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1 Nonparametric Estimation of the Spectral Density

Let {Xt} be a stationary process with
∑∞
h=−∞ |γX(h)| <∞. We have then seen that {Xt} has a spectral

density that is given by

f(λ) =

∞∑
h=−∞

γX(h)e−2πiλh for −1/2 ≤ λ ≤ 1/2. (1)

Suppose now that we are given data x1, . . . , xn from the process {Xt}. How then would we estimate f(λ)
without making any parametric assumptions about the underlying process? This is our next topic.

Why would we want to estimate the spectral density nonparametrically?

When we were fitting ARMA models to the data, we first looked at the sample autocovariance or
autocorrelation function and we then tried to find the ARMA model whose theoretical acf matched with
the sample acf. Now the sample autocovariance function is a nonparametric estimate of the theoretical
autocovariance function of the process. In other words, we first estimated γ(h) nonparametrically by
γ̂(h) and then found an ARMA model whose γARMA(h) is close to γ̂(h).

If we can estimate the spectral density nonparametrically, we can similarly use the estimate for
choosing a parametric model. We simply choose the ARMA model whose spectral density is closest to
the non-parametric estimate.

Another reason for estimating the spectral density comes from the problem of estimating filter coeffi-
cients. Suppose that we know that two processes {Xt} and {Yt} are related to each other through a linear
time-invariant filter. In other words, {Yt} is the output when {Xt} is the input to a filter. Suppose, that
we do not know the filter coefficients however but we are given observations from both the input and
the output process. The goal is to estimate the filter. In this case, a natural strategy is to estimate the
spectral densities of fX and fY from data and then to use fY (λ) = fX(λ)|A(λ)|2 to obtain an estimate
of the power transfer function of the filter (to obtain an estimate of the transfer function itself, one needs
to use cross-spectra). This is one of the applications of spectral analysis. We might not always be able to
make parametric assumptions about {Xt} and {Yt} so it makes sense to estimate the spectral densities
nonparametrically.

Nonparametric estimation of the spectral density is more complicated than the nonparamtric esti-
mation of the autocovariance function. The main reason is that the natural estimator does not work
well.

Because of the formula (1) for the spectral density in terms of the autocovariance function γX(h), a
natural idea to estimate f(λ) is to replace γX(h) by its estimator γ̂(h) for |h| < n (it is not possible to
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estimate γ(h) for |h| > n). This would result in the estimator:

I(λ) =
∑

h:|h|<n

γ̂(h)e−2πiλh for −1/2 ≤ λ ≤ 1/2.

When λ = j/n ∈ (0, 1/2], the above quantity is just the periodogram:

I(j/n) =
|bj |2

n
where bj =

∑
t

xt exp

(
−2πijt

n

)
Unfortunately, I(λ) is not a good estimator of fX . This can be easily seen by simulations. Just generate
data from white noise and observe that the periodogram is very wiggly while the true spectral density is
constant. The fact that I(λ) is a bad estimator can also be verified mathematically in the following way.

Suppose that the data xt are generated from gaussian white noise with variance σ2 (their mean is
zero because they are white noise). What is the distribution of |bj |2/n for j/n ∈ [0, 1/2]? Write

|bj |2

n
=

1

n

∣∣∣∣∣
n−1∑
t=0

xt exp

(
−2πijt

n

)∣∣∣∣∣
2

=
1

n

∣∣∣∣∣∑
t

xt cos(2πjt/n)− i
∑

xt sin(2πjt/n)

∣∣∣∣∣
2

=
1

n

(
A2
j +B2

j

)
,

where
Aj =

∑
t

xt cos(2πjt/n) and Bj =
∑
t

xt sin(2πjt/n).

If we also assume normality of x1, . . . , xn, then (Aj , Bj) are jointly normal with

varAj = σ2
n−1∑
t=0

cos2(2πjt/n) and varBj = σ2
n−1∑
t=0

sin2(2πjt/n).

Also

cov(Aj , Bj) = σ2
n−1∑
t=0

cos(2πjt/n) sin(2πjt/n).

