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1 Spectral Distribution Function

Let {Xt} be a stationary sequence of random variables and let γX(h) = cov(Xt, Xt+h) denote the auto-
covariance function.

A theorem due to Herglotz (sometimes attributed to Bochner) states that every autocovariance
function γX can be written as:

γX(h) =

∫ 1/2

−1/2
e2πihλdF (λ),

where F (·) is a non-negative, right-continuous, non-decreasing function on [−1/2, 1/2] with F (−1/2) = 0
and F (1/2) = γX(0). Moreover, F is uniquely determined by γX .

This function F is called the Spectral Distribution Function of {Xt}. If F has a density f i.e., if F
can be written as

F (x) :=

∫ x

−1/2
f(t)dt

then f is called the Spectral Density of {Xt}.

A sufficient condition (but not necessary) for the existence of the spectral density is the condition∑∞
h=−∞ |γX(h)| <∞. And in this case, the spectral density exists and is given by the formula:

f(λ) =

∞∑
h=−∞

γ(h) exp(−2πiλh) for −1/2 ≤ λ ≤ 1/2.

The spectral distribution function is an as important quantity for a stationary process as the autocovari-
ance function.

2 Linear Time-Invariant Filters

A linear time-invariant filter uses a set of specified coefficients {aj} for j = . . . ,−2,−1, 0, 1, 2, 3, . . . to
transform an input time series {Xt} into an output time series {Yt} according to the formula:

Yt =

∞∑
j=−∞

ajXt−j .

The filter is determined by the coefficients {aj} which are often assumed to satisfy
∑∞
j=−∞ |aj | <∞.
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Suppose that the input series {Xt} is given by

Xt =

{
1 if t = 0
0 otherwise

Such an {Xt} is often called an impulse function. The output of the filter {Yt} can then be easily seen to
be Yt = at. For this reason the filter coefficients {aj} are often collectively known as the impulse response
function.

The two main examples of linear time-invariant filters that we have seen so far are (1) the moving
average filter which has the impulse response function: aj = 1/(2q + 1) for |j| ≤ q and aj = 0 otherwise;
and (2) Differencing which corresponds to the filter a0 = 1 and a1 = −1 and all other ajs equal zero. We
have seen that these two filters act very differently; one estimates trend while the other eliminates it.

Suppose that the input time series {Xt} is stationary with autocovariance function γX . What is the
autocovariance function of {Yt}? Observe that

γY (h) := cov

∑
j

ajXt−j ,
∑
k

akXt+h−k

 =
∑
j,k

ajakcov(Xt−j , Xt+h−k) =
∑
j,k

ajakγX(h− k + j). (1)

Note that the above calculation shows also that {Yt} is stationary.

Suppose now that the spectral density of the input stationary series {Xt} is fX . What then is the
spectral density fY of the output {Yt}?

Because the spectral density of {Xt} equals fX , we have

γX(h) =

∫ 1/2

−1/2
e2πihλfX(λ)dλ.

We thus have from (1) that

γY (h) =
∑
j

∑
k

ajak

∫
e2πi(h−k+j)λfX(λ)dλ =

∫
e2πihλfX(λ)

∑
j

∑
k

ajake
−2πikλe2πijλ

 dλ (2)

Let us now define the function

A(λ) :=
∑
j

aje
−2πijλ for −1/2 ≤ λ ≤ 1/2.

Note that this function only depends on the filter coefficients {aj}. From (2) it clearly follows that

γY (h) =

∫
e2πiλhfX(λ)A(λ)A(λ)dλ,

where, of course, A(λ) denotes the complex conjugate of A(λ). As a result, we have

γY (h) =

∫
e2πiλhfX(λ) |A(λ)|2 dλ.

This is clearly of the form γY (h) =
∫
e2πiλhfY (λ)dλ. We therefore have

fY (λ) = fX(λ) |A(λ)|2 for −1/2 ≤ λ ≤ 1/2. (3)

In other words, the action of the filter on the spectrum of the input is very easy to explain. It modifies
the spectrum by multiplying it with the function |A(λ)|2. Depending on the value of |A(λ)|2, some
frequencies may be enhanced in the output while other frequencies will be diminished.
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This function λ 7→ |A(λ)|2 is called the power transfer function of the filter. The function λ 7→ A(λ)
is called the transfer function or the frequency response function of the filter.

The spectral density is very useful while studying the properties of a filter. While the autocovariance
function of the output series γY depends in a complicated way on that of the input series γX , the
dependence between the two spectral densities is very simple.

Example 2.1 (Power Transfer Function of the Differencing Filter). Consider the Lag s differencing filter:
Yt = Xt −Xt−s which corresponds to the weights a0 = 1 and as = −1 and aj = 0 for all other j. Then
the transfer function is clearly given by

A(λ) =
∑
j

aje
−2πijλ = 1− e−2πisλ = 2i sin(πsλ)e−πisλ,

where, for the last equality, the formula 1− eiθ = −2i sin(θ/2)eiθ/2 is used. Therefore the power transfer
function equals

|A(λ)|2 = 4 sin2(πsλ) for −1/2 ≤ λ ≤ 1/2.

