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1 DFT Recap

Given data x0, . . . , xn−1, their DFT is given by b0, b1, . . . , bn−1 where

bj :=

n−1∑
t=0

xt exp

(
−2πijt

n

)
for j = 0, 1, . . . , n− 1.

Two key things to remember are:

1. b0 = x0 + · · ·+ xn−1

2. bn−j = b̄j for 1 ≤ j ≤ n− 1

For odd values of n, say n = 11, the DFT is comprised of the real number b0 and the (n− 1)/2 complex
numbers b1, . . . , b(n−1)/2.

For even values of n, say n = 12, the DFT consists of two real numbers b0 and bn/2 and the (n− 2)/2
complex numbers b1, . . . , b(n−2)/2.

The original data x0, x1, . . . , xn−1 can be recovered from the DFT by the formula:

xt =
1

n

n−1∑
j=0

bj exp

(
2πijt

n

)
for t = 0, 1, . . . , n− 1.

This formula can be written succintly as:

x =
1

n

n−1∑
j=0

bju
j

where x = (x0, . . . , xn−1) denotes the data vector and uj denotes the vector obtained by evaluating the
sinusoid exp(2πijt/n) at times t = 0, 1, . . . , n − 1. We have seen in the last class that u0, u1, . . . , un−1

are orthogonal with uj · uj = n for each j.

As a result, we have the sum of squares identity:

n
∑
t

x2t =

n−1∑
j=0

|bj |2 .

The absolute values of bj and bn−j are equal because bn−j = b̄j and hence we can write the above sum
of squares identity in the following way. For n = 11,

n
∑
t

x2t = b20 + 2|b1|2 + 2|b2|2 + 2|b3|2 + 2|b4|2 + 2|b5|2
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and for n = 12,

n
∑
t

x2t = b20 + 2|b1|2 + 2|b2|2 + 2|b3|2 + 2|b4|2 + 2|b5|2 + b26.

Note that there is no need to put an absolute value on b6 because it is real.

Because b0 =
∑
t xt = nx̄, we have

n
∑
t

x2t − b20 = n
∑
t

x2t − n2x̄2 = n
∑
t

(xt − x̄)2.

Thus the sum of squares identity can be written for n odd, say n = 11, as∑
t

(xt − x̄)2 =
2

n
|b1|2 +

2

n
|b2|2 +

2

n
|b3|2 +

2

n
|b4|2 +

2

n
|b5|2

and, for n even, say n = 12, as∑
t

(xt − x̄)2 =
2

n
|b1|2 +

2

n
|b2|2 +

2

n
|b3|2 +

2

n
|b4|2 +

2

n
|b5|2 +

1

n
b26.

2 DFT of the Cosine Wave

Let xt = R cos(2πf0t + φ) for t = 0, . . . , n − 1. We have seen in R that when f0 is a Fourier frequency
(i.e., of the form k/n for some k), the DFT has exactly one spike but when f0 is not a Fourier frequency,
there is leakage. We prove this here.

We can, without loss of generality, assume that 0 ≤ f0 ≤ 1/2 because:

1. If f0 < 0, then we can write cos(2πf0t+ φ) = cos(2π(−f0)t− φ). Clearly, −f0 ≥ 0.

2. If f0 ≥ 1, then we write

cos(2πf0t+ φ) = cos(2π[f0]t+ 2π(f − [f0])t+ φ) = cos(2π(f − [f0])t+ φ),

because cos(·) is periodic with period 2π. Clearly 0 ≤ f − [f0] < 1.

3. If f0 ∈ [1/2, 1), then

cos(2πf0t+ φ) = cos(2πt− 2π(1− f0)t+ φ) = cos(2π(1− f0)t− φ)

because cos(2πt− x) = cosx for all integers t. Clearly 0 < 1− f0 ≤ 1/2.

Thus given a cosine wave R cos(2πft+φ), one can always write it as R cos(2πf0t+φ′) with 0 ≤ f0 ≤ 1/2
and a phase φ′ that is possibly different from φ. This frequency f0 is said to be an alias of f . From now
on, whenever we speak of the cosine wave R cos(2πf0t+ φ), we assume that 0 ≤ f0 ≤ 1/2.

If φ = 0, then we have xt = R cos(2πf0t). When f0 = 0, then xt = R and so there is no oscillation
in the data at all. When f0 = 1/2, then xt = R cos(πt) = R(−1)t and so f0 = 1/2 corresponds to the
maximum possible oscillation.

What is the DFT of xt = R cos(2πf0t+ φ) for 0 ≤ f0 ≤ 1/2? The formula is

bj :=

n−1∑
t=0

xt exp

(
−2πijt

n

)
.
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Suppose f = j/n and we shall calculate

b(f) =

n−1∑
t=0

xt exp (−2πift) .

The easiest way to calculate this DFT is to write the cosine wave in terms of complex exponentials:

xt =
R

2

(
e2πif0teiφ + e−2πif0te−iφ

)
.

It is therefore convenient to first calculate the DFT of the complex exponential e2πif0t.

2.1 DFT of yt = e2πif0t

The DFT of yt = e2πif0t is given by

n−1∑
t=0

yte
−2πift =

n−1∑
t=0

e2πi(f0−f)t

where f = j/n. Let us denote this by Sn(f0 − f) i.e.,

Sn(f0 − f) =

n−1∑
t=0

e2πi(f0−f)t. (1)

This can clearly be evaluated using the geometric series formula to be

Sn(f0 − f) =
e2πi(f0−f)n − 1

e2πi(f0−f) − 1

It is easy to check that
eiθ − 1 = cos θ + i sin θ − 1 = 2eiθ/2 sin θ/2.

