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1 Seasonal ARMA Models

The doubly infinite sequence {Xt} is said to be a seasonal ARMA(P , Q) process with period s if it is
stationary and if it satisfies the difference equation Φ(Bs)Xt = Θ(Bs)Zt where {Zt} is white noise and

Φ(Bs) = 1− Φ1B
s − Φ2B

2s − · · · − ΦPB
Ps

and
Θ(Bs) = 1 + Θ1B

2 + Θ2B
2s + · · ·+ ΘQB

Qs.

Note that these can also be viewed as ARMA(Ps, Qs) models. However note that these models have
P + Q + 1 (the 1 is for σ2) parameters while a general ARMA(Ps, Qs) model will have Ps + Qs + 1
parameters. So these are much sparser models.

Unique Stationary solution exists to Φ(Bs)Xt = Θ(Bs)Zt if and only if every root of Φ(zs) has
magnitude different from one. Causal stationary solution exists if and only if every root of Φ(zs) has
magnitude strictly larger than one. Invertible stationary solution exists if and only if every root of Θ(zs)
has magnitude strictly larger than one.

The ACF and PACF of these models are non-zero only at the seasonal lags h = 0, s, 2s, 3s, . . . . At
these seasonal lags, the ACF and PACF of these models behave just as the case of the unseasonal ARMA
model: Φ(B)Xt = Θ(B)Zt.

2 Multiplicative Seasonal ARMA Models

In the co2 dataset, for the first and seasonal differenced data, we needed to fit a stationary model with
non-zero autocorrelations at lags 1, 11, 12 and 13 (and zero autocorrelation at all other lags). We can
use a MA(13) model to this data but that will have 14 parameters and therefore will likely overfit the
data. We can get a much more parsimonious model for this dataset by combining the MA(1) model with
a seasonal MA(1) model of period 12. Specifically, consider the model

Xt = (1 + ΘB12)(1 + θB)Zt.

This model has the autocorrelation function:

ρx(1) =
θ

1 + θ2
and ρX(12) =

Θ

1 + Θ2

and

ρX(11) = ρX(13) =
θΘ

(1 + θ2)(1 + Θ2)
.
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At every other lag, the autocorrelation ρX(h) equals zero. This is therefore a suitable model for the first
and seasonal differenced data in the co2 dataset.

More generally, we can combine, by multiplication, ARMA and seasonal ARMA models to obtain
models which have special autocorrelation properties with respect to seasonal lags:

The Multiplicative Seasonal Autoregressive Moving Average Model ARMA(p, q) × (P , Q)s
is defined as the stationary solution to the difference equation:

Φ(Bs)φ(B)Xt = Θ(Bs)θ(B)Zt.

The model we looked at above for the co2 dataset is ARMA(0, 1) × (0, 1)12.

Another example of a multiplicative seasonal ARMA model is the ARMA(0, 1) × (1, 0)12 model:

Xt − ΦXt−12 = Zt + θZt−1.

The autocorrelation function of this model can be checked to be ρX(h) = Φh for h ≥ 0 and

ρX(12h− 1) = ρX(12h+ 1) =
θ

1 + θ2
Φh for h = 0, 1, 2, . . .

and ρX(h) = 0 at all other lags.

When you get a stationary dataset whose correlogram shows interesting patterns at seasonal lags,
consider using a multiplicative seasonal ARMA model. You may use the R function ARMAacf to
understand the autocorrelation and partial autocorrelation functions of these models.

3 SARIMA Models

These models are obtained by combining differencing with multiplicative seasonal ARMA models. These
models are denoted by ARIMA(p, d, q) × (P , D, Q)s. This means that after differencing d times and
seasonal differencing D times, we get a multiplicative seasonal ARMA model. In other words, {Yt} is
ARIMA(p, d, q) × (P , D, Q)s if it satisfies the difference equation:

Φ(Bs)φ(B)∇D
s ∇dYt = δ + Θ(Bs)θ(B)Zt.

Recall that ∇d
s = (1−Bs)d and ∇d = (1−B)d denote the differencing operators.

In the co2 example, we wanted to use the model ARMA(0, 1) × (0, 1)12 to the seasonal and first
differenced data: ∇∇12Xt. In other words, we want to fit the SARIMA model with nonseasonal orders
0, 1, 1 and seasonal orders 0, 1, 1 with seasonal period 12 to the co2 dataset. This model can be fit to the
data using the function arima() with the seasonal argument.

4 AIC

AIC stands for Akaike’s Information Criterion. It is a model selection criterion that recommends choosing
a model for which:

AIC = −2 log(maximum likelihood) + 2k

is the smallest. Here k denotes the number of parameters in the model. For example, in the case of an
ARMA(p, q) model with a non-zero mean µ, we have k = p+ q + 2.

The first term in the definition of AIC measures the fit of the model i.e., the model performance on
the given data set. The term 2k serves as a penalty function which penalizes models with too many
parameters.
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While comparing a bunch of models for a given dataset, you may use the AIC. There are other criteria
as well. For example, the BIC (Bayesian Information Criterion) looks at:

BIC = −2 log(maximum likelihood) + k log n.

Note that the penalty above is larger than that of AIC. Consequently, BIC selects more parsimonious
models compared to AIC.

5 Time Series Cross Validation

Read the two articles on Rob Hyndman’s blog: http://robjhyndman.com/hyndsight/crossvalidation/
for a simple introduction to cross validation in general and http://robjhyndman.com/hyndsight/

tscvexample/ for cross validation specific to time series.

There are many ways to do cross validation for time series. Suppose we have monthly data for m years
x1, . . . , xn where n = 12m and the objective is to predict the data for the next year (This is similar to
the midterm problem which has weekly data instead of monthly). Suppose we have ` competing models
M1, . . . ,M` for the dataset. We can use cross-validation in order to pick one of these models in the
following way:

1. Fix a model Mi. Fix k < m.

2. Fit the model Mi to the data from the first k years.

3. Using the fitted model, predict the data for the (k + 1)st year.

4. Calculate the sum of squares of errors of prediction for the (k + 1)st year.

5. Repeat these steps for k = k0, . . . ,m− 1 where k0 is an arbitrary value of your choice.

6. Average the sum of squares of errors of prediction over k = k0, . . . ,m − 1. Denote this value by
CVi and call it the Cross Validation score of model Mi.

7. Calculate CVi for each i = 1, . . . , ` and choose the model with the smallest Cross-Validation score.
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