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1 The Periodogram

In the last class, we saw the following connection between the DFT and the sample autocovariance
function:

|bj |2

n
=

∑
h:|h|<n

γ̂(h) exp

(
−2πijh

n

)
for j = 1, . . . , [n/2].

The function

I(j/n) :=
|bj |2

n
=

∑
h:|h|<n

γ̂(h) exp

(
−2πijh

n

)
for j = 1, . . . , [n/2] (1)

is called the periodogram of the data x0, x1, . . . , xn−1. The periodogram gives the strengths of
sinusoids at various frequencies in the data.

2 The Spectral Density

Suppose {Xt} is a doubly infinite sequence of random variables that is stationary. Let {γ(h)} denote
their autocovariance function. In analogy with the definition (1) of the Periodogram, we define

f(λ) :=

∞∑
h=−∞

γ(h) exp (−2πiλh) for −1/2 ≤ λ ≤ 1/2 (2)

and call this quantity the Spectral Density of the stationary sequence of random variables, {Xt}. Because
the complex exponentials e−2πiλh are all periodic in λ with period 1, we only need to define f on an
interval of length 1 and, by convention, we focus on the interval [−1/2, 1/2]. In fact, note that f is
symmetric and we really only need to worry about [0, 1/2].

In analogy with the periodogram, the spectral density will give the strengths of sinusoids at various
frequencies in the data.

We have defined the spectral density in terms of the autocovariance function. It turns that the
autocovariance function can also be obtained from the spectral density: To see this, just multiply both
sides of (2) by e2πiλk for a fixed k and integrate from λ = −1/2 to λ = 1/2 to get:

γ(k) =

∫ 1/2

1/2

e2πiλkf(λ)dλ (3)

In other words, the autocovariance function and the spectral density provide equivalent information about
the stationary process {Xt}.
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There is one problem however with the definition of the spectral density. The infinite sum in (2) need
not always make sense. Indeed, the complex exponentials exp(−2πiλh) always have a magnitude of 1 and
so the sum (2) only makes sense when {γ(h)} decay sufficiently quickly. A sufficient (but not necessary)
condition for (2) to make sense is

∑∞
h=−∞ |γ(h)| <∞.

It is not too hard to find examples where the sum on the right hand side in (2) does not make sense.
For example, consider the process where Xt = A cos 2πλ1t+B sin 2πλ1t where A and B are uncorrelated
random variables both with mean 0 and variance σ2 and 0 < λ1 < 1/2 is a fixed (non-random) frequency.
This process is clearly stationary and its autocovariance function equals γ(h) = σ2 cos 2πλ1h. Clearly,
this does not decay fast enough and

∑
h γ(h) exp(−2πiλh) does not make sense for any λ.

It turns out that one may not be able to define a spectral density for every stationary process {Xt}.
But one can always define a Spectral Distribution Function. The analogy is to random variables (Not all
random variables have densities but they all have distribution functions).

Before defining the spectral distribution function, let us briefly discuss elementary expectations.

2.1 Review of Expectations

Let X be a random variable. The distribution function of X is defined as F (x) = P {X ≤ x}. The
function F is non-negative, right-continuous, non-decreasing and satisfies:

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

The expectation of a function g(X) of X is sometimes denoted by:

Eg(X) =

∫
g(x)dF (x).

The computation of this expectation is rather easy in the following two cases:

1. X is a discrete random variable taking values x1 < · · · < xk with probabilities p1, . . . , pk. In this
case, F has a jump of size pi at xi and is constant between xi and xi+1. And,

∫
g(x)dF (x) =∑

i g(xi)pi.

2. X has a density f . In this case, F (x) =
∫ x
−∞ f(x)dx and Eg(X) =

∫
g(x)f(x)dx.

The quantity
∫
g(x)dF (x) can also be defined for F which are non-negative, right-continuous, non-

decreasing and satisfy:
lim

x→−∞
F (x) = 0 and lim

x→∞
F (x) = σ2

for some σ2 > 0. In this case F/σ2 is a distribution function and thus the integral
∫
g(x)dF (x) can be

defined as ∫
g(x)dF (x) = σ2

∫
g(x)dF̃ (x) where F̃ (x) =

F (x)

σ2
.

2.2 Spectral Distribution Function and Spectral Density

Let {Xt} be a stationary sequence of random variables and let γX(h) = cov(Xt, Xt+h) denote the auto-
covariance function.

A theorem due to Herglotz (sometimes attributed to Bochner) states that every autocovariance
function γX can be written as:

γX(h) =

∫ 1/2

−1/2
e2πihλdF (λ),
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where F (·) is a non-negative, right-continuous, non-decreasing function on [−1/2, 1/2] with F (−1/2) = 0
and F (1/2) = γX(0). Moreover, F is uniquely determined by γX .

If F has a density f , then f is called the Spectral Density of {Xt}.

