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1 Best Linear Prediction

Suppose that Y and W1, . . . ,Wm are random variables with zero means and finite variances. Let
cov(Y,Wi) = ζi, i = 1, . . . ,m and

cov(Wi,Wj) = ∆(i, j) for i, j = 1, . . . ,m.

What is the best linear predictor of Y in terms of W1, . . . ,Wm?

The best linear predictor a1, . . . , am is characterized by the property that Y − a1W1− · · · − amWm is
uncorrelated with W1, . . . ,Wm. In other words:

cov(Y − a1W1 − · · · − amWm,Wi) = 0 for i = 1, . . . ,m.

Note that this gives m equations in the m unknowns a1, . . . , am. The ith equation can be rewritten as

ζi −∆(i, 1)a1 − · · · −∆(i,m)am = 0.

In other words, this means that ζi equals the ith row of ∆ multiplied by the vector a = (a1, . . . , am)T

which is same as the ith element of the vector ∆a. Thus these m equations can be written in one line as
∆a = ζ.

Another way to get this defining equation for the coefficients of the best linear predictor is to find
values of a1, . . . , am that minimize

F (a) := E (Y − a1W1 − · · · − amWm)
2

= E
(
Y − aTW

)2
= EY 2 − 2E((aTW )Y ) + E(aTWWTa)

= EY 2 − 2aT ζ + aT ∆a.

Differentiate with respect to a and set equal to zero to get

−2ζ + 2∆a = 0

or a = ∆−1ζ. Therefore the best linear predictor of Y in terms of W1, . . . ,Wm equals ζT ∆−1W .

The special case of this for m = 1 (when there is only one predictor W1) may be more familiar. When
m = 1, we have ζ1 = cov(Y,W1) and ∆(1, 1) = var(W1). Thus, the best predictor or Y in terms of W1 is

cov(Y,W1)

var(W1)
W1.
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Now consider a stationary mean zero time series {Xt}. Using the above with Y = Xn and W1 = Xn−1,
we get that the best predictor of Xn in terms of Xn−1 is

cov(Xn, Xn−1)

var(Xn−1)
Xn−1 =

γX(1)

γX(0)
Xn−1 = ρX(1)Xn−1

What is the best predictor for Xn in terms of Xn−1, Xn−2, . . . , Xn−k? Here we take Y = Xn and
Wi = Xn−i for i = 1, . . . , k. Therefore

∆(i, j) = cov(Wi,Wj) = cov(Xn−i, Xn−j) = γX(i− j)

and
ζi = cov(Y,Wi) = cov(Xn, Xn−i) = γX(i).

With these ∆ and ζ, solve for ∆a = ζ to obtain the coefficients of Xn−1, . . . , Xn−k in the best linear
predictor of Xn.

Consider the special case of the AR(p) model: Xt − φ1Xt−1 − · · · − φpXt−p = Zt. Directly from
the defining equation and causality, it follows that Xn − φ1Xn−1 − · · · − φpXn−p is uncorrelated with
Xn−1, Xn−2, . . . . We thus deduce that the best linear predictor of Xn in terms of Xn−1, Xn−2, . . . equals
φ1Xn−1 + φ2Xn−2 + · · ·+ φpXn−p.

2 The Partial Autocorrelation Function (pacf)

2.1 First Definition

Let {Xt} be a mean zero stationary process. The Partial Autocorrelation at lag h, denoted by pacf(h)
is defined as the coefficient of Xt−h in the best linear predictor for Xt in terms of Xt−1, . . . , Xt−h.

Check that pacf(1) is the same as the autocorrelation at lag one, ρ(1). But pacf(h) for h > 1 can be
quite different from ρ(h).

For the AR(p) model: Xt−φ1Xt−1−· · ·−φpXt−p = Zt, check that pacf(p) = φp and that pacf(h) = 0
for h > p.

2.2 Second Definition

From the first definition, it is not quite clear why this is called a correlation. This will be apparent from
the second definition.

