7, except that here we
do not know the exact form of F (y). Namaely,

'/{.nemedp = LL”f{-ﬂ(x,y)dxdy
= gL (/[;,'l]-'”(?«‘2 +1%) d::) dy
= g,/;,(‘;l"‘%u’) dy

-[(rrEB}Fm]I P = Lj;F(y) Jeal(z,y)dedy
=3 2 s
- 3w ([, @ e)a

=3 [Fo(5+0) a

Then, (2.6) will hold for any Borel set B if

13 - 3 + 62
T+ d+17

and

F(y) =

It follows that

3+ 6g?
E(fm)=F(y) = m%

Solution 2.9

We are looking for a Borel function F : R = R such that for any Borel set
BCcR

[ §dP = f F (n) dP. 27)
{neB} {neB}
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Then, by Definition 2.3 we shall have E (£2|n) = F (3).

Let us transform both sides of (2.7). To do so we observe that the ran-
dom variables £ and n have uniform joint distribution over the unit disc
2 = {(z,y) : * + y* < 1}, with density

fenleg) = 3

if 22 + y? < 1, and f¢,, (z,4) = O otherwise. It follows that

j;nea} gdp = _[B _[Rig Jen (z.y) dzdy

1 Vi-y!

- _f/ Pdzdy
TJg _1/1__31
9

and

= ,y) drd
/(nem Fn) dP /B/RF(Q) fen(z,y) dzdy

- %Lp(y;[_‘/‘/'?_”;my

2
= -[ Fly) (1-4%)"" dy.
7 Je
If (2.7) is to be satisfied for all Borel sets B, then
1
Fly)=3 (1-4%.
This means that
1
E(&n) (@9} = Fin(@sh) =F ) = 3 (1~ 4)
*
for any (z,y} in 12
Solution 2,10
If G = {8, 12}, then any constant random variable is G-measurable. Since
f £dP = E(6) = / E(€) dP
o) r]

and

=0= dP,
jn EdP =0 /al E (&)
it follows that E{£|G) = E(£) a.s., as required.
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Solution 2.11

Because the trivial identity

LEdP=L£dP

holds for any A € G and £ is G-measurable, it follows that E(€|G) =€ as.

Solutit;n 2.12

By Definition 2.3
] E(€g) dP = [ €dP,
¥:] B

since B € G. 1t follows that

E(E(£l9)1B)

n

1
e fa E(€l6) dP

1
= anﬂf‘”’
E(€B).

[l

Solution 2.13

The whole pie will be represented by the interval [0,1]. Let = € [0,1) be the
pation consumed by the older son. Then [0,1 — z] will be available to the

younger one, who takes a partion of size y € [0,1 — z]. The set of all possible
outcomes is

= {(I!y) LY ZO,E‘HIS 1}
The event that neither of Mrs. Jones' sons will get indigestion is

A= {(m,y)eﬂ:z,y< %}

These sets are shown in Figure 2.4. I z is uniformly distributed over [0,1] and

y is uniformly distributed over [0,1 — z], then the probability measure P over
11 with density

1
flzp) = m

will describe the joint distribution of outcomes {z, 1), see Figure 2.5.
Now we are in a position to compute

P(4) = L f(z,y) dz dy

_ /o*fﬂ*lixd,.dy
= In\/i
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e

] x
0 J 1 Figure 2.4, The sets 2 aud A in Exer-
cise 2.13

Figure 2.5. The density f(z,y) in Exer-
cise 2,13

The random variable
f(x.y)=1-z—-y

defined on §2 represents the size of the portion left by Mrs. Jones’ sons. Finally,
we find that

E(£t4)

ﬁf (1-2-y) f(z,y) dzdy

ln\/_[ /‘il = ydzd

~Inv2
Ind °

Solution 2.14

The o-field o (1) generated by 7 consists of sets of the form B U (B + }) for
some Borel set B C [0, 2) Thus, we are looking for a & (1)-measurable random
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variable { such that for each Borel set B C (0, 1)

dr = :
-[Bu(ﬂ-i-g-) ¢tz -[BU(H+§) (() ds

Then E{£]n) = ¢ by Definition 2.3.
'I‘rapsfonping the integral on the left-hand side, we obtain

f £(z) dr =/2z=dz+ 224z
Bu(B+1) B B}
=-[B2a:’dz:+jﬂ2(:+%)zdz:
=2 2 1?
/B(z: +{z+13) )d.r
For { to be o (n)-measurable it must satisfy
(@ =((z+14)
for each z € {0, 1). Then
dP =
fau(m;“” P ]Bctz)dufmc(z) dx
= 1
[c@as [caria
= [c@at [ @)
B B
= 2[BC(x) dz.
If (2.8) is to hold for any Borel set B C [0, 1), then

C(I)=2'2+(I+ 1)2

(2.8)

(2.9)

for each = € [0, ). The values of { (z) for z € [2, 1) can be obtained from (2.9).

