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1 Last Class

• Data Examples

• White noise model

• Sample Autocorrelation Function and Correlogram

2 Trend Models

Many time series datasets show an increasing or decreasing trend. A simple model for such datasets is
obtained by adding a deterministic trend function of time to white noise:

Xt = mt + Zt

Here mt is a deterministic trend function and Zt is white noise. There exist two main techniques for
fitting this model to the data.

2.1 Parametric form for mt and linear regression

Assume a simple parametric form for mt, say linear or quadratic, and fit it via linear regression.

2.2 Smoothing

Here we estimate mt without making any parametric assumptions about its form.

The idea is that to get mt from Xt = mt + Zt, we need to eliminate Zt. It is well-known that noise
is eliminated by averaging. Consider

m̂t =
1

2q + 1

q∑
j=−q

Xt+j . (1)

If mt is linear on the interval [t− q, t+ q], then check that

1

2q + 1

q∑
j=−q

mt+j = mt.
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Thus if mt is approximately linear over [t− q, t+ q], then

m̂t ≈ mt +
1

2q + 1

q∑
j=−q

Zt+j ≈ mt.

The defining equation for m̂t will have trouble when calculating averages near end-points. To counter,
just define Xt to be X1 for t < 1 and Xn for t > n.

m̂t is also called the Simple Moving Average of Xt.

Key Question: How to choose the smoothing parameter q? Observe that:

m̂t =
1

2q + 1

q∑
j=−q

mt+j +
1

2q + 1

q∑
j=−q

Zt+j .

If q is very small, then the second term above is not quite small and so the trend estimate will also involve
some noise component and therefore m̂t will be very noisy. On the other hand, if q is large, then the
assumption that mt is linear on [t− q, t+ q] may not be quite true and thus, m̂t may not be close to mt.
This is often referred to as the Bias-Variance tradeoff. Therefore q should be neither too small nor too
large.

2.2.1 Parametric Curve Fitting versus Smoothing

Suppose there is good reason to believe that there is an underlying linear or quadratic trend function. In
this case, is it still okay to use smoothing?

No, when there is really is an underlying linear trend, fitting a line gives a more precise estimate of
the trend. On the other hand, the estimation of trend by smoothing only uses a few observations for each
time point and the resulting estimate is not as precise. This is the price one has to pay for giving up the
assumption of linearity. Of course, when there is no reason to believe in an underlying linear trend, it
might not make sense at all to fit a line. Smoothing is the way to go in such cases.

2.3 More General Filtering

The smoothing estimate (1) of the trend function mt is a special case of linear filtering. A linear filter
converts the observed time series Xt into an estimate of the trend m̂t via the linear operation:

m̂t =

s∑
j=−q

ajXt+j .

The numbers a−q, a−q+1, . . . , a−1, a0, a1, . . . , as are called the weights of the filter. The Smoothing method
is clearly a special instance of filtering with s = q and aj = 1/(2q + 1) for |j| ≤ q and 0 otherwise.

One can think of the filter as a (linear) system which takes the observed series Xt as input and
produces the estimate of trend, m̂t as output.

In addition to the choice aj = 1/(2q + 1) for |j| ≤ q, there are other choice of filters that people
commonly use.

(1) Binomial Weights: Based on the following idea. When we are estimating the value of the trend
mt at t, it makes sense to give a higher weight to Xt compared to Xt±1 and a higher weight to Xt±1

compared to Xt±2 and so on. An example of such weights are:

aj = 2−q

(
q

q/2 + j

)
for j = −q/2,−q/2 + 1, . . . ,−1, 0, 1, . . . , q/2.
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As in usual smoothing, choice of q is an issue here.

(2) Spencer’s 15 point moving average: We have seen that simple moving average filter leaves
linear functions untouched. Is it possible to design a filter which leaves higher order polynomials un-
touched? For example, can we come up with a filter which leaves all quadratic polynomials untouched.
Yes!

For a filter with weights aj to leave all quadratic polynomials untouched, we need the following to be
satisfied for every quadratic polynomial mt:∑

j

ajmt+j = mt for all t

In other words, if mt = αt2 + βt+ γ, we need∑
j

aj
(
α(t+ j)2 + β(t+ j) + γ

)
= αt2 + βt+ γ for all t.

Simplify to get

αt2 + βt+ γ = (αt2 + βt+ γ)
∑
j

aj + (2αt+ β)
∑
j

jaj + α
∑
j

j2aj for all t.

This will clearly be satisfied if∑
j

aj = 1
∑
j

jaj = 0
∑
j

j2aj = 0. (2)

An example of such a filter is Spencer’s 15 point moving average defined by

a0 =
74

320
, a1 =

67

320
, a2 =

46

320
, a3 =

21

320
, a4 =

3

320
, a5 =

−5

320
, a6 =

−6

320
, a7 =

−3

320

and aj = 0 for j > 7. Also the filter is symmetric in the sense that a−1 = a1, a−2 = a2 and so on. Check
that this filter satisfies the condition (2).

Because this is a symmetric filter, it can be checked that it allows all cubic polynomials to pass
unscathed as well.

(3) Exponential Smoothing: Quite a popular method of smoothing (wikipedia has a big page on
this). It is also used as a forecasting technique.

To obtain m̂t in this method, one uses only the previous observations Xt−1, Xt−2, Xt−3, . . . . The
weights assigned to these observations exponentially decrease the further one goes back in time. Specifi-
cally,

m̂t := αXt−1 + α(1− α)Xt−2 + α(1− α)2Xt−3 + · · ·+ α(1− α)t−2X1 + (1− α)t−1X0.

Check that the weights add up to 1. α is a parameter that determines the amount of smoothing (α here
is analogous to q in smoothing). If α is close to 1, there is very little smoothing and vice versa.
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