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1 Asymptotic Distribution of the Estimates for AR models

The following holds for each of the Yule-Walker, Conditional Least Squares and ML estimates:

For n large, the approximate distribution of
√
n
(
φ̂− φ

)
is normal with mean 0 and variance covariance

matrix σ2
ZΓ−1

p where Γp is the p× p matrix whose (i, j)th entry is γX(i− j).

1.1 Proof Sketch

Assume µ = 0 for simplicity. It is easiest to work with the conditional least squares estimates. The
AR(p) model is:

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt.

We may write this model in matrix notation as:

Xt = XT
t−1φ+ Zt

where Xt−1 is the p× 1 vector Xt−1 = (Xt−1, Xt−2, . . . , Xt−p)T and φ is the p× 1 vector (φ1, . . . , φp)T .
The conditional least squares method minimizes the sum of squares:

n∑
t=p+1

(
Xt − φTXt−1

)2
with respect to φ. The solution is:

φ̂ =

(
n∑

t=p+1

Xt−1XT
t−1

)−1( n∑
t=p+1

Xt−1Xt

)
.

Writing Xt = XT
t−1φ+ Zt, we get

φ̂ = φ+

(
n∑

t=p+1

Xt−1XT
t−1

)−1( n∑
t=p+1

Xt−1Zt

)
.

As a result,

√
n
(
φ̂− φ

)
=

(
1

n

n∑
t=p+1

Xt−1XT
t−1

)−1(
1√
n

n∑
t=p+1

Xt−1Zt

)
. (1)
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The following assertions are intuitive (note that Xt−1 and Zt are uncorrelated and hence independent
under the gaussian assumption) and can be proved rigorously:

1

n

n∑
t=p+1

Xt−1XT
t−1 → Γp as n→∞ in probability

and
1√
n

n∑
t=p+1

Xt−1Zt → N
(
0, σ2

ZΓp

)
as n→∞ in distribution.

These results can be combined with the expression (1) to prove that
√
n
(
φ̂− φ

)
converges in distribution

to a normal distribution with mean 0 and variance covariance matrix σ2
ZΓ−1

p .

1.2 Special Instances

In the AR(1) case:
Γp = Γ1 = γX(0) = σ2

Z/(1− φ2).

Thus φ̂ is approximately normal with mean φ and variance (1− φ2)/n.

For AR(2), using

γX(0) =
1− φ2
1 + φ2

σ2
Z

(1− φ2)2 − φ21
and ρX(1) =

φ1
1− φ2

,

we can show that (φ̂1, φ̂2) is approximately normal with mean (φ1, φ2) and variance-covariance matrix is
1/n times (

1− φ22 −φ1(1 + φ2)
−φ1(1 + φ2) 1− φ22

)
Note that the approximate variances of both φ̂1 and φ̂2 are the same. Observe that if we fit AR(2) model

to a dataset that comes from AR(1), then the estimate of φ̂1 might not change much but the standard
error will be higher. We lose precision. See Example 3.34 in the book.

2 More General ARMA model fitting

2.1 Invertibility

Consider the case of the MA(1) model whose acvf is given by γX(0) = σ2
Z(1 + θ2) and γX(1) = θσ2

Z

and γX(h) = 0 for all h ≥ 2. It is easy to see that for θ = 5, σ2
Z = 1, we get the same acvf as for

θ = 1/5, σ2
Z = 25. In other words, there exist different parameter values that give the same acvf. More

generally, the parameter pairs (θ, σ2
Z) and (1/θ, θ2σ2

Z) correspond to the same acvf.

This implies that one can not uniquely estimate the parameters of an MA(1) model from data. A
natural fix is to consider only those MA(1) for which |θ| < 1. This condition is called invertibility. The
condition |θ| < 1 for the MA(1) model is equivalent to stating that the moving average polynomial θ(z)
has all roots of magnitude strictly larger than one. This gives the general definition of invertibility for
an ARMA process.

An ARMA model φ(B)(Xt − µ) = θ(B)Zt is said to be invertible if all roots of the moving average
polynomial θ(z) have magnitude strictly larger than one. It can be shown (in analogy with causality)
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that this condition is equivalent to Zt being written as a linear combination of the present and past values
of Xt alone.

From now on, we shall only consider stationary, causal and invertible ARMA models i.e., we shall
assume that both the polynomials φ(z) and θ(z) do not have any roots in the unit disk.

Let us now study the problem of fitting a stationary, causal and invertible ARMA model to data
assuming that the orders p and q are known.