It follows that

RS SN
7= .

The graphs of £,  and E (£|n) are shown in Figure 2.6.
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Figure 2.6. The graph of E (£]g) in Exercise 2.14

Solution 2.15

Since 5(z) = {1 — z), the o-field a(n) consists of Borel sets B C [0,1] such
that
B=1-28,

where ! — B = {1~ z:z € B}. For any such B

[ =3 [ c@asry [ wes
- ;-LE(:)dx+%/:_B£(l—:)dz

1 1
=3 1 2 3ils
2L5(z)dx+2[85(1 z)
=]f‘“”+f“‘z}dz.
A 2

Because } (£(z) + £(1 - z)) is o ()-measurable, it follows that

B (o) = $2 12

Solution 2.16
We are looking for a Borel function F (y) such that

[ eap=[ Fwap
{neB} {ne8}

for any Borel set B in R. Because F (n) is o (7)-measurable and each event
in o () can be written as {n € B} for some Borel set B, this will mean that

E{£ln} = F(n}.

I ey o+ i bt
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Let us transform the two integrals above using the joint density of £ and #:

/;,,EB]EdP = j;_[ktfc.q (z.y) dzdy

- -/ ( JEVAY dx) dy

-/;WEB}F('?) e LLF(U) Jen (z,y) dzdy

= [Fo) ([ featem dz) dy.

If these two integrals are to be equal for each Borel set B, then

and

— fl!szsil (Iry) d.’ﬂ
. A Rfcalzy)de
It follows that
fn-"’ff.n (z,4) dz

E{m)=F(n)= T Tn@m &

Solution 2.17 .

We denote by ¢ the orthogonal projection of £ onto the subspace L?(G) C
LY (F) consisting of G-measurable random variables. Thus, £ - ( is orthogonal
to L2(G), that is,

El(¢-¢h]=0
for each v € L?(G). But for any A € § the indicator function 14 belongs to
L2 (G), so
Ef(& -] =0.
Therefore

[ €ap = B@10 = BGLa) = [ cap
A A
for any A € ¢. This means that ¢ = E(£5).
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Martingales in Discrete Time

3.1 Sequences of Random Variables

A sequence £,,&;,... of rax'ndom‘va.riables is typically used as a mathematical
model of the outcomes of a series of random phenomena, such as coin tosses
or the value of the FTSE All-Share Index st the London Stock Exchange on
consecutive business days. The random variables in such a sequence are indexed
by whole numbers, which are customarily referred to as discrete time. It is
important to understand that these whole numbers are not necessarily related
to the physical time when the events modelled by the sequence actually occur.
Discrete time is used to keep track of the order of events, which may or may
not be evenly spaced in physical time. For example, the share index is recorded
only on business days, but not on Saturdays, Sundays or any other holidays.
Rather than tossing a coin repeatedly, we may as well toss 100 coins at a time
and count the outcomes.

Definition 3.1
The sequence of numbers £ (w),& (w},... for any fixed w € £ is called a
sample path.

A sample path for a sequence of coin tosses is presented in Figure 3.1 (+1
stands for heads and -1 for tails). Figure 3.2 shows the sample path of the
FTSE All-Share Index up to 1997, Strictly speaking the pictures should con-

45
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| i -
_lrL | |

Figure 3.1. Sample path for a sequence of coin tosses

- -
A
180 X
140
100
1991 1993 1995 1997

Figure 3.2. Sample path representing the FTSE All-Share Index up to 1997

sist of dots, represeniing the values & (), & {w},..., but it is customary to
connect them by a broken line for illustration purposes.

3.2 Filtrations

As the time n increases, so does our knowledge about what has happened in
the past. This can be modetled by a filtration as defined below.

Definition 3.2
A sequence of o-fields Fy,F,... on 12 such that

FlCFRC---CF
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is called a filtration.

Here F, represents our knowledge at time n. |t contains ail events A such
that at time n it is possible to decide whether A has occurred or not. As n
increaseg, there will be more such events 4, i.e. the family 7, representing our
knowledge will become larger. {The longer you live the wiser you become!)

Example 3.1

For a sequence £),£,,. .. of coin tosses we take Fu to be the o-field generated
by El!"'lEﬂl
Fn ZGIIEh...,fn).
Let
A = {the first 5 tosses produce at least 2 heads} .