To understand this function, we only need to consider the interval [0, 1/2] because it is symmetric on
[−1/2, 1/2].

When s = 1, the function λ 7→ |A(λ)|2 is increasing on [0, 1/2]. This means that first order differencing
enhances the higher frequencies in the data and diminishes the lower frequencies. Therefore, it will make
the data more wiggly.

For higher values of s, the function A(λ) goes up and down and takes the value zero for λ =
0, 1/s, 2/s, . . . . In other words, it eliminates all components of period s.

Example 2.2. Now consider the moving average filter which corresponds to the coefficients aj = 1/(2q+
1) for |j| ≤ q. The transfer function is

1

2q + 1

q∑
j=−q

e−2πijλ =
Sq+1(λ) + Sq+1(−λ)− 1

2q + 1
,

where it may be recalled (Lecture 19) that

Sn(g) :=

n−1∑
t=0

exp(2πigt) =
sin(πng)

sin(πg)
eiπg(n−1)

. Thus

Sn(g) + Sn(−g) = 2
sin(πng)

sin(πg)
cos(πg(n− 1)),

which implies that the transfer function is given by

A(λ) =
1

2q + 1

(
2

sin(π(q + 1)λ)

sin(πλ)
cos(πqλ)− 1

)
,

This function only depends on q and can be plotted for various values of q. For q large, it drops to zero
very quickly. The interpretation is that the filter kills the high frequency components in the input process.

3 Spectral Densities of ARMA Processes

Suppose {Xt} is a stationary ARMA process: φ(B)Xt = θ(B)Zt where the polynomials φ and θ have
no common zeroes on the unit circle. Because of stationarity, the polynomial φ has no roots on the unit
circle.

3



Let Ut = φ(B)Xt = θ(B)Zt. Let us first write down the spectral density of Ut = φ(B)Xt in terms
of that of {Xt}. Clearly, Ut can be viewed as the output of a filter applied to Xt. The filter is given by
a0 = 1 and aj = −φj for 1 ≤ j ≤ p and aj = 0 for all other j. Let Aφ(λ) denote the transfer function of
this filter. Then we have

fU (λ) = |Aφ(λ)|2 fX(λ). (4)

Similarly, using the fact that Ut = θ(B)Zt, we can write

fU (λ) = |Aθ(λ)|2 fZ(λ) = σ2
Z |Aθ(λ)|2 (5)

where Aθ(λ) is the tranfer function of the filter with coefficients a0 = 1 and aj = θj for 1 ≤ j ≤ q and
aj = 0 for all other j. Equating (4) and (5), we obtain

fX(λ) =
|Aθ(λ)|2

|Aφ(λ)|2
σ2
Z for −1/2 ≤ λ ≤ 1/2.

Now
Aφ(λ) = 1− φ1e−2πiλ − φ2e−2πi(2λ) − · · · − φpe−2πi(pλ) = φ(e−2πiλ).

Similarly Aθ(λ) = θ(e−2πiλ). As a result, we have

fX(λ) = σ2
Z

|θ(e−2πiλ)|2

|φ(e−2πiλ)|2
for −1/2 ≤ λ ≤ 1/2.

Note that the denominator on the right hand side above is non-zero for all λ because of stationarity.

Example 3.1 (MA(1)). For the MA(1) process: Xt = Zt + θZt−1, we have φ(z) = 1 and θ(z) = 1 + θz.
Therefore

fX(λ) = σ2
Z

∣∣1 + θe2πiλ
∣∣2

= σ2
Z |1 + θ cos 2πλ+ iθ sin 2πλ|2

= σ2
Z

[
(1 + θ cos 2πλ)2 + θ2 sin2 2πλ

]
= σ2

Z

[
1 + θ2 + 2θ cos 2πλ

]
for −1/2 ≤ λ ≤ 1/2.

Check that for θ = −1, the quantity 1 + θ2 + 2θ cos(2πλ) equals the power transfer function of the first
differencing filter.

Example 3.2 (AR(1)). For AR(1): Xt − φXt−1 = Zt, we have φ(z) = 1− φz and θ(z) = 1. Thus

fX(λ) = σ2
Z

1

|1− φe2πiλ|2
=

σ2
Z

1 + φ2 − 2φ cos 2πλ
for −1/2 ≤ λ ≤ 1/2.

Example 3.3 (AR(2)). For the AR(2) model: Xt−φ1Xt−1−φ2Xt−2 = Zt, we have φ(z) = 1−φ1z−φ2z2
and θ(z) = 1. Here it can be shown that

fX(λ) =
σ2
Z

1 + φ21 + φ22 − 2φ1(1− φ2) cos 2πλ− 2φ2 cos 4πλ
for −1/2 ≤ λ ≤ 1/2.
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