Spring 2013 Statistics 153 (Time Series) : Lecture Twelve

Aditya Guntuboyina

 $05\ {\rm March}\ 2013$

1 Plan

So Far:

- 1. Trend and Seasonality
- 2. Stationarity
- 3. ARMA models

Still to come in Time Domain Techniques:

- 1. How to fit ARMA models to data.
- 2. ARIMA models
- 3. SARIMA models
- 4. Forecasting
- 5. Model Diagnostics and Selection

2 Recap: Fitting AR models to data

Assuming that the order p is known. Carried out by invoking the function ar() in R.

- 1. Yule Walker or Method of Moments: Finds the AR(p) model whose acvf equals the sample autocorrelation function at lags $0, 1, \ldots, p$. Use yw for method in R.
- 2. Conditional Least Squares: Minimizes the conditional sum of squares: $\sum_{i=p+1}^{n} (x_i \mu \phi_1(x_{i-1} \mu) \dots \phi_p(x_{i-p} \mu))^2$ over μ and ϕ_1, \dots, ϕ_p . And σ^2 is achieved by the average of the squared residuals. Use *ols* for method in R. In this method, given data x_1, \dots, x_n , R fits a model of the form $x_t \bar{x} = intercept + \phi(x_{t-1} \bar{x}) + residual$ to the data. The fitted value of intercept can be obtained by calling x_i intercept. One can convert this to a model of the form $x_t = intercept + \phi x_{t-1} + residual$. Check the help page for the R function ar.ols.
- 3. Maximum Likelihood: Maximizes the likelihood function (which is relatively straightforward to write down but which requires an optimization routine to maximize). Use *mle* for method in R. This method is complicated.

It is usually the case that all these three methods yield similar answers. The default method in R is Yule-Walker.

3 Asymptotic Distribution of the Yule-Walker Estimates for AR models

For *n* large, the approximate distribution of $\sqrt{n} \left(\hat{\phi} - \phi \right)$ is normal with mean 0 and variance covariance matrix $\sigma_Z^2 \Gamma_p^{-1}$ where Γ_p is the $p \times p$ matrix whose (i, j)th entry is $\gamma_X(i - j)$.

For example, in the AR(1) case:

$$\Gamma_p = \Gamma_1 = \gamma_X(0) = \sigma_Z^2 / (1 - \phi^2).$$

Thus $\hat{\phi}$ is approximately normal with mean ϕ and variance $(1 - \phi^2)/n$.

For AR(2), using

$$\gamma_X(0) = \frac{1-\phi_2}{1+\phi_2} \frac{\sigma_Z^2}{(1-\phi_2)^2 - \phi_1^2}$$
 and $\rho_X(1) = \frac{\phi_1}{1-\phi_2}$,

we can show that $(\hat{\phi}_1, \hat{\phi}_2)$ is approximately normal with mean (ϕ_1, ϕ_2) and variance-covariance matrix is 1/n times

$$\left(\begin{array}{cc} 1-\phi_2^2 & -\phi_1(1+\phi_2) \\ -\phi_1(1+\phi_2) & 1-\phi_2^2 \end{array}\right)$$