At discrete time i = 5, i.e. once the coin has been tossed five times, it will be
pn'%sible to decide whether A has occurred or not. This means that A ¢ F5.
However, at n = 4 it is not always possible to tell if 4 has occurred or not. If
the outcomes of the first four tosses are, say,

tails, tails, heads, tails,

then the event A remains ungdecided. We will have to toss the coin once more
to see what happens. Therefore A ¢ F,.

This example illustrates another relevant issue. Suppose that the outcomes
of the first four coin (osses are

tails, heads, tails, heads.

In this case it is possible to tell that 4 has occurred already at n = 4, whatever
the outcome of the fifth toss will be. It does not mean, however, that A belongs
to F;. The point is that for 4 to belong to Fy it muat be passible to tell whether
A has occurred or not after the first four tosses, no matter what the first four
outcomes are. This is clearly not so in the example in hand.

Exercise 3.1

Let &, &,... be a sequence of coin tosses and let F, be the o-field generated
by &1,...,En. For each of the following events find the smallest n such that the
event belongs to F,:

A = {the first occurrence of heads is preceeded by no more than 10 tails},

B = {there is at least 1 head in the sequence é1.6,...)
C = {the first 100 tosses produce the same outcome},
D = {there are no more than 2 heads and 2 tails among the first 5 tosses}.
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Hint To find the smallest element in a set of numbers you need to make sure that
the set is non-empty in the first place.

Suppose that §;,£3, ... is a sequence of random variables and F,,%2,... is
a filtration. A priori, they may have nothing in common. However, in practice
the fltration will usually contain the knowledge accumulated by observing the
outcomes of the random sequence, as in Example 3.1. The condition in the def-
inition below means that F, contains everything that can be learned from the
values of &y, ..., &q. In general, it may and often does contain more information.

Definition 3.3

‘We say that a sequence of random. valn-iablm &1,&a,... is adapted to a filtration
Fi,Fa, ... if &, is8 Fy-measurable for eachn=1,2,....

L

Example 3.2

If 7 = o(f1,...,&n) is the o-field generated by £,...,&,, then &,&,... is
adapted to Fi, Fo,..n .

Exercise 3.2

Show that
Fa=a(lr,-..1n)

is the smallest filtration such that the sequence £ ,£,... is adapted to F,,
Fa,.... That is to say, if G1,Gy,.. . is another filtration such that £,£,... is
adapted to G,,G.,..., then F, C G, for each n.

#int For o{1,-..,£a) to be contained in G, you need to show that &,...,&, are
Gn-measurable,

3.3 Martingales

The concept of a martingale has its origin in gambling, namely, it deseribes
a fair game of chance, which will be discussed in detail in the next section.
Similarly, the notions of submartingale and supermartingale defined below are
related to favourable and unfavourable games of chance. Some aspects of gam-
bling are inherent in the mathematics of finance, in particular, the theory of
financial derivatives such as options. Not surprisingly, martingales play a cru-
cial role there. In fact, martingales reach well beyond game theory and appear
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in various areas of modern probability and stochastic analysis, notably, in dif-
fusion theory. First of all, let us introduce the basic definitions and properties
in the case of discrete time.

Definition 3.4

A sequence £, £, ... of random variables is called a martingale with respect to
a filtration 5y, Fy, ... if

1) £q is integrable for each n = 1,2,... ;
2) fl,fg,... is adapted to ?1,}'3,... H
3) E(n1|Fn) =&nas. foreachn=1,2,....

Example 3.3

L& m,m,... be a sequence of independent integrable random variables such
that E{n,) =0foralln=1,2,.... We put
& = M+ 40,
 Fa=o(m, ..., ).
Then &, is adapted to the Mtration Fn, and it s integrable because
E(léal} = E(lm + -+ ml)
< E(lm)) + -+ + E{|na|)
< oa.

Mareover,

E(&n+1|Fn)

E(nns1|Fa) + E(Enl|Fn)
= E(ns1) + s
= Eﬂl
since 7,4 is independent of F, (‘and independent condition drops out’) and

£n is Fn-measurable (‘taking out what is known'). This means that £, is a
martingale with respect to JF,. :

Exampie 3.4

Let £ be an integrable random variable and let Fi,Fa,... be a filtration. We
put

n= E(f'-rn)
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forn=12,....
Then &, is F,-measurable,

[€nl = |E(E|Fu)l < E(IE} |Fa),
which implies that
E(l6al) = E{E(I¢] |Fn)) = E(|€]) < 00,

and
E(En+1|Fn} = E(E(£|Fos1)1Fn) = E(€)Fn) = €n,

since Fn € Fat1 (the tower property of conditional expectation). Therefore £,
is a martingale with respect to F,,.