Each of the three methods for the AR model fitting carry over (with additional complications) to the
general ARMA case. It is easiest to start by learning the relevant R function. The function to use is
arima(). We will see later that ARIMA is a more general class of models that include the ARMA models
as a special case (actually, ARIMA is just differencing + ARMA). This function arima() can be used to
fit ARMA models to data. It also has a method argument that has three values: CSS-ML, ML and CSS,
the default being CSS-ML.

2.2 Yule-Walker or Method of moments

This proceeds, in principle, by solving some subset of the following set of equations for the unknown
parameters θ1, . . . , θq, φ1, . . . , φp and σ2

Z (and µ is estimated by the sample mean)

γ̂(k)− φ1γ̂(k − 1)− · · · − φpγ̂(k − p) = (ψ0θk + ψ1θk+1 + · · ·+ ψq−kθq)σ2
Z

for 0 ≤ k ≤ q and
γ̂(k)− φ1γ̂(k − 1)− · · · − φpγ̂(k − p) = 0 for k > q.

Note that ψj above are functions of θ1, . . . , θq and φ1, . . . , φp.

This method of estimation has the following problems:

1. It is cumbersome (unless we are in the pure AR case): Solutions might not always exist to these
equations (for example, in the MA(1), this method entails solving r1 = θ/(1 + θ2) which of course
does not have a solution when r1 /∈ [−0.5, 0.5]). The parameters are estimated in an arbitrary
fashion when these equations do not have a solution.

2. The estimators obtained are inefficient. The other techniques below give much better estimates
(smaller standard errors).

Because of these problems, no one uses method of moments for estimating the parameters of a general
ARMA model. R does not even have a function for doing this. Note, however, that both of these problems
disappear for the case of the pure AR model.

2.3 Conditional Least Squares

Let us first consider the special case of the MA(1) model: Xt − µ = Zt + θZt−1. We want to fit this
model to data x1, . . . , xn. If the data were indeed generated from this model, then

Z1 = x1 − µ− θZ0;Z2 = x2 − µ− θZ1; . . . ;Zn = xn − µ− θZn−1.

If we set Z0 to its mean 0, then for every fixed values of θ and µ, we can recursively calculate Z1, . . . , Zn.
We can then compute the sum of squares

∑n
i=1 Z

2
i . This value would change for different values of θ. We

would then choose the value of θ for which it is small (this is accomplished by an optimization procedure).

This is also called conditional least squares because this minimzation is obtained when one tries to
maximize the conditional likelihood of the data conditioning on z0 = 0.
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Note that conditional likelihood works differently in the AR(1) case compared to the MA(1) case. It
works in a yet another different way in the ARMA(1, 1) case for example. Here the model is Xt − µ −
φ(Xt−1 − µ) = Zt + θZt−1. Here it is convenient to set Z1 to be zero. Then we can write

Z2 = x2 − µ− φ(x1 − µ);Z3 = x3 − µ− φ(x2 − µ)− θZ2; . . . ;Zn = xn − µ− φ(xn−1 − µ)− θZn−1.

After this, one forms the sum of squares
∑n

i=2 Z
2
i which can be computed for every fixed values of θ, φ and

µ. One then minimizes these resulting sum of squares over different values of the unknown parameters.

For a general ARMA(p, q) model:

Xt − µ− φ1(Xt−1 − µ)− · · · − φp(Xt−p − µ) = Zt + θ1Zt−1 + · · ·+ θqZt−q,

we set Zt = 0 for t ≤ p and calculate recursively

Zt = Xt − µ− φ1(Xt−1 − µ)− · · · − φp(Xt−p − µ)− θ1Zt−1 − · · · − θqZt−q

for t = p+ 1, . . . , n. This is equivalent to writing the likelihood coniditioning on X1, . . . , Xp and Zt = 0
for t ≤ p. If q = 0 (AR models), minimizing the sum of squares is equivalent to linear regression and
no iterative technique is needed. If q > 0, the problem becomes nonlinear regression and numerical
optimization routines need to be used.

In R, this method is performed by calling the function arima() with the method argument set to CSS
(CSS stands for conditional sum of squares).

2.4 Maximum Likelihood

This method is simple in principle. Assume that the errors {Zt} are gaussian. Write down the likelihood
of the observed data x1, . . . , xn in terms of the unknown parameter values µ, θ1, . . . , θq, φ1, . . . , φp and
σ2
Z . Maximize over these unknown parameter values.

It is achieved in R by calling the function arima() with the method argument set to ML or CSS-ML.
ML stands of course for Maximum Likelihood. R uses an optimization routine to maximize the likelihood.
This routine is iterative and needs suitable initial values of the parameters to start. In CSS-ML, R selects
these starting values by CSS. I do not quite know how the starting values are selected in ML. The default
method for the arima function in R is CSS-ML. The R output for the methods CSS-ML and ML seems
to be identical.
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