It can be checked that

n−1∑
t=0

cos2(2πjt/n) = n when j is either 0 or n/2

= n/2 when j is neither 0 nor n/2.

and

n−1∑
t=0

sin2(2πjt/n) = 0 when j is either 0 or n/2

= n/2 when j is neither 0 nor n/2.

and
n−1∑
t=0

cos(2πjt/n) sin(2πjt/n) = 0.

Thus when j is neither 0 nor n/2 (recall that 0 ≤ j/n ≤ 1/2), we have
√

2Aj
σ
√
n
∼ N(0, 1) and

√
2Bj
σ
√
n
∼ N(0, 1)

2



which implies that
2

nσ2
A2
j ∼ χ2

1 and
2

nσ2
B2
j ∼ χ2

1.

Also because they are independent, we have for j/n ∈ (0, 1/2)

2

σ2
I(j/n) =

2|bj |2

nσ2
=

2

nσ2
A2
j +

2

nσ2
B2
j ∼ χ2

2

or I(j/n) ∼ (σ2/2)χ2
2.

For j = 0 or n/2, we have Bj = 0 and Aj ∼ N(0, σ2n) which implies that |bj |2/n ∼ σ2χ2
1.

It is important to notice that the distribution of I(j/n) does not depend on n. One can also check
that (Aj , Bj) is independent of (Aj′ , Bj′) for j 6= j′.

Therefore, when the data x1, . . . , xn are generated from the Gaussian White Noise model, the pe-
riodogram ordinates I(j/n) for 0 < j ≤ n/2 are independent random variables having the distribution
(σ2/2)χ2

2 for 0 < j < n/2 and σ2χ2
1 for j = n/2. Because of this independence and the fact that the

distribution does not depend on n, it should be clear that I(λ) is not a good estimate of f(λ).

We have done the above calculations for data from the gaussian white noise. For general ARMA
processes, under some regularity conditions, it can be shown that when n is large, the random variables:

2I(j/n)

f(j/n)
, for 0 < j < n/2

are approximately independently distributed according to the χ2
2 distribution.

Note that because the χ2
2 distribution has mean 2, the expected value of I(j/n) is approximately

f(j/n). In other words, the periodogram is approximately unbiased. On the other hand, the variance of
I(j/n) is approximately f2(j/n). So, in the gaussian white noise case, for example, the variance of the
periodogram ordinates is σ4 which does not decrease with n. This and the approximate independence
of the neighboring periodogram ordinates makes the periodogram very noisy and a bad estimator of the
true spectral density.

2 Modifying the Periodogram for good estimates of the spectral
density

2.1 Method One

The approximate distribution result allows us to write:

2I(j/n)

f(j/n)
≈ 2 + 2Uj for 0 < j < n/2,

where U1, U2, . . . are independent, have mean zero and variance 1. In other words {Uj} is white noise.
Thus

I(j/n) = f(j/n) + Ujf(j/n) for 0 < j < n/2.

Therefore, we can think of I(j/n) as an uncorrelated time series with a trend f(j/n) that we wish to
estimate. Our previous experience with trend estimation suggests that we do this by smoothing I(j/n)
with a filter, say the simple moving average filter:

1

2m+ 1

m∑
k=−m

I

(
j + k

n

)
.
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More generally, we can consider using unequal weights as well to yield estimators of the form:

f̂(j/n) =

mn∑
k=−mn

Wn(k)I

(
j + k

n

)
.

Note that if we take mn = 0, we get back the periodogram. We can extend this definition of f̂ to the
entire interval [0, 1/2] in the following way: For each λ ∈ [0, 1/2], let g(λ, n) denote the multiple of 1/n
that is closest to λ. Define

f̂(λ) = f̂(g(λ, n)).

It can be shown that this estimator is consistent (i.e., it gets closer and closer to f(j/n) as n becomes
larger) provided:

mn →∞ and
mn

n
→ 0 (2)

as n→∞. One also needs the weights Wn(k) to be symmetric: Wn(k) = Wn(−k), nonnegative Wn(k) ≥
0, add up to 1:

∑mn

k=−mn
Wn(k) = 1 and their sum of squares to go to zero:

∑mn

k=−mn
W 2
n(k) → 0 as

n → ∞. Note that all these conditions are satisfied for the simple moving average filter with m chosen
as in (2).