Exercise 3.3 .

Show that if €, is a martingale with respect to F,, then
E(£) = B(L) =

Hint What is the expectation of E{£n41|Fn)?

Exercise 3.4

Suppose that £, is a martingale with respect to a filtration F,. Show that &,
is a martingale with respect to the filtration

Gn=0(l1,...,En).

Hint Observe that G, C F, and use the tower property of conditional expectation.

Exercise 3.5
Let £, be a symmetric random walk, that is,
Ean=m+ -+,

where 1y, 12,... is a sequence of independent identically distributed random
variables such that

Plg =1} = Plga = -1} =

1]

(a sequence of coin tosses, for example). Show that £2 —n is a martingale with
respect to the filtration

fn=9(ﬂ1---v-ﬂn)-
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Hint You want to transform E (€3, - (n+ 1) IFa) to obtain £2 — n. Write

ot = (bn + M)
= M1 4 Maribn + 2

and observe that £, is F,-measurable, while 11,4, is independent of F,,. To transform
the conditional expectation you can ‘take out what is known’ and use the fact that
‘an indepehdent condition drops out’. Do not forget to verify that £2 —n is integrable
and adapted to F,.

Exercise 3.6

Let €, be a symmetric random walk and ¥, the filtration defined in Exer-
cise 3.5. Show that

(n = (=1)" cos(n&,)
is a martingale with respect to F,,.

Hin? You want to transform E((-1)"*' cos(w€ns1)|Fn} to obtain (—1)" cos(n€y).
Use a similar argument as in Exercise 3.5 to achieve this. But, first of all, make sure
that ¢, is integrable and adapted to F,.

Definition 3.5 -

-
We say that §,&,... is a supermartingale (submartingale) with respect to a
filtration J), Fy,... if

1} &q is integrable for each n = 1,2,. .. ;
2) &,&a,... is adapted to Fy, Fo,... ;
3) E(fnv1|Fn) < &n (vespectively, E(&n41/Fn) 2> £,) a.s. foreachn = 1,2,....

Exercise 3.7

Let £, be a sequence of square integrable random variables. Show that if &, is
a martingale with respect to a fltration F,, then £ is a submartingale with
respect to the same fltration.

Hint Use Jensen's inequality with convex function ¢ () = 27,

3.4 Games of Chance

Suppose that you take part in a game such as the roulette, for example. Let
M, 7. be a sequence of integrable random variables, where 73, are your
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winnings (or losses) per unit stake in game n. If your stake in each game is
one, then your total winnings after n games will be

fn =M+ e T

We take the filtration
Frn=0{f,-..,7n)
and also put & = 0 and Fg = {@, 12} for notational simplicity.
if n — 1 rounds of the game have been played so far, your accumulated
knowledge will be represented by the g-field F,_;. The game is fair if

E(Enl}.n—l) =én-1»

that is, you expect that your fortune at step n will on average be the same as
at step n — 1. The game will be favourable to you if

E(Enl}-n—l) 2 'fn-h
“
and unfavourable to you if

E(£alFn-1) € Enm1

for n = 1,2,... . This corresponds to §, being, respectively, a martingale, a
submartingale, or a supermartingale with respect to Fy,, see Definitions 3.4
and 3.5.

Suppose that you can vary the stake to be ay, in game n. (In particular, an
may be zero if you refrain from playing the nth game; it may even be negative if
you own the casino and can accept other people’s bets.) When the time comes
to decide your stake a,, you will know the outcomes of the first n — 1 games.
Therefore it is reasonable to assume that ay is Fy-j-measurable, where Fy..;
represents your knowledge accumulated up to and including game n — 1. In
particular, since nothing is known before the first game, we take Fo = {#, 12}.

Definition 3.6

A gambling strategy ay,as,... (with respect to a filtration Fy,%3,...) is a
sequence of random variables such that ay is F,_;-measurable for each n =
1,2,..., where Fo = {0, $2}. (Outside the context of gambling such a sequence
of random variables ay, is called previsible.)

If you follow a strategy a,,aq,..., then your total winnings after n games
will be

cn = i + -+ Quln
ay (& = Lo} + -+ an (En — &n1) -
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We also put {p = 0 for convenience.

