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We will continue discussion on the estimation of the spectral density. Estimators are given by:
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The set of weights {W,,,(k)} is often referred to as a kernel or a spectral window.

Simplest choice of W,, (k) is
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This window is called the Daniell Spectral Window.
One can get these estimates directly in R by using the function spec.pgram and kernel.

The bandwidth of a spectral window is defined as the standard deviation of the weighting distribution.
It is actually this standard deviation that controls the bias of the estimator. This can be justified by a
second order Taylor expansion as follows. The expected value of f(j/n) is
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Let A = j/n for ease of notation. Then by a second order Taylor expansion around A, we get
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If the weights are such that ), W, (k) = 1 and ), kW, (k) = 0 (satisfied for the Daniell kernel for
example), then
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The bandwidth of the kernel is given by
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For the Daniell kernel, the bandwidth is given by the standard deviation of the uniform distribution on
{-m/n,—(m—=1)/n,...,(m—1)/n,m/n} which is very close to the standard deviation of the continuous
uniform distribution on [—m/n, m/n| which equals:
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Repeated use of the Daniell kernel yields non-uniform weights. For example, the Daniell kernel for m = 1
corresponds to the three weights (1/3,1/3,1/3). Applying it to a sequence of numbers {u;} leads to the
smoother:
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Applying the Daniell kernel again to 4; gives
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Thus application of the Daniell kernel is equivalent to applying the kernel (1/9,2/9,3/9,2/9,1/9) to the
data. This is a non-uniform kernel with a higher bandwidth. Note also that these weights equal the
convolution of the Daniell kernel. In other words, if X; and X3 both have the pmfs (1/3,1/3,1/3), then
X1 + X has the pmf (1/9,2/9,3/9,2/9,1/9). If we keep applying the Daniell kernel repeatedly, we get
spectral windows that look very much like a gaussian pdf.

Another common kernel choice is the modified Daniell kernel which puts half-weights at the end-points.
The book also talks about the Dirichlet kernel and the Fejer kernel.