A sufficient condition (but not necessary) for the existence of the spectral density is the condition∑∞
h=−∞ |γX(h)| <∞. And in this case, the spectral density exists and is given by the formula (2).

2.3 Discrete Spectrum Example

Suppose

Xt =

m∑
j=1

(Aj cos(2πλjt) +Bj sin(2πλjt)) for t = . . . ,−2,−1, 0, 1, 2, . . . ,

where the frequencies 0 < λ1 < · · · < λm < 1/2 are fixed and A1, B1, A2, B2, . . . , Am, Bm are uncorrelated
random variables with common mean 0 and var(Aj) = σ2

j = var(Bj). The covariance between Xt and
Xt+h equals:∑

j

σ2
j (cos(2πλjt) cos(2πλj(t+ h)) + sin(2πλjt) sin(2πλj(t+ h))) =

∑
j

σ2
j cos(2πλjh).

Because this covariance does not depend on t, the process {Xt} is stationary with autocovariance function
γX(h) =

∑m
j=1 σ

2
j cos(2πλjh). This autocovariance function γX(h) can be written as:

γX(h) =

m∑
j=1

σ2
j

(
e2πiλjh + e−2πiλjh

2

)

Thus γX(h) equals
∫ 1/2

−1/2 e
2πihλdF (λ) where F corresponds to the discrete distribution which takes values

−λm < · · · < −λ1 < λ1 < · · · < λm

with weights
σ2
m

2
, . . . ,

σ2
1

2
,
σ2
1

2
, . . . ,

σ2
m

2
.

Note that this is a symmetric distribution. Thus the spectral distribution function puts mass only at the
frequencies that are present in {Xt}. Moreover, the mass at a particular frequency λj is proportional to
the variance σ2

j at that frequency. The total mass of the spectral distribution is:

σ2
m

2
+ · · ·+ σ2

1

2
+
σ2
1

2
+ · · ·+ σ2

m

2
= σ2

1 + · · ·+ σ2
m = γX(0).

2.4 White Noise

For white noise γX(h) = 0 for h 6= 0 and γX(0) = σ2. Thus
∑
h |γX(h)| <∞ and the spectral density is

given by:

f(λ) =

∞∑
h=−∞

γX(h) exp (−2πiλh) = γX(0) = σ2 for all −1/2 ≤ λ ≤ 1/2.

The idea is that all frequencies are present in white noise in equal amounts.
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2.5 Spectral Density for ARMA processes

Theorem 2.1. Let {Yt} be a mean-zero, stationary process with Spectral Distribution Function FY .
Define {Xt} by

Xt =

∞∑
j=−∞

ψjYt−j where

∞∑
j=−∞

|ψj | <∞.

Then {Xt} is stationary with Spectral Distribution Function:

FX(λ) =

∫ λ

−1/2

∣∣∣∣∣∣
∑
j

ψje
2πijλ

∣∣∣∣∣∣
2

dFY (λ). for −1/2 ≤ λ ≤ 1/2.

Proof. The autocovariance of Xt is (note that Xt has mean zero because {Yt} was assumed to have zero
mean):

γX(h) = EXtXt+h = E(
∑
j

ψjYt−j)(
∑
k

ψkYt+h−k) =
∑
j,k

ψjψkγY (h− k + j).

By the definition of the spectral distribution function, we can write:

γY (h− k + j) =

∫ 1/2

−1/2
e2πi(h−k+j)λdFY (λ).

Therefore,

γX(h) =
∑
j,k

ψjψk

∫ 1/2

−1/2
e2πi(h−k+j)λdFY (λ)

=

∫ 1/2

−1/2
e2πihλ

∑
j,k

ψjψke
−2πikλe2πijλdFY (λ)

=

∫ 1/2

−1/2
e2πihλ

∑
j

ψje
2πijλ

(∑
k

ψke
−2πikλ

)
dFY (λ)

=

∫ 1/2

−1/2
e2πihλ

∣∣∣∣∣∣
∑
j

ψje
2πijλ

∣∣∣∣∣∣
2

dFY (λ)

This is of the form:

γX(h) =

∫ 1/2

−1/2
e2πihλdFX(λ)

with

dFX(λ) =

∣∣∣∣∣∣
∑
j

ψje
2πijλ

∣∣∣∣∣∣
2

dFY (λ).

The proof is complete.

It follows from the above theorem that if {Yt} has a spectral density fY , then Xt also has a spectral
density that is given by

fX(λ) =

∣∣∣∣∣∣
∞∑

j=−∞
ψje

2πijλ

∣∣∣∣∣∣
2

fY (λ) for −1/2 ≤ λ ≤ 1/2.
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If we use the notation ψ(z) =
∑∞
j=−∞ ψjz

j , then the spectral density fX(λ) can be written as:

fX(λ) = |ψ(e2πiλ)|2fY (λ)
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