The following proposition has important consequences for gamblers. It
means that a fair game will always turn into a fair one, no matter which gam-
bling strategy is used. If one is not in a position to wager negative sums of
money (esff. to run a casino), it will be impossible to turn an unfavourable
game into a favourable one or vice versa. You cannot beat the system! The
boundedness of the sequence e, means that your available capital is bounded
and so is your credit limit.

Propaosition 3.1
Let a),az,... be a gambling strategy.

1) If &y, a3, ... is a bounded sequence and &, £1,£3,. .. is a martingale, then
€0,€1,62,. .. is a martingale (a fair game turns into a fair one no matter
what you do);

2) Ifay, 03, ... 15 a non-negative bounded sequence and £g,£),&2,...i5a super-
martingale, then {o,¢1,(a,. .. i a supermartingale {an unfavourable game
turns into an unfavourable one).

3) Ifay,a,...i52 nun-hegzﬁive bounded sequence and &, £, &3, . .. is a sub-
martingale, then (g, (}, (2, ... is a submartingale (a favourable game turns
into a favourable one).

Proof

Because o, and {,-; are F,_;-measurable, we can take them out of the ex-
pectation conditioned on F,_; (‘taking out what is known’, Proposition 2.4).
Thus, we obtain

E (¢l Fa-1)

E{(o1+an (én - £n-1) |-'Fn—l)
(1 +an (B (Eﬂl-rll—l) ~Eaa).

If &, is a martingale, then
@3 (B (§n)Fn1) — €a-1) =0,

which proves assertion 1). If £, is a supermartingale and a,, > 0, then
@n (E{€nlFno1) = €a-1) 0,

praving assertion 2}. Finally, assertion 3) follows because
&n (E (€n|Fn-1} —En-1) 20

if £, is a submartingale and o, > 0. O
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3.5 Stopping Times

In roulette and many other games of chance one usually has the option to quit
at any time. The number of rounds played before quitting the game will be
denoted by 7. It can be fixed, say, to be + = 10 if one decides in advance
to stop playing after 10 rounds, no matter what happens. But in general the
decision whether to quit or not will be made after each round depending on
the knowledge accumulated so far. Therefore 7 is assumed to be a random
variable with values in the set {1,2,...}U{oo}. Infinity is included to cover the
theoretical possibility {and a dream scenario of some casinos) that the game
never stops. At each step n one should be able to decide whether to stop playing
or not, i.e. whether or not v = n. Therefore the event that + = n should be
in the g-field F, representing cur knowledge at, time n. This gives rise to the
following definition.

Definition 3.7

A random variable 7 with values in the set {1,2,...} U {00} is called a stopping
time (with respect to a filtration %) if for each n = 1,2,...

{1‘=ﬂ} € Fu.

Exercise 3.8

Show that the following conditions are equivalent:
1) {r<n}eFyloreachn=1,2,...;
2) {r=n}eFforeachn=1,2,....

Hint Can you express {r < n} in terms of the events {r = k}, where k= 1,...,n?
Can you express {7 =} in terms of the events {r < k}, where k=1,...,n?
Exampie 3.5 (First hitting time)

Suppose that a coin is tossed repeatedly and you win or lose £1, depending
on which way it lands. Suppose that you start the game with, say, £5 in your
pocket and decide to play until you have £10 or you lose everything. If &, is
the amount you have at step n, then the time when you stop the game is

T=min{n: £ =10 or 0},

and is called the first hitting time (of 10 or 0 by the random sequence &,). It
is a stopping time in the sense of Definition 3.7 with respect to the filtration
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Fa=0(&,...,E). This is because
{r=n}l={0<& <10}n---N{0<tuy < 10} N {& = 10 or 0} .

Now eich of the sets on the right-hand side belongs to Fa, so their intersection
does too. This proves that

{r=n}eF,

for each n, so r is a stopping time.

Exercise 3.9

Let &. be a sequence of random variables adapted to a filtration Fy and let
B C B be a Borel set. Show that the time of first entry of £, into B,

T=min{n:§, € B}

isa stopping time.

Hint Example 3.5 covers the case when B = {—oo, 0]U[20, eo). Extend the argument
to an arbitrary Borel sot B.

Let & be a sequence‘ of random variables adapted to a filtration F, and
let T be a stopping time (with respect to the same filtration). Suppose that
§n represents your winnings (or losses) after n rounds of a game. If you decide
to quit after 7 rounds, then your total winnings will be £;. In this case your
winnings after n rounds will in fact be £, 4,. Here a A b denotes the smaller of
two numbers a and b,

aAb=min(a,b),
Definition 3.8

We call £, 1q the sequence stopped at t. It is often denoted by &%. Thus, for
each w € 12

E;(U) L E‘r(u]hn(”)-
Exercise 3.10

Show that if £, is a sequence of random variables adapted to a filtration F,,
then so0 is the sequence £, A,

Hint For any Borel set B express {£ran € B} in terms of the events {£; € B} and
{r=k}, where k=1,...,n.
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We already know that it is impossible to turn a fair game into an unfair
one, an unfavourable game into a favourable one, or vice versa using a gambling
strategy. The next proposition shows that this cannot be achieved using a
stopping time either (essentially, because stopping is also a gambling strategy).

