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1 Differencing for Trend Elimination

In the last class, we studied trend models: Xt = mt +Zt where mt is a deterministic trend function and
{Zt} is white noise.

The residuals obtained after fitting the trend function mt in the model Xt = mt + Zt are studied to
see if they are white noise or have some dependence structure that can be exploited for prediction.

Suppose that the goal is just to produce such detrended residuals. Differencing is a simple technique
which produces such de-trended residuals.

One just looks at Yt = Xt −Xt−1, t = 2, . . . , n. If the trend mt in Xt = mt + Zt is linear, then this
operation simply removes it because if mt = αt+ b, then mt −mt−1 = α so that Yt = α+ Zt − Zt−1.

Suppose that the first differenced series Yt appears like white noise. What then would be a reasonable
forecast for the original series: Xn+1? Because Yt is like white noise, we forecast Yn+1 by the sample
mean Ȳ := (Y2 + · · ·+ Yn)/(n− 1). But since Yn+1 = Xn+1−Xn, this results in the forecast Xn + Ȳ for
Xn+1.

Sometimes, even after differencing, one can notice a trend in the data. In that case, just difference
again. It is useful to follow the notation ∇ for differencing:

∇Xt = Xt −Xt−1 for t = 2, . . . , n

and second differencing corresponds to

∇2Xt = ∇(∇Xt) = ∇Xt −∇Xt−1 = Xt − 2Xt−1 +Xt−2 for t = 3, . . . , n.

It can be shown that quadratic trends simply disappear with the operation ∇2. Suppose the data
∇2Xt appear like white noise, how would you obtain a forecast for Xn+1?

Differencing is a quick and easy way to produce detrended residuals and is a key component in the
ARIMA forecasting models (later). A problem however is that it does not result in any estimate for the
trend function mt.

2 Random Walk with Drift Model

Consider the following model for Xt:
Rt = δ +Rt−1 +Wt
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for t = 1, 2, . . . , with initial condition R0 = 0 and Wt being white noise. This model can also be written
as:

Rt = δt+

t∑
j=1

Wj

When δ = 0, this model is called the Random Walk model. This is used often to model trend. This
would be a stochastic model for trend as opposed to the previous ones which are deterministic models.

Consider the model Xt = mt + Zt where Zt is white noise and mt is a random walk with drift:
mt = δ+mt−1 +Wt. This is an example of a Dynamic Linear Model (DLM). Wt is called evolution error
and Zt is called observational error.

The differenced series for Xt is:

∇Xt = Xt −Xt−1 = mt −mt−1 + Zt − Zt−1 = δ +Wt + Zt − Zt−1.

Therefore, ∇Xt is a detrended series. Ways for modelling detrended series through stationary models
will be studied later.

3 Models for Seasonality

Many time series datasets exhibit seasonality. Simplest way to model this is: Xt = st + Zt where st is
a periodic function of a known period d i.e., st+d = st for all t. Such a function s models seasonality.
These models are appropriate, for example, to monthly, quarterly or weekly data sets that have a seasonal
pattern to them.

This model, however, will not be applicable for datasets having both trend and seasonality which is
the more realistic situation. These will be studied a little later.

Just like the trend case, there are three different approaches to dealing with seasonality: fitting
parametric functions, smoothing and differencing.

3.0.1 Fitting a parametric seasonality function

The simplest periodic functions of period d are: a cos(2πft/d) and a sin(2πft/d). Here f is a positive
integer. The quantity a is called Amplitude and f/d is called frequency and its inverse, d/f is called
period. The higher f is, the more rapid the oscillations in the function are.

More generally,

st = a0 +

k∑
f=1

(aj cos(2πft/d) + bj sin(2πft/d)) (1)

is a periodic function. Choose a value of k (not too large) and fit this to the data.

For d = 12, there is no need to consider values of k that are more than 6. With k = 6, every periodic
function with period 12 can be written in the form (1). More on this when we study the frequency domain
analysis of time series.

3.0.2 Smoothing

Because of periodicity, the function st only depends on the d values s1, s2, . . . , sd. Clearly s1 can be
estimated by the average of X1, X1+d, X1+2d, . . . . For example, for monthly data, this corresponds to
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estimating the mean term for January by averaging all January observations. Thus

ŝi := average of Xi, Xi+d, Xi+2d, . . .

Note that here, we are fitting 12 parameters (one each for s1, . . . , sd) from n observations. If n is not
that big, fitting 12 parameters might lead to overfitting.

3.0.3 Differencing

How can we obtain residuals adjusted for seasonality from the data without explicitly fitting a seasonality
function? Recall that a function s is a periodic function of period d if st+d = st for all t. The model that
we have in mind here is: Xt = st + Zt.

Clearly Xt − Xt−d = st − st−d + Zt − Zt−d = Zt − Zt−d. Therefore, the lag-d differenced data
Xt − Xt−d do not display any seasonality. This method of producing deseasonalized residuals is called
Seasonal Differencing.

4 Data Transformations

Suppose that the time series data set has a trend and that the variability increases along with the trend
function. An example is the UKgas dataset in R. In such a situation, transform the data using the
logarithm or a square root so that the resulting data look reasonably homoscedastic (having the same
variance throughout).

Why log or square root? It helps to know a little bit about variance stabilizing transformations.
Suppose X is a random variable having mean m. A very heuristic calculation gives an approximate
answer for the variance of a function f(X) of the random variable X? Expand f(X) in its Taylor series
up to first order around m:

f(X) ≈ f(m) + f ′(m)(X −m)

As a result,
var(f(X)) ≈ var (f(m) + f ′(m)(X −m)) = (f ′(m))2var(X).

Thus if

1. var(X) = Cm and f(x) =
√
x, we would get var(X) ≈ C/4.

2. var(X) = Cm2 and f(x) = log x, we would get var(X) ≈ C.

The key is to note that in both the above cases, the approximate variance of f(X) does not depend on
m anymore.

The above rough calculation suggests the following insight into time series data analysis. A model
of the form Xt = mt + Wt where mt is a deterministic function and Wt is purely random or stationary
(next week) assumes that the variance of Xt does not vary with t. Suppose however that the time plot
of the data shows that the variance of Xt increases with its mean mt, say var(Xt) ∝ mt. Then the rough
calculation suggests that var(

√
Xt) should be approximately constant (does not depend on t) and hence

the model mt +Wt should be fit to the transformed data
√
Xt instead of the original data Xt. Similarly,

if var(Xt) ∝ m2
t , then var(logXt) should be approximately constant.

Thus, if the data show increased variablity with a trend, then apply a transformation such as log or
square root depending on whether the variability in the resulting data set is constant across time.
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By the way, count data are usually modelled via Poisson random variables and the variance of a
Poisson equals its mean. So one typically works with square roots while dealing with count (Poisson)
data.

If one uses the model Xt = mt + Wt with a non-deterministic (stochastic) trend function mt, this
automatically allows for Xt to have a variance that changes with t. In that case, we may not need to use
transformations on the data. These models can be seen as special cases of State Space Models that we
will briefly look at later.

Box-Cox transformations: The square-root and the logarithm are special cases of the Box-Cox
Transformations given by:

Yt =
Xλ
t − 1

λ
if λ 6= 0

= logXt if λ = 0. (2)

Square root essentially corresponds to λ = 1/2.
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