As a result

Sn(f0 − f) =
sinπn(f0 − f)

sinπ(f0 − f)
eiπ(f0−f)(n−1)

Thus the absolute value of the DFT of yt = e2πif0t is given by

|Sn(f − f0)| =
∣∣∣∣ sinπn(f0 − f)

sinπ(f0 − f))

∣∣∣∣ where f = j/n

This expression becomes meaningless when f0 = f . But when f0 = f , the value of Sn(f0 − f) can be
directly be calculated from (1) to be equal to n.

The behavior of |Sn(f − f0)| can be best understood by plotting the function g 7→ (sinπng)/(sinπg).
This explains leakage.

The behavior of the DFT of the cosine wave can be studied by writing it in terms of the DFT of the
complex exponential.

If f0 is not of the form k/n for any j, then the term Sn(f − f0) is non-zero for all f of the form j/n.
This situation where one observes a non-zero DFT term bj because of the presence of a sinusoid at a
frequency f0 different from j/n is referred to as Leakage.

Leakage due to a sinusoid with frequency f0 not of the form k/n is present in all DFT terms bj but
the magnitude of the presence decays as j/n gets far from f0. This is because of the form of the function
Sn(f − f0).

There are two problems with Leakage:
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1. Fourier analysis is typically used to separate out the effects due to different frequencies; so leakage
is an undesirable phenomenon.

2. Leakage at j/n due to a sinusoid at frequency f0 can mask the presence of a true sinusoid at
frequency j/n.

How to get rid of leakage? The easy answer is to choose n appropriately (ideally, n should be a
multiple of the periods of all oscillations). For example, if it is monthly data, then it is better to have
whole year’s worth of data. But this is not always possible. We will study a leakage-reducing technique
later.

3 DFT of a Periodic Series

Suppose that the data x0, x1, . . . , xn−1 is periodic with period h i.e., xt+hu = xt for all integers t and u.
Let n be an integer multiple of h i.e., n = kh. For example, suppose we have monthly data collected over
10 years in which case: h = 12, k = 10 and n = 120.

Suppose that DFT of the data x0, . . . , xn−1 is b0, b1, . . . , bn−1. Suppose also that the DFT of the data
in the first cycle: x0, x1, . . . , xh−1 is β0, β1, . . . , βh−1.

We shall express bj in terms of β0, . . . , βh−1. Let f = j/n for simplicity.

By definition

bj =

n−1∑
t=0

xt exp (−2πitf) .

Break up the sum into
h−1∑
t=0

+

2h−1∑
t=h

+ · · ·+
kh−1∑

t=(k−1)h

The lth term above can be evaluated as:

lh−1∑
t=(l−1)h

xt exp (−2πift) =

h−1∑
s=0

xs exp (−2πif(s+ (l − 1)h))

= exp (−2πif(l − 1)h)

h−1∑
s=0

xs exp(−2πifs).
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Therefore

bj =

k∑
l=1

exp (−2πif(l − 1)h)

h−1∑
s=0

xs exp(−2πifs)

=

h−1∑
s=0

xs exp(−2πifs)

k∑
l=1

exp (−2πif(l − 1)h)

= Sk(fh)

h−1∑
s=0

xs exp(−2πifs)

= Sk(jh/n)

h−1∑
s=0

xs exp(−2πijs/n)

= Sk(j/k)

h−1∑
s=0

xs exp(−2πi(j/k)s/h)

Thus bj = 0 if j is not a multiple of k and when j is a multiple of k, then |bj | = k|βj/k|.

Thus the original DFT terms β0, β1, . . . , βh−1 now appear as b0 = kβ0, bk = kβ1, b2k = kβ2 etc. until
b(h−1)k = kβh−1. All other bjs are zero.

4 DFT and Sample Autocovariance Function

We show below that

|bj |2

n
=
∑
|h|<n

γ̂(h) exp

(
−2πijh

n

)
for j = 1, . . . , n− 1

where γ̂(h) is the sample autocovariance function. This gives an important connection between the dft
and the sample autocovariance function.

To see this, observe first, by the formula for the sum of a geometric series, that

n−1∑
t=0

exp

(
−2πijt

n

)
= 0 for j = 1, . . . , n− 1.

In other words, if the data is constant i.e., x0 = · · · = xn−1, then b0 equals nx0 and bj equals 0 for all
other j. Because of this, we can write:

bj =

n−1∑
t=0

(xt − x̄) exp

(
−2πijt

n

)
for j = 1, . . . , n− 1.
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Therefore, for j = 1, . . . , n− 1, we write

|bj |2 = bj b̄j =

n−1∑
t=0

n−1∑
s=0

(xt − x̄)(xs − x̄) exp

(
−2πijt

n

)
exp

(
2πijs

n

)

=

n−1∑
t=0

n−1∑
s=0

(xt − x̄)(xs − x̄) exp

(
−2πij(t− s)

n

)

=

n−1∑
h=−(n−1)

∑
t,s:t−s=h

(xt − x̄)(xt−h − x̄) exp

(
−2πijh

n

)

= n
∑
|h|<n

γ̂(h) exp

(
−2πijh

n

)
.
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