Proposition 3.2
Let 7 be a stopping time.

1) If £, is a martingale, then so is £ an.

2) If &, is a supermartingale, then so is {;an-

3) If £, is a submartingale, then 50 is & aq.

Proof
This is in fact a consequence of Proposition 3.1. Given a stopping time 7, we
put
o 1 ifr2mn,
" 0 ifr<n.

We claim that ay, is a2 gambling strategy (that is, oy, is Fy,—j-measurable}. This
is because the inverse image {a, € B} of any Borel set B C R is equal to

e .7';“_1

if0,1¢ B,orto
2e€ Fa

if0,1€ B, orto
{en=1}={r2n}={r>n-1} € Fasy
ifleBand0¢ B, or to
{an=0}={r<n}={r<n-1} e Fi,
if 1 ¢ B and 0 € B. For this gambling strategy
fran =01 (§r = o) + -+ an (§n — n1).

Therefore Proposition 3.1 implies assertions 1), 2) and 3) above. O

e S
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Example 3.6

(You could try to beat the system if you had unlimited capital and unlimited
time.) The following gambling strategy is called ‘the martingale’. (Do not con-
fuse thig, with the general definition of a martingale earlicr in this section.)
Suppose a coin is flipped repeatedly. Let us denote the outcomes by 5,1, . .. ,
which can take values +1 (heads) or -1 (tails). You wager £1 on heads. If you
win, you quit. If you lose, you double the stake and play again. If you win this
time round, you quit. Otherwise you double the stake once more, and so on.
Thus, your gambling strategy is

=2 ifm= = e = tails,
S otherwise.

Let us put
Gro=m+2m+-+ 2"y,

and consider the stopping time

T = min {n : 5, = heads}.

Then (;an will be your witinings after n rounds. It is a martingale (check it!).

It can be shown that P {r < oo} = 1 (heads will eventually appear in the
sequence 4,72, . .. with probability/one). Therefore it makes sense to consider
¢r. This would be your total winnings if you were able to continue to play the
game no matter how long it takes for the first heads to appear. It would require
unlimited time and capital. If you could afford these, you would be bound to
win eventually because ¢; = 1 identically, since

—1=2—..._2nt Lo

for any n.

Exercise 3.11

Show that if a gambler plays ‘the martingale’, his expected loss just before the
ultimate win is infinite, that is,

E((r-1) = ~o0.
Hint What is the probability that the game will terminate at step n, i.e. that T = n?

If 7 = n, what is {;_; equal to? This will give you all possible values of Cr-y and
their probabilities. Now compute the expectation of ¢r..,.
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3.6 Optional Stopping Theorem

If £, is a martingale, then, in particular,

E(£q) = E(§)

for each n. Example 3.6 shows that E(£;) is not necessarily equal to E(&;) for
a stopping time 7. However, if the equality

E(¢:) = E(&)

does hold, it can be very useful. The Optional Stopping Theorem provides
sufficient conditions for this to happen.

Theorem 3.1 (Optional Stopping Theorem)

Let £, be a martingale and 7 a stopping time with respect to a filtration F,
such that the following conditions hold:

1) T<o0as.,
2) &, is integrable,
3) E(€al{rsn)) = 0asn =+ co.

Then ;
B(&:) = B(&:).

Proof

Because
£r =Eran+ (Er = £n) 1{r>n}|
it follows that

E(t) = E(frnn) + E(£, 1[r>n}) - E(fnl{r>n))-

Since §yaq is a martingale by Proposition 3.2, the first term on the right-hand
side is equal to

E(§ran) = E(61).

The last term tends to zero by assumption 3). The middle term

El&rlrony) = Z E(Exlfrasy)

k=n+1
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tends to zero as n — 0o because the series
o0
E(E‘r) = ZE(Ekl{r=k))
k=1

is convErgent by 2). It follows that E(€,) = E(£;), as required. O

Example 3.7 (Expectation of the first hitting time for a random walk)

Let &, be a symmetric random walk as in Exercise 3.5 and let X be a positive
integer. We define the first hitting time (of £X by £,)} to be

T=min{n: || = K}.

