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1 DFT Again

Data is denoted by x0, x1, . . . , xn−1.

DFT is denoted by b0, b1, . . . , bn−1.

The DFT is calculated from data by

bj :=

n−1∑
t=0

xt exp

(
−2πijt

n

)
for j = 0, 1, . . . , n− 1. (1)

The data is calculated from the DFT by

xt =
1

n

n−1∑
j=0

bj exp

(
2πijt

n

)
for t = 0, 1, . . . , n− 1.

Remember that b0 = x0 + · · ·+xn−1 and bn−j = b̄j for 1 ≤ j ≤ n−1. In the textbook, the formula for
the DFT is given by (1) with an extra factor of n−1/2. I have dropped this factor to make the definition
compatible with the R function fft.

For odd values of n, the DFT is comprised of the real number b0 and the (n− 1)/2 complex numbers
b1, . . . , b(n−1)/2.

For even values of n, the DFT consists of two real numbers b0 and bn/2 and the (n − 2)/2 complex
numbers b1, . . . , b(n−2)/2.

2 What does the DFT do?

Suppose xt = R cos(2πf0t+ Φ) for t = 0, 1, . . . , n− 1. We have seen in the last class that we only have to
consider frequencies in the range 0 ≤ f0 ≤ 1/2 (because every other frequency has an alias in the interval
[0, 1/2]).

Assume first that f0 is of the form k/n for some k where 0 ≤ k/n ≤ 1/2. Then the DFT is given by

bj =

n−1∑
t=0

R cos(2π(k/n)t+ Φ) exp (−2πi(j/n)t)

=
ReiΦ

2

n−1∑
t=0

exp

(
2πit

j − k
n

)
+
Re−iΦ

2

n−1∑
t=0

exp

(
−2πit

j + k

n

)
.
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Note that we do not need to consider the DFT bj for j/n > 1/2. So we assume that 0 ≤ j/n ≤ 1/2.
Because the original cosine wave was assumed to have frequency in the range [0, 1/2], we have 0 ≤ k/n ≤
1/2. Check that 0 < (k + j)/n < 1 when j 6= k. Because of all this, we get that the second term above
is always zero and the first term equals zero when j 6= k and equals ReiΦn/2 when j = k. Therefore the
DFT of the cosine wave with a frequency k/n for 0 ≤ k/n ≤ 1/2 is bk = nReiΦ/2 for and bj = 0 for j 6= k
and 0 ≤ j/n ≤ 1/2.

Now consider data that is linear combination of multiple frequencies:

xt =

m∑
l=1

Rl cos(2πt(kl/n) + Φl) (2)

where each kl is an integer satisfying 0 ≤ kl/n ≤ 1/2. Because the definition of the DFT is linear in the
data {xt}, it follows that the DFT of (2) is given by

bj =

{
nRle

iΦl/2 if j = kl
0 otherwise

for 0 ≤ j/n ≤ 1/2.

This shows that the DFT picks out the frequencies present in the data. The strength (absolute value)
of the DFT at a frequency is proportional to the amplitude (Rl) of the cosine wave at that frequency.

3 Interpreting the DFT

The DFT writes the given data in terms of sinusoids with frequencies of the form k/n.
Frequencies of the form k/n are called Fourier frequencies.

Suppose that we are given a dataset x0, . . . , xn−1. We have calculated its DFT: b0, b1, . . . , bn−1 and
we have plotted |bj | for j = 1, . . . , (n− 1)/2 for odd n and for j = 1, . . . , n/2 for even n.

If we see a single spike in this plot, say at bk, we are sure that the data is a sinusoid with frequency
k/n.

If we get two spikes, say at bk1 and bk2 , then the data is slightly more complicated: it is a linear
combination of two sinusoids at frequencies k1/n and k2/n with the strengths of these sinusoids depending
on the size of the spikes.

Multiple spikes indicate that the data is made up of many sinusoids at Fourier frequencies and, in
general, this means that the data is more complicated.

However, sometimes one can see multiple spikes in the DFT even when the structure of the data is
not very complicated. A typical example is leakage due to the presence of a sinusoid at a non-Fourier
frequency.

The DFT of a sinusoid at a non-Fourier frequency is calculated in the following way: Consider the
signal xt = e2πf0t where f0 ∈ [0, 1/2] is not necessarily of the form k/n for any k. Its DFT is given by

bj :=

n−1∑
t=0

xte
−2πit(j/n) =

n−1∑
t=0

e2πi(f0−(j/n))t.

If we denote the function

Sn(g) :=

n−1∑
t=0

e2πigt (3)
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then we can write
bj = Sn(f0 − (j/n)).

