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1 Last Class

We looked at

1. Fitted Values: Ŷ = Xβ̂ = HY where H = X(XTX)−1XTY . Ŷ is the projection of Y onto the
column space of X.

2. Residuals: ê = Y − Ŷ = (I −H)Y . ê is orthogonal to every vector in the column space of X.
The degrees of freedom of the residuals is n− p− 1.

3. Residual Sum of Squares: RSS =
∑n

i=1 ê
2
i = êTi êiY

T (I − H)Y . RSS decreases when more
explanatory variables are added to the model.

4. Total Sum of Squares: TSS =
∑n

i=1(Yi − Ȳ )2. Can be thought of the RSS in a linear model
with no explanatory variables (only the intercept term).

5. Coefficient of Determination or Multiple R2: Defined as 1−(RSS/TSS). Always lies between
0 and 1. High value means that the explanatory variables are useful in explaining the response and
low value means that the explanatory variables are not useful in explaining the response. R2

increases when more explanatory variables are added to the model.

2 Expected Value of the RSS

What is the expected value of RSS?

E(RSS) = EeT (I −H)e = E

∑
i,j

(I −H)(i, j)eiej

 =
∑
i,j

(I −H)(i, j)(Eeiej)

Because E(eiej) equals 0 when i 6= j and σ2 otherwise, we get

E(RSS) = σ2
n∑

i=1

(I −H)(i, i) = σ2

(
n−

n∑
i=1

H(i, i)

)

The sum of the diagonal entries of a square matrix is called its trace i.e, tr(A) =
∑

i aii. We can therefore
write

E(RSS) = σ2 (n− tr(H)) .

A very important fact about trace is tr(AB) = tr(BA). Thus

tr(H) = tr(X(XTX)−1XT ) = tr((XTX)−1XTX) = tr(Ip+1) = p+ 1.
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We proved
E(RSS) = σ2(n− p− 1).

An unbiased estimator of σ2 is therefore given by

σ̂2 :=
RSS

n− p− 1
.

And σ is estimated by

σ̂ :=

√
RSS

n− p− 1
.

This σ̂ is called the Residual Standard Error.

3 Standard Errors of β̂

We have seen that Eβ̂ = β and that Cov(β̂) = σ2(XTX)−1. The standard error of β̂i is therefore defined
as σ̂ multiplied by the square root of the ith diagonal entry of (XTX)−1. The standard error gives an

idea of the accuracy of β̂i as an estimator of βi. These standard errors are part of the R output for the
summary of the linear model.

4 Standardized or Studentized Residuals

The residuals ê1, . . . , ên have different variances. Indeed, because Cov(ê) = σ2(I −H), we have

var(êi) = σ2(1− hii)

where hii denotes the ith diagonal entry of H. Because hii can be different for different i, the residuals
have different variances.

The variance can be standardized to 1 if we divide the residuals by σ
√

1− hii. But because σ is
unknown, one divides by σ̂

√
1− hii and we call the resulting quantities Standardized Residuals or

Studentized Residuals:

ri =
êi

σ̂
√

1− hii
.

The standardized residuals r1, . . . , rn are very important in regression diagnostics. Various assumptions
on the unobserved errors e1, . . . , en can be checked through them.

5 Normality of the Errors

Everything that we did so far was only under the assumption that the errors e1, . . . , en were uncorrelated,
had mean zero and variance σ2. But if we want to test hypotheses about or if we want confidence intervals
for linear combinations of β, we need distributional assumptions on the errors.

For example, consider the problem of testing the null hypothesis H0 : β1 = 0 against the alternative
hypothesis H1 : β1 6= 0. If H0 were true, this would mean that the first explanatory variable has no role
(in the presence of the other explanatory variables) in determining the expected value of the response.

An obvious way to test this hypothesis is to look at the value of β̂1 and then to reject H0 if |β̂1| is large.