By Exercise 3.9 r is a stopping time. By Exercise 3.5 we know that E-nisa
martingale. If the Optional Stopping Theorem can be applied, then

E(@-7)=EB(g-1)=0.

-

This allows us to find the expectation
»>
E(r) = B(€}) = K?,

since || = K.

Let us verify conditions 1)-3) of the Optional Stopping Theorem.

1) We shall show that P{r =co} = 0. To this end we shall estimate
P{r>2Kn}. We can think of 2Kn tosses of a coin as n sequences of 2K
tosses. A necessary condition for > 2K'n is that no one of these n sequences
contains heads only. Therefore

P{T>2Kn}5(l-:22LK) =0

as n — oo. Because {r > 2Kn} for n = 1,2,... is a contracting sequence of
sets (i.e. {7 > 2Kn} D {r > 2K (n + 1)}), it follows that

P (ﬁ {r> 2Kn})
n=1

lim P{r>2Kn}=0,
n—eo

P{r =0}

completing the argunient,
2) We need to show that

E(le2 - ]) < oo
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Indeed,

E(r} = inP {r=n}
n=l

m 2K

=YY (2Kn+k)P{r=2Kn+k)
n=0 k=1
m 2K
< Y Y 2K (n+1)P{r>2Kn)
n=0 k=
. o
< 4K2Z{n+1]| (1—55?)
n=0
< 09,

since the series } >, (n + 1} g™ is convergent for any g € (~1, 1). Here we have
recycled the estimate for P {r > 2K'n}) used in 2). Moreover, £2 = K?, so

E{le-7]) < E(&)+E(7)
K? + E(r)
< 00,

3) Since £2 < K2 on {7 > n},
E(&1(r>n)) SK*P{r>n} =0
as n — oo. Moreaver, Ia
E(nlzon)) € E(tl{rsny)} =0

as n — oo. Convergence to 0 holds because E(r) < co by 2) and {7 >n}is
a contracting sequence of sets with intersection {r = oo} of measure zero. It
follows that

E ((E: —ﬂ) 1(r>n}) —+ 01
as required.

Exercise 3.12

Let £, be a symmetric random walk and ¥, the filtration defined in Exer-
cise 3.5. Denote by 7 the smallest n such that {€,| = K as in Example 3.7.
Verify that

{n = (—1)" cos [ {€a + K)]

is a martingale (see Exercise 3.6). Then show that (,, and r satisfy the con-
ditions of the Optional Stopping Theorem and apply the theorem to find
E[(-1)"].
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Hint The equality (- = (~1)" is a key to computing E|(~1)"] with the aid of the
Optimal Stopping Theorem. The first two conditions of this theorem are either obvious
in the case in hand or have been verified elsewhere in this chapter. To make sure that
condition 3) holds it may be helpful to show that

- |E(n1+5>m)| € P{r > n}.

Use Jensen's inequality with convex function ¢ () = [z to estimate the left-haad
side. Do not forget to verify that ¢, is a martingale in the first place.

3.7 Solutions

Solution 3.1

A belongs to F3, but not to Fip. The smallest n is 11.

B does not belong to F, for any n. There is no smallest n such that B € F,.

C belongs 10 Fygo, but not ta Fyg. The smallest n is 100,

Since D = @, it belongs to F, for each n = 1,2, ... . Here the smallest 7 is 1.
r 3

Solution 3.2

Because the sequence of random \;'ariables £1.£3,... is adapted to the filtration
G1,Gy,. .., it follows that £, is G,-measurable for each n. But

GiLCGcC..-,
50 &1,...,€n are Gy-measurable for each n. As a consequence,
Fa=0{&,..,a) C Gn
for each n.
Solution 3.3
Taking the expectation on both sides of the equality

§n = E§nss[Fn),

we obtain
E(§n) = BE(E(€ns11Fn)) = E(Eat)
for each n. This proves the claim.

Solution 3.4

The random variables £, are integrable because £, is a martingale with respect
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to F,. Since G, is the o-field generated by &,...,&,, it follows that &, is
adapted to G,. Finally, since G, C F,,

Eﬂ E(Eﬂlg")
E(E(En+l I-Trl)'gn)
E(En+11Gn)

by the tower property of conditional expectation {Proposition 2.4). This proves
that &, is a martingale with respect to G,,.