The function Sn(g) can clearly be evaluated using the geometric series formula to be

Sn(g) =
e2πign − 1

e2πig − 1

Because
eiθ − 1 = cos θ + i sin θ − 1 = 2eiθ/2 sin θ/2,

we get

Sn(g) =
sinπng

sinπg
eiπg(n−1)

Thus the absolute value of the DFT of yt = e2πif0t is given by

|bj | = |Sn(f0 − (j/n))| =
∣∣∣∣ sinπn(f0 − (j/n))

sinπ(f0 − (j/n)))

∣∣∣∣
This expression becomes meaningless when f0 = j/n. But when f0 = f , the value of Sn(f0 − j/n) can
be directly be calculated from (3) to be equal to n.

The behavior of this DFT can be best understood by plotting the function g 7→ (sinπng)/(sinπg).

4 Leakage Reduction by Hanning

Hanning is a technique to reduce leakage which says: Multiply the data by the window or fader :

wt = 1− cos (2πt/n) for t = 0, 1, . . . , n− 1

and then take the DFT.

Why does it work? The following is the DFT of yt = wte
2πif0t (below f stands for j/n)

by(f) :=

n−1∑
t=0

wte
2πif0te−2πift

=

n−1∑
t=0

(1− cos(2πt/n)) e2πi(f0−f)t

=

n−1∑
t=0

e2πi(f0−f)t − 1

2

n−1∑
t=0

e2πi(f0−f+1/n)t − 1

2

n−1∑
t=0

e2πi(f0−f−1/n)t

= Sn(f0 − f)− 1

2
Sn(f0 − f + 1/n)− 1

2
Sn(f0 − f − 1/n).

Clearly by(f0) = n = b(f0) because Sn(1/n) = 0. Suppose g = f0 − f . To eliminate leakage, we need to
make sure that by(f) is close to zero when f is not equal to f0. This is not quite possible but what we
shall heuristically show is that when |f − f0| is reasonably large compared to 1/n, then bf (f) is close to
zero.

Let g denote f − f0 so that

by(f) = Sn(g)− 1

2
Sn(g − 1/n)− 1

2
Sn(g + 1/n). (4)

We derived in the last section that

Sn(g) =
sinπng

sinπg
eπig(n−1).
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Therefore,

Sn(g − 1/n) =
sinπn(g − 1/n)

sinπ(g − 1/n)
eπi(g−1/n)(n−1)

Now sinπn(g − 1/n) = − sinπng and if 1/n is small compared to g, then sinπ(g − 1/n) ≈ sinπg. Also
when 1/n is small compared to g, we have

eπi(g−1/n)(n−1) = eπig(n−1)e−iπ(n−1)/n ≈ eπig(n−1)e−iπ = −eπig(n−1).

Therefore, if 1/n is small compared to g, we have

Sn(g − 1/n) ≈ Sn(g)

and similarly Sn(g + 1/n) ≈ Sn(g). Therefore, from (4), we get by(f) ≈ 0 provided f − f0 is not too
small compared to 1/n. Also by(f0) = b(f0). Thus leakage is reduced.

It is usually the case however that for f close to f0, by(f) is much larger than b(f). Thus the price
that is paid for the reduction in leakage is that the peaks are slightly rounder at the top compared to the
peaks without hanning.

5 DFT and Sample Autocovariance Function

We show below that

|bj |2

n
=
∑
|h|<n

γ̂(h) exp

(
−2πijh

n

)
for j = 1, . . . , n− 1

where γ̂(h) is the sample autocovariance function. This gives an important connection between the dft
and the sample autocovariance function.

To see this, observe first, by the formula for the sum of a geometric series, that

n−1∑
t=0

exp

(
−2πijt

n

)
= 0 for j = 1, . . . , n− 1.

In other words, if the data is constant i.e., x0 = · · · = xn−1, then b0 equals nx0 and bj equals 0 for all
other j. Because of this, we can write:

bj =

n−1∑
t=0

(xt − x̄) exp

(
−2πijt

n

)
for j = 1, . . . , n− 1.

Therefore, for j = 1, . . . , n− 1, we write

|bj |2 = bj b̄j =

n−1∑
t=0

n−1∑
s=0

(xt − x̄)(xs − x̄) exp

(
−2πijt

n

)
exp

(
2πijs

n

)

=

n−1∑
t=0

n−1∑
s=0

(xt − x̄)(xs − x̄) exp

(
−2πij(t− s)

n

)

=

n−1∑
h=−(n−1)

∑
t,s:t−s=h

(xt − x̄)(xt−h − x̄) exp

(
−2πijh

n

)

= n
∑
|h|<n

γ̂(h) exp

(
−2πijh

n

)
.
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