If the above conditions are met, then, for 0 < λ < 1/2, we have

Ef̂(λ) ≈ f(λ) and var(f̂(λ)) ≈

(
mn∑

k=−mn

W 2
n(k)

)
f2(λ).

When λ equals 0 or 1/2, the variance is twice the one given by the equation above. The expectation is
still the same.

Also the covariance between f̂(λ1) and f̂(λ2) is approximately zero.

2.2 Method Two

Here is a slightly different way of coming up with estimators for the spectral density that are different
from the periodogram. The periodogram is defined by:

I(λ) =
∑

h:|h|<n

γ̂(h) exp(−2πiλh) for −1/2 ≤ λ ≤ 1/2. (3)

Note that the above formula involves the estimates of all the autocovariances γX(h) for |h| < n. Now
we know that from a sample of size n, it is impossible to come up with good estimates of γX(h) for h
close to n. This is often cited as a reason why the periodogram is not a good estimator. In light of this
reason, a reasonable way to obtain better estimators is to truncate the sum on the right hand side of (3)
by omitting γ̂(h) for h near n. In other words, we consider

f̃(λ) =
∑

h:|h|≤r

γ̂(h) exp(−2πiλh).

If we assume that r = rn is a function of n such that rn →∞ and rn/n→ 0 as n→∞, then f̃ is a sum
of (2r + 1) terms, each with a variance of about 1/n. In this case, under regularity conditions, it can be
shown that f̃ is a consistent estimator of f .

More generally, we can take

f̃(λ) =
∑

h:|h|≤r

w

(
h

r

)
γ̂(h) exp(−2πiλh),

where w(x) is a symmetric w(x) = w(−x) function satisfying w(0) = 1, |w(x)| ≤ 1 and w(x) = 0 for
|x| > 1. This is sometimes called a lag window spectral density estimator.
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2.3 Equivalence of the Two Methods

We shall now show that these two ways of improving the periodogram: by smoothing it and the lag window
spectral density estimator are essentially the same. To see this, we first need an inverse relationship
between I(λ) and γ̂(h). We have defined I(λ) as

I(λ) :=
∑

h:|h|<n

γ̂(h)e−2πiλh for −1/2 ≤ λ ≤ 1/2.

It is possible to invert this formula to write γ̂(k) in terms of I(λ). Fix an integer k with |k| < n and
multiply both sides of the above formula by e2πiλk. Integrating the resulting expression with respect to
λ from −1/2 to 1/2, we get∫ 1/2

−1/2
e2πiλkI(λ)dλ =

∑
h:|h|<n

γ̂(h)

∫ 1/2

−1/2
e2πiλ(k−h)dλ = γ̂(k).

This therefore implies

γ̂(k) =

∫ 1/2

−1/2
e2πiλkI(λ)dλ. (4)

In other words, the function I(λ) is the spectral density corresponding to the sample autocorrelation
function. Using the formula (4), we can write the lag window spectral density estimator as

f̃(λ) =
∑

h:|h|≤r

w

(
h

r

)
γ̂(h)e−2πiλh

=
∑

h:|h|≤r

w

(
h

r

)∫ 1/2

−1/2
e2πiρhI(ρ)dρ e−2πiλh

=

∫ 1/2

−1/2
I(ρ)

∑
h:|h|≤r

w

(
h

r

)
e2πi(ρ−λ)hdρ.

By the change of variable ρ = λ+ u, we get

f̃(λ) =

∫
I(λ+ u)

∑
h:|h|≤r

w

(
h

r

)
e2πiuhdu.

Letting

W (u) =
∑

h:|h|≤r

w

(
h

r

)
e2πiuh,

we get that

f̃(λ) =

∫
I(λ+ u)W (u)du.

Thus the lag window spectral density estimator f̃ can also be thought of as obtained by smoothing the
periodogram.
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