Solution 3.5

Because

Ga~n=(m++n) -n
is a function of m, ..., 1y, it is measurable with respect to the o-field 7, gen-
erated by ny,...,%,, i.e. £ — n is adapted to F,,. Since
lnl =Im +--+ml <iml+--Inal = n,

it follows that
E(I& -n) < EE)+n<n®+n < oo,

80 £3 — n is integrable for each n. Because

Eret = Tapr + 2Mnpaén + €2,

where £, and &2 are F,,-measurable and 1,54, is independent of F,, we can use
Proposition 2.4 (‘taking out what is known’ and ‘independent condition drops
out’) to obtain

E(& 1|1Fa) = B} 1| Fn) + 2E(Gni1£nlFn) + E(E3)F0)
= E(a1) + 26nB(nnp) + €
14 €2,

This implies that
By —n=1F) =€ —n,

8o £2 — n is a martingale,
Solution 3.6

Being a function of £, the random variable ¢, is F,-measurable for each n,
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since £, is. Because |(,| < 1, it is clear that (o is integrable. Because 1, is
independent of F,, and £, is Fa-measurable, it foliows that
E{(n1)Fn)'= E ((_1)“+l cos[m(€n + oty )”-Fn)
Sl ‘ = (-1)""'E (cos {w€n) cos (Tin+1) ) Fa)
—(-1)™' E (sin (w€u) sin (7nn41) | Fn)
= (=1)™ cos (n€n) B (c08 (71041))
=(=1)"* sin (w¢,,) E (sin (19+,))
= (-1)"cos(x¢,)
= Gny

using the formula
cos(a + f) = cosa cos 8 — sinasin §.

To compute E (cos (7,41)) and E (sin {71n+1)) observe that fn4; =1 or ~1
and

cosT = cos(~1) = -1,

sinm = sin(—%) =0,

It follows that ¢, is a martingale with respect to the filtration F,,.

Solution 3.7

If £ is adapted to F,, then so is £2. Since én = E(£n+1|F,) for each n and

v (z) = 27 is a convex function, we can apply Jensen’s inequality (Theorem 2.2)
to obtain

6 = [EGnlFa) < B (&,,)7)
for each n. This means that £ isa submartingale with respect to Fa-
Solution 3.8
1)=2). I 7 has property 1}, then
{r<n}erF,
and
{rSn—l] € Fua C F,,

{T=n}={r5n}\{‘r$n—l}efn.
2)=1}. Ii 7 has property 2), then

(r=k}eFCF,
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for each k = 1,...,n. Therefore

{r<n}={r=1}U---U{r=n} € Fa

Solution 3.9

If
r=min{n:§&, € B},

then for any n
{r=n}={G¢BIN--N{f-1 ¢ B}n{é € B}.

Because B is a Borel set, each of the sets on the right-hand side belongs to the
o-field F,, = o (&,...,£n), and their intersection does too. This proves that
{r = n} € F, for each n, so 7 is a stopping time.

Solution 3.10
Let B C R be a Borel set. We can write

{6ean € BY = {bn € B,r> U | (6 € B,r =k},

=1
where
{éneB,r>n)={ € B}N{r>n}e Fy

and foreachk=1,...,n
{GeeB,r=k}={&eBin{r=k}eF. CF,.

It follows that for each n
{fﬂ'\ﬂ e B} E fl‘h

as required.
Solution 3.11

The probability that ‘the martingale’ terminates at step n is

P(r=n}=g

(n ~ 1 tails followed by heads at step n). Therefore

E{Cr—lj = ZCH_IP{TZYI}
n=1
o0 o 1
= S oo

= 2n=1

i
[
™
1
!
3
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Solution 3.12

The proof that ¢, is & martingale is almost the same as in Exercise 3.6. We
need to verify that ¢, and r satisfy conditions 1)-3) of the Optional Stopping
Theorem.

Condition 1) has in fact been verified in Example 3.7.

Condition 2} holds because |¢;| € 1, 50 B{|(;]) €1 < o0,

To verify condition 3) observe that |(,,| < 1 for all n, so

LE(Cnl{rM:})I E(ICnll(r>n})

E(l{f>n})
P{r>n}.

oA A

The family of events {r > n},n =1,2,... is a contracting one with intersection
{r = oo]}. It follows that

& |E(Gal(ronp)| € P{r > n} N, P{r = 00}

&

as n —+ co. But
P{r=o0}=0

by 1), completing the proof.
The Optional Stopping Theorem implies that

« ElGr) = E{G)
Because £, = K or — K, we have
Gr = (—1)" cos[m{K + &)] = (~1)".
Let us compute
E(Q) = -% (cosfr (1 + K)] + cos [z (-1 + K)])
= cos(wk) = (-1)¥.

It follows that
E[(-1)") = (-1)¥.