The pacf at lag h is defined as the correlation between Xt and Xt−h with the effect of the inter-
vening variables Xt−1, Xt−2, . . . , Xt−h+1 removed. Let β1Xt−1 + · · · + βh−1Xt−h+1 denote the best
linear predictor of Xt in terms of Xt−1, . . . , Xt−h+1. By stationarity, the two sequences

Xt, Xt−1, . . . , Xt−h+1

and
Xt−h, Xt−h+1, . . . , Xt−1

have the same covariance matrix. Indeed, if Wi = Xt−i+1 and W̃i = Xt−h+i−1 for i = 1, . . . , h, then the
covariance between Wi and Wj equals γX(i− j) which is the same as the covariance between W̃i and W̃j .

Therefore, the best linear prediction of Xt−h in terms of Xt−h+1, . . . , Xt−1 equals β1Xt−h+1 + · · ·+
βh−1Xt−1.
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The pacf at lag h is defined as

pacf(h) = corr (Xt − β1Xt−1 − · · · − βh−1Xt−h+1, Xt−h − β1Xt−h+1 − · · · − βh−1Xt−1) .

In other words, pacf(h) is the correlation between the errors in the best linear predictions of Xt

and Xt−h in terms of the intervening variables Xt−1, . . . , Xt−h+1.

The key fact is that for an AR(p) model, pacf(h) equals zero for lags h > p. To see this: note that for
h > p, the best linear predictor forXt in terms ofXt−1, . . . , Xt−h+1 equals φ1Xt−1+φ2Xt−2+· · ·+φpXt−p.
In other words, β1 = φ1, . . . , βp = φp and βi = 0 for i > p.

Therefore for h > p, we have

pacf(h) = corr (Xt − φ1Xt−1 − · · · − φpXt−p, Xt−h − φ1Xt−h+1 − · · · − φpXt−h+p)

= corr (Zt, Xt−h − φ1Xt−h+1 − · · · − φpXt−h+p) = 0,

by causality.

The equivalence between the two definitions of pacf(h) can be proved by linear algebra. We will skip
this derivation.

3 Estimating pacf from Data

How does one estimate pacf(h) from data for different lags h? The coefficients a1, . . . , ah ofXt−1, . . . , Xt−h

in the best linear predictor of Xt are obtained by solving an equation of the form ∆a = ζ.

Now all the elements of ∆ and ζ are of the form γX(i−j) for some i and j. Therefore, a natural method
of estimating pacf(h) is to estimate the entries in ∆ and ζ by the respective sample autocorrelations to

obtain ∆̂ and ζ̂ and then to solve the equation ∆̂â = ζ̂ for â. Note that pacf(h) is precisely ah.

It has been shown that when the data come from an AR(p) model, the sample partial autocorrelations
at lags greater than p are approximately independently normally distributed with zero means and
variances 1/n. Thus for h > p, bands at ±1.96n−1/2 can be used for checking if an AR(p) model is
appropriate.

4 Summary

For an MA(q) model, the autocorrelation function ρX(h) equals zero for h > q. Also for h > q, the
sample autocorrelation functions rh are approximately normal with mean 0 and variance whh/n where
whh := 1 + 2ρ2(1) + · · ·+ 2ρ2(q).

For an AR(p) model, the partial autocorrelation function pacf(h) equals zero for h > p. Also for
h > p, the sample autocorrelation functions rh are approximately normal with mean 0 and variance 1/n.

If the sample acf for a data set cuts off at some lag, we use an MA model. If the sample pacf cuts off
at some lag, we use an AR model.

What if neither of the above happens? How do we then choose an appropriate ARMA model? Here
is a general strategy:

1. Try ARMA(p, q) for various choices of p and q.

2. For a fixed p and q, fit the ARMA(p, q) model to the data (we will soon learn how to do this).
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3. See how good the fit is. Select p and q so that the fit is good while making sure there is no
overfitting.

How to check if a model is fits the data well but does not overfit? This is a problem of model selection.
Often automatic criteria like AIC, FPE, BIC are used. One should also use judgement.

Our plan is as follows:

1. How to fit an ARMA model to data?

2. How to assess goodness of fit?

3. Choosing p and q by an automatic Model selection technique.
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