But how large? To answer this question, we need to understand how β̂1 is distributed under the null
hypothesis H0. Such a study requires some distributional assumptions on the errors e1, . . . , en.
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The mose standard assumption on the errors is that e1, . . . , en are independently distributed according
to the normal distribution with mean zero and variance σ2. This is written in multivariate normal notation
as e ∼ N(0, σ2In).

6 The Multivariate Normal Distribution

A random vector U = (U1, . . . , Up)T is said to have the multivariate normal distribution with parameters
µ and Σ if the joint density of U1, . . . , Up is given by

(2π)−p/2|Σ|−1/2 exp

(
−1

2
(u− µ)T Σ−1(u− µ)

)
for u ∈ Rd.

Here |Σ| denotes the determinant of Σ.

We use the notation U ∼ Np(µ,Σ) to express that U is multivariate normal with parameters µ and
Σ.

Example 6.1. An important example of the multivariate normal distribution occurs when U1, . . . , Up are
independently distributed according to the normal distribution with mean 0 and variance σ2. In this case,
it is easy to show U = (U1, . . . , Up)T ∼ Np(0, σ2Ip).

The most important properties of the multivariate normal distribution are summarized below:

1. When p = 1, this is just the usual normal distribution.

2. Mean and Variance-Covariance Matrix: EU = µ and Cov(U) = Σ.

3. Independence of linear functions can be checked by multiplying matrices: Two linear
functions AU and BU are independent if and only if AΣBT = 0. In particular, this means that Ui

and Uj are independent if and only if the (i, j)th entry of Σ equals 0.

4. Every linear function is also multivariate normal: a+AU ∼ N(a+Aµ,AΣAT ).

5. Suppose U ∼ Np(µ, I) and A is a p× p symmetric and idempotent (symmetric means AT = A and
idempotent means A2 = A) matrix. Then (U − µ)TA(U − µ) has the chi-squared distribution with
degrees of freedom equal to the rank of A. This is written as (U − µ)TA(U − µ) ∼ χ2

rank(A).

7 Normal Regression Theory

We assume that e ∼ Nn(0, σ2In). Equivalently, e1, . . . , en are independent normals with mean 0 and
variance σ2.

Under this assumption, we can calculate the distributions of many of the quantities studied so far.

7.1 Distribution of Y

Since Y = Xβ + e, we have Y ∼ Nn(Xβ, σ2In).

7.2 Distribution of β̂

Because β̂ = (XTX)−1XTY is a linear function of Y , it has a multivariate normal distribution. We

already saw that Eβ̂ = β and Cov(β̂) = σ2(XTX)−1. Thus β̂ ∼ Np+1(β, σ2(XTX)−1).
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7.3 Distribution of Fitted Values

Ŷ = HY . Thus EŶ = HE(Y ) = HXβ = Xβ. Also Cov(Ŷ ) = Cov(HY ) = σ2H. Therefore Ŷ ∼
Nn(Xβ, σ2H).

7.4 Distribution of Residuals

ê = (I −H)Y . We saw that Eê = 0 and Cov(ê) = σ2(I −H). Therefore ê ∼ Nn(0, σ2(I −H)).

7.5 Independence of residuals and β̂

Recall that if U ∼ Np(µ,Σ), then AU and BU are independent if and only if AΣBT .

This can be used to verify that β̂ = (XTX)−1XTY and ê = (I −H)Y are independent. To see this,
observe that both are linear functions of Y ∼ Nn(Xβ, σ2I). Thus if A = (XTX)−1XTY , B = (I −H)
and Σ = σ2I, then

AΣBT = σ2(XTX)−1XT (I −H) = σ2(XTX)−1(XT −XTH)

Because XTH = (HX)T = XT , we conclude that β̂ and ê are independent.

Also check that Ŷ and ê are independent.

7.6 Distribution of RSS

Recall
RSS = êT ê = Y T (I −H)Y = eT (I −H)e.

So
RSS

σ2
=
( e
σ

)T
(I −H)

( e
σ

)
.

Because e/σ ∼ Nn(0, I) and I −H is symmetric and idempotent with rank n− p− 1, we have

RSS

σ2
∼ χ2

n−p−1.
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