
Fall 2013 Statistics 151 (Linear Models) : Lecture Three

Derek Bean

05 September 2013

1 Linear Algebra Review, cont’d

• Result: for matrix A, rank(A) + dim(K(A)) = no. of columns in A.

– Definition: Matrix A is full rank if rank(A) = no. of columns in A (i.e. dim(K(A)) = 0 and
K(A) = {0}).

• Invertible matrices

• Result: C(ATA) = C(AT ).

– Implies A is full-rank if and only if inner product matrix ATA is invertible

– Proof:

1. C(ATA) ⊆ C(AT ).
If v ∈ C(ATA) then v = (ATA)w for some w. Putting x = Aw we see v = ATx, which
implies v ∈ C(AT ).

2. C(AT ) ⊆ C(ATA).
Pick v ∈ C(AT ). Then v = ATw for some vector w. Decompose w = w′ + w′′ where:

w′ ∈ K(AT )

w′′ ∈ K(AT )⊥ = C(A).

Since w′ is in the null space of A we have v = ATw′′. But w′′ = Ax for some vector x. So
v = ATAx⇒ v ∈ C(ATA).

2 Back to the normal equations

Recall that least squares estimates β̂LS satisfy:

XTXβ̂LS = XTY.

Since C(XTX) = C(XT ), β̂LS must always exist.

1. β̂LS =
(
XTX

)−1
XTY is the unique least-squares estimate if XTX is invertible (i.e. X is full rank)

2. If X is not full-rank, there are an infinite number of solutions. For instance, if β̂LS is a least squares
estimate and k is in the null space of X (we can choose k to be nonzero) then β̂′LS = β̂LS + k is
another least squares estimate (since it also satisfies the normal equations).
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3 Identifiability in the linear model

Identifiability is a property of parameters in statistical models. Clearly, it is beneficial to know which
parameters we may be able to estimate from the data, and which parameters cannot be estimated from
the data. Identifiability helps make this determination. The idea is to study the mapping between
parameters and statistical models. We want to know if the mapping is one-to-one. To understand why,
suppose θ is a parameter and P(x, θ) is a statistical model (a probability distribution). Clearly if θ1 = θ2,
then P(x, θ1) = P(x, θ2) for all x. However, if there exist some θ1 6= θ2 but P(x, θ1) = P(x, θ2), then data
distributed according to P(·, θ1) will have the same distribution as data distributed according to P (·, θ2).
Therefore it is impossible to detect, from the data, whether the parameter of the underlying distribution
is θ1 or θ2. In such models, then, it is not always possible to estimate the parameter θ.

Linear models are particularly simple: for β to be identifiable it suffices that the mean parameter
µ(β) = E(Y ) = Xβ is a one-to-one function of β. This is true as long as Cov(ε) = Σ for some symmetric,
positive semi-definite matrix Σ (that does not depend on β!).

Definition (Identifiability of β in the linear model): The parameter β is identifiable if ∀β1, β2 such
that µ(β1) = µ(β2) it must be true that β1 = β2.

• If X is full-rank, β is identifiable.

If β1 and β2 satisfy Xβ1 = Xβ2, then X(β1−β2) = 0. Therefore β1−β2 ∈ K(X). But X full rank
means K(X) = {0}. Therefore β1 − β2 = 0 i.e. β1 = β2.

• If X is not full-rank, β is not identifiable.

If X is not full rank then there exists k ∈ K(X) with k 6= 0. Pick a parameter β1. Set β2 = β1 + k.
Then:

Xβ2 = X(β1 + k) = Xβ1 +Xk = Xβ1.

But β1 6= β2.

3.1 Identifiable functions of β

While β itself may not be identifiable, there are functions of β which are identifiable (i.e. determined by
the mean parameter Xβ, in one-to-one correspondence with Xβ, etc.).

Definiton (identifiable functions of β): We say g(β) is an identifiable function of β if ∀β1, β2 such
that µ(β1) = µ(β2), we must have g(β1) = g(β2).

Theorem (characterization of identifiable functions of β): g(β) is an identifiable function of β if and
only if g depends on β only through µ(β), i.e. there exists a function g∗ such that:

g(β) = g∗(µ(β)) = g∗(Xβ).

3.2 Connection between identifiability and least squares estimation.

• If X is full rank, XTX is invertible and

β̂LS = (XTX)−1XTY

is the unique least squares estimate of the identifiable parameter β; g(β̂LS) is the unique least
squares estimate of g(β) for any function g.
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• If X is not full rank, there is no unique least squares estimate - which one should we use to estimate
β? Moreover, the parameter β is not identifiable, so it is not even clear what parameter a least
squares solution β̂LS would be estimating!

However, if β̂
(1)
LS and β̂

(2)
LS are two least squares estimates, then Xβ̂

(1)
LS = Xβ̂

(2)
LS (this takes a little

more linear algebra to prove). Therefore, the identifiable functions of β have unique least squares

solutions. Indeed if g(β) = g∗(Xβ), then for any least squares estimate β̂LS , g(β̂LS) = g∗(Xβ̂LS)
is the unique least squares estimate of g(β).

There is a converse for linear functions of β, i.e. g(β) = λTβ for a set of weights λ. If β̂
(1)
LS and

β̂
(2)
LS are two least squares estimates which satisfy λT β̂

(1)
LS = λT β̂

(2)
LS , then λ = XT ρ for some set of

weights ρ. That is, g(β) = λTβ = ρTXβ = g∗(Xβ), so g is an identifiable linear function of β.
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